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Abstract—Just Noticeable Difference (JND) establishes
the threshold between two images or videos wherein dif-
ferences in quality remain imperceptible to an individual.
This threshold, collectively known as the Satisfied User
Ratio (SUR), holds significant importance in image and
video compression applications, ensuring that differences
in quality are imperceptible to the majority (p%) of users,
known as p%SUR. While substantial efforts have been
dedicated to predicting the p%SUR for various encoding
parameters (e.g., QP) and quality metrics (e.g., VMAF),
referred to as proxies, systematic consideration of the
prediction uncertainties associated with these proxies has
hitherto remained unexplored.

In this paper, we analyze the uncertainty of p%SUR
through Confidence Interval (CI) estimation and assess the
consistency of various Video Quality Metrics (VQMs) as
proxies for SUR. The analysis reveals challenges in directly
using p%SUR as ground truth for training models and
highlights the need for uncertainty estimation for SUR with
different proxies.

Index Terms—Satisfied User Ratio (SUR), Just Notice-
able Difference (JND), VQM

I. INTRODUCTION

In adaptive video streaming, content nowadays is
encoded at multiple bitrates to accommodate a wide
range of network conditions and end-user device types.
The number of bitrates and their values, collectively
known as the bitrate ladder, are of utmost importance
for the video streaming ecosystem. It is crucial to
ensure that perceptually similar bitrates are not added
to the bitrate ladder, particularly avoiding the addition
of bitrates that are perceptually indistinguishable and
would only increase costs without providing tangible
benefits. In this context, the concept of Video Wise Just
Noticeable Difference (VW-JND) is introduced, which
represents the smallest perceptible difference in quality
between two visual stimuli that can be perceived by

Fig. 1: The sampled frames of SRC#76 and #79 and the
corresponding VW-JND distribution in VideoSet [1].

an individual. For example, the first VW-JND point
indicates the transition from perceptually lossless to
perceptually lossy coding.

To account for variations in the perception of video
quality within the human visual system (HVS) among
different viewers, a metric known as the Satisfied User
Ratio (SUR) was introduced [1]. SUR quantifies the
portion of the population that cannot perceive distortion
when a video is compared to a reference at a specific
distortion level [1], [2]. This level is referred to as the
proxy of the SUR curve, which can be defined using
encoding parameters such as QP (Quantization Param-
eter) or VQMs such as VMAF (Video Multimethod
Assessment Fusion) [3].

To investigate SUR on a larger scale, Wang et
al. [1] proposed an extensive VW-JND dataset known
as VideoSet. This dataset includes JND assessments
from individuals for 220 source (SRC) video sequences,
each with a duration of 5 seconds. Individuals were



tasked with identifying the JND point between the
reference video and encoded videos at different QPs
(proxy). Previous studies have aimed to predict the SUR
curve, specifically targeting p%SUR, representing the
point where p% of users cannot perceive differences
between the distorted video and the reference. The most
commonly used p is 75 in literatures [1], [2], [4]. For
example, [2], [4]–[6] have introduced machine learning
(ML) or deep learning (DL) models to predict the SUR
curve and 75%SUR using QP as a proxy based on
VideoSet. Other research efforts have used VMAF [7]–
[11] and bitrate [12] as a proxy to model the SUR.

Upon revisiting the original annotations in VideoSet,
we discovered instances where certain SRCs depicted
nearly identical scenes, yet their respective 75%SUR
values exhibited considerable disparity. As depicted in
Fig.1, we present sample frames from SRC#76 and
#79, both featuring nearly identical video content, along
with the distributions of original VW-JND annotations
provided by the individuals. Notably, the 75%SUR QP
values for these two SRCs are 33 and 30, respectively,
indicating a significant difference. However, when per-
forming the ANOVA [13] analysis on the two distri-
butions, no statistically significant differences emerged.
Furthermore, when examining the 95% confidence inter-
val (95%CI) ranges for the 75%SUR values, they appear
relatively close, despite the significant disparity in the
75%SUR values themselves. It is worth highlighting that
previous works [4]–[6] have employed the 75%SUR as
ground truth for training their models, aiming to predict
two distinct values for what are essentially the same
video contents, which can cause ambiguity for model
training. Therefore, it becomes imperative to analyze
the uncertainty associated with the SUR derived from
subjective tests.

