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APPENDIX A: MORE DETAILS ABOUT THE DATA

This section is a complement to Section 2 of the paper. We provide more information
about the narwhal movement data used for the analysis of behavioral disturbance.

The time step between consecutive GPS observations is not constant. Its median is 4.8
minutes and its mean is 9.3 minutes. We show the histogram of the time steps in Figure 1.

Fig 1: Histogram of time steps

The observations are divided into unexposed periods, for which the narwhals are not in line
of sight with the ship; trial periods, when the narwhals are exposed to the ship and airguns
are shot; and intertrial periods, when the narwhals are exposed to the ship but airguns are
not shot. These periods are indicated by a categorical variable Tship in the dataset. Figure 2
shows how the exposure periods are distributed among the 6 narwhals that were tracked. Our
analysis in section 6 does not distinguish between intertrial and trial periods. They are both
treated as exposure periods, though the nature and intensity of the behavioral response might
differ for the two periods. We adopted this approach due to the lack of intertrial data as well
as a potential persistence in time of the behavior shift due to airgun exposure during trial
periods.

Table 1 shows how the data is distributed among the different narwhals. Figure 3 shows
all the tracks before and after exposure with a base map of Scoresby Sound fjords system.

All the relevant covariates used for the analysis of narwhals movement are summarized in
Table 2.
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Fig 2: Trial and Intertrial periods for each narwhal

Narwhal ID Number of measurement before exposure Number of measurements during exposure
A1 354 576
A2 151 515
A3 397 680
A4 127 642
A5 207 419
A6 322 425

Total 1558 3257
TABLE 1

Distribution of the data among the 6 individuals

Covariate Unit Description Domain
Dship(t) km distance in kilometers between the narwhal and the ship at time

t
R+

Eship(t) = 1
Dship(t)

km−1 global exposure level of the narwhal to the ship disturbance at
time t

R+

Dshore(t) km distance between the narwhal and the nearest point on the shore
at time t

R+

Ishore(t) = 1
Dshore(t)

km−1 global exposure level of the narwhal to the shore at time t R+

Θ(t) rad angle between the vector that goes from the nearest shore point
to the narwhal’s position and the empirical velocity vector at
time t

[−π,π]

TABLE 2
Summary of the covariates

APPENDIX B: PROOF OF PROPOSITION 3.1

Here, we prove Proposition 3.1 The proof is inspired by the results in (Gurarie et al.,
2017; Johnson et al., 2008) and the proof of the transition density of the velocity process in
(Albertsen, 2018).
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(a) Tracks before exposure experiments

(b) Tracks during exposure experiments

Fig 3: Movement data of East Greenland narwhals. The red crosses indicate initial positions.

PROOF. The velocity process is an Ornstein-Uhlenbeck process. For t≥ 0 and ∆> 0,
(1)

V (t+∆) = exp(−A∆)V (t)+(I2−exp(−A∆))µ+
2ν√
πτ

∫ t+∆

t
exp(A(s−(t+∆)))dW (s)

It has Gaussian transition density with mean

(2) E(V (t+∆|V (t))) = exp(−A∆)V (t) + (I2 − exp(−A∆))µ

and covariance matrix

V ar(V (t+∆)|V (t)) =
4ν2

πτ

∫ t+∆

t
exp(A(s− (t+∆))) exp(A(s− (t+∆)))⊤ds

=
4ν2

πτ

∫ ∆

0
exp(−Au) exp(−Au)⊤du

Since exp(−Au) = exp(−u
τ )R−ωu where R−ωu is the rotation matrix with angle −ωu, the

matrix product exp(−Au) exp(−Au)⊤ is simply exp(−2u
τ )I2. We deduce that the two com-
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ponents of the velocity are independent and have the same variance, denoted q2(∆). The
variance is

(3) q2(∆) =
2ν2

π

Å
1− exp

Å
−2∆

τ

ãã
.

These results are found in Gurarie et al. (2017). In the sequel, we use the notation

ζ(t, s) =
2ν√
πτ

∫ s

t
exp(A(u− s))dW (u).

Using that V (s) = µ+ exp(−A(s− t))(V (t)− µ) + ζ(t, s), we have

X(t+∆) =X(t) +

∫ t+∆

t
V (s)ds

=X(t) + µ∆+

∫ t+∆

t
exp(−A(s− t))(X(t)− µ)ds

+

∫ t+∆

t
ζ(t, s)ds

=X(t) + µ∆+
(
A−1(V (t)− µ)−A−1 exp(−A∆)(X(t)− µ)

)
+

∫ t+∆

t
ζ(t, s)ds

Thus,

(4) X(t+∆) =X(t) + µ∆+A−1 (I2 − exp(−A∆)) (V (t)− µ) + ξ(t, t+∆)

where ξ(t, t+∆) =
∫ t+∆
t ζ(t, s)ds. The location process is also Gaussian with mean

(5) E(X(t+∆)|V (t),X(t)) =X(t) + µ∆+A−1 (I2 − exp(−A∆)) (V (t)− µ).