Following the estimation of uncertainty in SUR, an-
other pertinent question arises: Are current VQMs reli-
able proxies for SUR? A prior study [9] has revealed
a significant variance of the first 75%SUR when using
VMAF as a proxy in VideoSet, ranging from 75.22
to 99.96. This implies that, for some videos, 75% of
viewers perceive no differences until the VMAF score
drops to 99.96, while for other videos, they don’t per-
ceive differences until the score drops to 75.22. This
observation highlights that VMAF does not serve as a
perfect proxy for SUR and JND, because the VMAF
value is not consistent for different video contents in
terms of SUR. To address these problems, we conducted
an analysis of SUR, along with its associated uncertainty,
for six widely used VQMs in current practice.

In the next section, we will start by estimating the
uncertainty of SUR through CI estimation. Then, we will
compare the consistency of different VQMs as proxies.

II. UNCERTAINTY ESTIMATION

In this section, we define the SUR for different proxies
and introduce a mathematical method for estimating
uncertainty in SUR through CI estimation. In statisti-
cal analysis, confidence interval can be estimated by
Bayesian model [14] using probability distributions [15]
or Non-Bayesian model. In this study, we didn’t rely on
any distribution assumptions regarding the raw distribu-
tion of individual VW-JND values. Hence, we use the
term empirical SUR (SURemp) instead of SUR.

For a given video content clip m, assuming that there
are VW-JND annotations from N reliable subjects, we
denote the VW-JND of these N subjects as Jm, which
is defined as follows:

Jm = [jm1 , jm2 , ..., jmN ]

Here, jmn represents the individual annotation of each
subject, which can be QP or any other proxy capable of
representing the distortion level, such as VMAF. Consid-
ering Jm as a discrete random variable, the Probability
Mass Function (PMF) of Jm is defined as:

pm(x) = Pr(JND = x) =
1

N

N∑
i=1

1 (jmi = x), (1)

where 1(c) is an indicator function that equals to 1 if the
specified binary clause c is true. Thus, the empirical Cu-
mulative Distribution Function (CDF) can be calculated
from the PMF as follows:

CDFm
emp(x) = Pr(VW-JND ≤ x) =

∑
ω<x

pm(ω). (2)

In Fig.1, empirical CDFs are represented in orange.
Considering SURemp to depend on the polarity of the
chosen proxy, it is defined as follows:

SURemp(x) =

{
1− CDFemp(x), for case 1

CDFemp(x), for case 2 (3)

In case 1, where quality decreases with an increase in the
proxy (e.g., using QP as the proxy as shown in Fig.1),
the empirical SUR corresponds to the complementary
empirical CDF. In contrast, in case 2, such as using
VMAF as the proxy, where quality increases with the
proxy increases, the empirical SUR is equals to the
empirical CDF. Finally, p%SURemp is defined as:

p%SURemp =

{
min {x |SURemp (x) ⩽ p%} , for case 1,
max {x |SURemp (x) ⩽ p%} , for case 2.

(4)
Fig.1 showcases the 75%SURemp (represented by the
pink point) for the QP proxy.
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We can determine p%SURemp for a specific video
content using individual VW-JND annotations collected
from a sampled population through subjective test. How-
ever, if we were to replicate the same test with a different
group of subjects, would we obtain the same p%SURemp
results? Fig.1 has shown that the 75%SURemp for almost
same contents can be very different. Therefore, assessing
the uncertainty of the p%SURemp data obtained from the
collected datasets is very important.

Using statistical theory, we can estimate the true
p%SUR of the entire population based on the p%SURemp
obtained from a sample of N subjects. If we assume
that the true p%SUR is equal to s, and we randomly
select one subject from the population with their VW-
JND denoted as jmn , we can calculate the probability of
jmn being less than s using Eq.(5), in accordance with
the definition of the p%SUR.

Pr(jmn ⩽ s) =

{
(1− p)%, for case 1,

p%, for case 2. (5)

Taking case 2 as an example, we define the random vari-
able A as equal to 1 (event success) when jmn ⩽ s and 0
(event failure) when jmn > s. Consequently, the random
variable A conforms to a Bernoulli distribution [16], as
presented in Table I.

TABLE I: The random variable A follows a Bernoulli
distribution (this table serves as an example for case 2)

Event A Probability
jmn ⩽ s 1 (success) p%
jmn > s 0 (fail) (1− p)%

A subjective test involving N subjects can be under-
stood as N times independently sampling the population.
The count of event successes, denoted as X , conforms
to a binomial distribution [17]:

X ∼ B(N, p%). (6)

The PMF of X can be obtained by:
f(x,N, p%) = Pr(X = x) = Cx

Np%x(1− p%)N−x (7)

Where Cx
N = N !

x!(N−x)! and x ∈ [0, N ]. Fig.2 shows
the PMF of the binomial distribution with parameters
N = 34 and p = 75. When the count of event
successes is 26, the probability is calculated as 0.1564.
This indicates that if we were to conduct a subjective
test with 34 subjects, there is a 15.64% probability that
26 of these subjects would have VW-JND values smaller
than or equal to s. If we can determine the lower and
upper bounds, denoted as l and u, respectively, such that
the cumulative probability between them encompasses
approximately 95%, we can confidently assert that there

Fig. 2: PMF of binomial distribution for N=34, p=75,
and the 95%CI of 75%SUR

is a 95% probability that the number of subjects with
jmn ⩽ s falls within the interval [l, u].

We employed the Near-symmetric Algorithm [18] to
derive l and u for the desired CI. Once l and u are
determined, we arrange the values of Jm in ascending
order. Subsequently, the CI range for p%SURemp is
defined as CIl = Jm

ordered[l] and CIu = Jm
ordered[u],

where Jm
ordered represents the ordered values of Jm. The

95%CI range can be interpreted as follows: if we were
to replicate the subjective test multiple times, there is
a 95% probability that the p%SURemp falls within this
range.

III. CI VALIDATION AND COMPARISON

A. CI validation

After computing the 95%CI ranges as presented in
Sec. II, we conduct bootstrapping on the original anno-
tations to validate the CI estimation. For each bootstrap
sample, we computed p%SURemp and calculated the
percentage of p%SURemp values that fell within the
estimated 95%CI, denoted as Avg CI. We performed
1,000,000 bootstrapping iterations, each with sample
sizes of 0.25, 0.5, and 0.75 of the original annotations.
Table II shows the Avg CI values for 95%CI estimation
on VideoSet in 1080p.

TABLE II: Avg CI with 1,000,000 bootstrapping itera-
tion with different sample sizes

Sample size 0.25 0.5 0.75
Avg CI 0.8331 0.9790 0.9998

In VideoSet, each SRC is annotated by 25 to 34
subjects. Consequently, when the sample size is reduced
to 0.25, we observe a decrease in Avg CI. However,
on average, the bootstrapped CI closely aligns with the
mathematically based CI estimation presented in Sec. II,
confirming the validity of our proposed mathematical CI
estimation method.
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Fig. 3: Distributions of 75%SURemp and the distribution of VQMs on the entire datasets on VideoSet for six VQMs

TABLE III: Benchmark FR-VQM and NR-VQM on 70%SUR, 75%SUR and 80%SUR on VideoSet 1080p for first
JND

VQM
(min-max) Mean COV

Avg
95%CI
lower b

Avg
95%CI
upper b

NAvg
95%CI
range

Mean COV
Avg

95%CI
lower b

Avg
95%CI
upper b

NAvg
95%CI
range

Mean COV
Avg

95%CI
lower b

Avg
95%CI
upper b

NAvg
95%CI
range

80%SUR 75%SUR 70%SUR

PSNR (23.4-60) 42.6826 0.0825 41.7589 44.7754 0.0824 42.2025 0.0823 41.2626 43.8400 0.0704 41.8065 0.0836 40.9990 43.3017 0.0629
SSIM (0.7-1) 0.9947 0.0037 0.9931 0.9972 0.0135 0.9939 0.0043 0.9919 0.9964 0.0149 0.9932 0.0047 0.9912 0.9956 0.0147

VMAF (5.3-100) 94.5579 0.0399 92.6803 97.1454 0.0471 93.6156 0.0427 91.4264 96.2902 0.0514 92.7761 0.0473 90.6152 95.5342 0.0519
FVVDP (4.8-10) 9.4835 0.0215 9.3727 9.6782 0.0585 9.4287 0.0231 9.3069 9.6044 0.0569 9.3795 0.0248 9.2667 9.5492 0.0541