To get an expression of the covariance matrix, first rewrite

ξ(t, t+∆) =

∫ t+∆

t

2ν√
πτ

Å∫ s

t
exp(−A((u− s))dW (u)

ã
ds

=
2ν√
πτ

∫ t+∆

t
(A−1 −A−1 exp(A(u− t−∆)))dW (u)

=
2ν√
πτ

∫ t+∆

t
A−1(I2 − exp(A(u− t−∆)))dW (u)

Then use Ito’s isometry

Var(X(t+∆)|X(t), V (t)) =
4ν2

πτ

∫ t+∆

t
A−1(I2 − exp(A(u− t−∆)))

× (I2 − exp(A(u− t−∆)))⊤A−⊤ du

=
4ν2

πτ

∫ ∆

0
A−1(I2 − exp(−Ar))

× (I2 − exp(−Ar))⊤A−⊤ dr.

This integral can be computed explicitly since

A−1(I2 − exp(−Ar))(I2 − exp(−Ar))⊤A−⊤ =
1

C
f(r)I2
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where f(r) = 1−2exp
(
− r

τ

)
cos(ωr)+exp

(−2r
τ

)
and C = 1

τ2 +ω2. We obtain that X1(t+
∆) and X2(t + ∆) are independent and have the same variance, denoted q1(∆). Writing
σ = 2ν√

πτ
, the variance is

q1(∆) =
σ2

C

Ç
∆− 2

ω sin(ω∆)− 1
τ cos(ω∆)

1
τ2 + ω2

exp

Å
−∆

τ

ã
+
τ

2

Ç
ω2 − 3

τ2

1
τ2 + ω2

− exp

Å
−2∆

τ

ãåå
Now we compute the covariance between X and V to get the full covariance matrix of U :

Γ(∆) =
4ν2

πτ
E

ÇÇ∫ t+∆

t
A−1(I2 − exp(A(u− t−∆)))dW (u)

å
×
Ç∫ t+∆

t
exp(A(s− (t+∆)))dW (s)

å⊤)

=

∫ t+∆

t
A−1(I2 − exp(A(u− (t+∆)))) exp(A(u− (t+∆)))⊤ du

=
4ν2

πτ

∫ ∆

0
A−1(I2 − exp(−Ar)) exp(−Ar)⊤ dr.

Then,

A−1(I2 − exp(−Ar)) exp(−Ar)⊤ =
1

C
exp

(
− r

τ

)Å
g(r) h(r)
−h(r) g(r)

ã
where

g(r) =
1

τ

(
cos(ωr) + exp

(
− r

τ

))
− ω sin(ωr),

h(r) =−1

τ
sin(ωr) + ω

(
cos(ωr)− exp

(
− r

τ

))
.

Finally we get

γ1(∆) =
σ2

2C

Å
1 + exp

Å
−2∆

τ

ã
− 2exp

Å
−∆

τ

ã
− 2exp

Å
−∆

τ

ã
cos(ω∆)

ã
,

γ2(∆) =
σ2

C

Å
exp

Å
−∆

τ

ã
sin(ω∆)− ωτ

2

Å
1− exp

Å
−2

∆

τ

ããã
.

In the specific case ω = 0, we obtain C = 1
τ2 and the variance of X becomes

q1(∆) = σ2τ2
Å
∆+2τ exp

Å
−∆

τ

ã
+

τ

2

Å
−3− exp

Å
−2∆

τ

ããã
.

Writing β = 1
τ and reorganizing the terms, we obtain

(6) q1(∆) =
σ2

β2

Å
∆− 2

1− exp(−β∆)

β
+

1− exp(−2β∆)

2β

ã
.

This result match equation (6) in (Johnson et al., 2008). Similarly, in the case ω = 0, we get
γ2 = 0 and the expression for γ1 match equation (7) in (Johnson et al., 2008).
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APPENDIX C: MEASUREMENT ERROR

In the application in Section 6, different values of the measurement error were estimated
for the data before and after exposure: 35 m before and 48 m after. Both these values are
consistent with the results in (Wensveen, Thomas and Miller, 2015). However, the post ex-
posure estimation gave non-positive definite Hessian matrix for the negative log-likelihood,
which prevents from using the information matrix equality to get confidence intervals of the
estimates. Fixing a 35 m measurement error value when fitting the response model led to
the same issue. We therefore tried different values of the measurement error, and kept the
one that gave a positive definite hessian matrix and had the highest log-likelihood value. It
turned out to be 50 m, very close to the initially estimated 48 m. Table 3 shows these results.
In comparison, the final values of the log-likelihood when σobs is estimated from the data
are respectively 4273 and 8043 before and after exposure, while the estimate of τ0 is 1.10,
and the estimates of ατ and αν are respectively −4.19 and 0.66, which is in the confidence
interval of the final estimations we kept (those obtained for σobs = 50 m).