UVQ (1.8-5) 3.9824 0.0890 3.9448 4.0541 0.0333 3.9644 0.0880 3.9221 4.0291 0.0326 3.9473 0.0884 3.9048 4.0069 0.0311
P.1204 (1.2-4.1) 3.4229 0.0544 3.3152 3.6251 0.1071 3.3723 0.0560 3.2482 3.5450 0.1025 3.3219 0.0606 3.2129 3.4872 0.0948

B. Consistency and uncertainty of VQMs

VQMs capture video quality on a continuous scale,
aiming to exhibit a strong correlation with human visual
perception. In this section, we employ two types of
VQMs: Full Reference VQM (FR-VQM) and No Refer-
ence VQM (NR-VQM), as proxies for SUR. Specifically,
we investigate the consistency and uncertainty associated
with the following VQMs at a specific SUR threshold:
four FR-VQMs: PSNR, SSIM [19], VMAF [3] (v0.6.1),
FVVDP [20](v1.2.0, L Peak=165.8, contrast = 435,
gamma = 2.2, E ambient = 100, ppd[pix/deg]=60.8,
k ref = 0.005), and two NR-VQMs: P.1204 [21], and
UVQ [22] (using compression content distortion as the
output score). These VQMs were applied to the QP range
from 0 to 51 for 220 SRC in VideoSet 1080p.

The original VW-JND annotations for each subject
Jm are provided in terms of QP values. We then
convert these Jm values into their corresponding VQM
scores, respectively, and calculate the p%SURemp for
each VQM. We present the mean values of 80%SURemp,
75%SURemp, and 70%SURemp across the entire dataset

in Table III. The mean value of 75%SURemp on VideoSet
for VMAF is 93.62, in line with previous studies [8],
[9] that suggest a first 75%SUR of approximately 6 for
VMAF. It can be observed that p%SURemp for the first
JND increases with higher values of p for all six VQMs.

To measure the consistency of different VQMs in
terms of SUR, we calculate the Coefficient Of Variation
(COV) for p%SURemp. COV is the ratio of the standard
deviation to the mean, serving as an indicator of variabil-
ity. In this context, it is utilized because different VQMs
operate on different scales. A larger COV indicates lower
consistency for p%SURemp. Table III reveals that, for p
values of 80, 75, and 70, SSIM exhibits the highest level
of consistency among the six VQMs.

To visually represent the consistency of different
VQMs, as shown in Fig. 3, we plot the distributions
using blue bars for the quality scores across the entire
dataset (comprising 220 SRCs with QP values ranging
from 1 to 51). Additionally, we use pink bars to represent
the distributions of 75%SURemp for each SRC. The
y-axis uses a logarithmic scale. The distributions of
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75%SURemp for PSNR, UVQ, and P.1204 appear rel-
atively wide compared to the entire dataset. In contrast,
the distributions for VMAF and FVVDP are relatively
narrower. SSIM exhibits the narrowest distribution range
for 75%SURemp, in line with its COV values presented
in Table III.

We also compute the 95%CI of p%SURemp, as pre-
sented in Table III. We calculate the mean of the lower
bound and upper bound for each VQM. Notably, the
lower bound and the upper bound exhibit the same trend
as the mean of p%SURemp. To account for the varying
scales, we normalized the CI range using the minimum
and maximum values observed for each VQM across the
entire VideoSet dataset:

Norm(95% CI range) =
95%CIu − 95%CIl

max(V QM)−min(V QM)
. (8)

The mean of the normalized CI range is listed in Table III
under the column ’NAvg 95%CI range’. Notably, SSIM
exhibits the smallest CI range.

IV. CONCLUSION

In this paper, we demonstrated the significance of
uncertainty estimation for SUR and introduced a method
to estimate related CIs. Additionally, we performed a
comparative analysis of the consistency and uncertainty
associated with different VQMs when serving as SUR
proxies. The incorporation of uncertainty estimation not
only contributes to a better design of subjective test
methodologies but also facilitates a more nuanced in-
terpretation of a SUR prediction model, leading to more
robust and informed decision-making in video streaming.
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