σobs (m) τ̂0 Baseline llk Response llk P.d hessian ατ αν
30 0.96± 0.15 4261 8038 No 0.29 2.17

40 1.18± 0.16 4266 8014 No −2.06 0.60

45 1.29± 0.17 4243 7965 No −3.64 0.49

50 1.35± 0.16 4208 7861 Yes −3.43± 0.70 0.74± 0.27

75 1.63± 0.19 3944 7225 Yes −3.88± 0.73 0.76± 0.30

100 1.85± 0.22 3640 6590 Yes −4.27± 0.74 0.63± 0.29
TABLE 3

Estimate for the baseline and response models for several fixed measurement errors.

APPENDIX D: CODE EXAMPLE

We illustrate briefly how to fit our baseline SDE model and obtain the results with
smoothSDER package Michelot et al. (2021). The version of the package including our new
model is available here . We suppose the package has been loaded. We consider a dataframe
dataBE containing the preprocessed observations before exposure to the ship in the columns
x and y, an animal identifier in a column ID and columns Ishore and AngleNormal for
the covariates Ishore and Θ. The first step consists in choosing initial SDE parameters and
model formulas. For the model we consider, there are five parameters µ1, µ2, τ , ν, and ω,
and each of them needs a formula. Specification of the formulas is identical to the R package
mgcv. Among the parameters, µ1, µ2 will be set to 0, while τ , ν and ω are expressed as in
section 4.1.

1 #number of observation
2 n_pre<-nrow(dataBE)
3

4 #initial parameters
5 par0 <- c(0,0,1,4,0)
6

7 #model formulas
8 formulas <- list(mu1 = ~1 ,mu2 =~1,tau =~s(ID,bs="re"),nu=~s(ID,bs="re"),
9 omega=~ti(AngleNormal,k=5,bs="cs")+ti(Ishore,k=5,bs="cs")+

10 ti(AngleNormal,Ishore,k=c(5,5),bs="cs"))

https://github.com/alexandre-delporte/smoothSDE
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We then specify the measurement error for each observation in an array of covariance
matrices. We suppose they are all diagonal with the same standard deviation sigma_obs.
We will fix this measurement error.

1 # 50m measurement error
2 sigma_obs=0.05
3 H=array(rep(sigma_obs^2*diag(2),n_pre),dim=c(2,2,n_pre))

We can then create the SDE object as in Michelot et al. (2021). We choose the type of
SDE in the argument type. Here, it is RACVM (see Section 3.1) since we want to include a
non zero rotation parameter ω. The name of the columns where the observations are found
is specified in the response argument. We specify the measurement error matrix H in the
argument other_data. Fixed parameters are indicated in the argument fixpar.

1 #create SDE object
2 baseline_50m<- SDE$new(formulas = formulas,data = dataBE,type = "RACVM",
3 response = c("x","y"),par0 = par0,other_data=list("H"=H),
4 fixpar=c("mu1","mu2"))

To fix specific parameters in the statistical model, we need to use the map attribute. Here
we use it to specify that the smoothing parameters should be fixed. Then we update the
smoothing parameters to 1, and fit the SDE model.

1 #update map to fix smoothig parameters
2 baseline_50m$update_map(list("log_lambda"=factor(c(1,2,rep(NA,4))))
3

4 #update smoothing parameters values
5 init_lambda=rep(1,6)
6 baseline_50m$update_lambda(init_lambda)
7

8 #fit the model
9 baseline_50m$fit()

The results of the optimization are stored in the attribute tmb_rep. We can extract the
estimated parameters along with the standard errors.

1 #estimates
2 estimates_bas_50m=as.list(baseline_50m$tmb_rep(),what="Est")
3 #standard error
4 std_bas_50m=as.list(baseline_50m$tmb_rep(),what="Std")

Finally, we would like to plot all the smooth parameters as a function of the covariates.
We can do it with the get_all_plots method. We only need to specify the range of each
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covariate value we want to plot, a link function if we don’t want to have directly the covariate
on the x-axis but rather a function of the covariate, and the x-axis label of the plots. We put the
option show_CI="pointwise" to show the pointwise confidence intervals on the plots.

1 #range of the covariates
2 D_low=0.073
3 D_up=3
4 xmin=list("Ishore"=1/D_up)
5 xmax=list("Ishore"=1/D_low)
6 #link function
7 link=list("Ishore"=(\(x) 1/x))
8 #label
9 xlabel=list("Ishore"="Distance to shore")

10

11 #draw plots
12 plots_bas_50m=baseline_50m$get_all_plots(model_name="baseline_50m",
13 xmin=xmin,xmax=xmax,link=link,xlabel=xlabel,show_CI="pointwise",save=TRUE)

REFERENCES

ALBERTSEN, C. M. (2018). Generalizing the first-difference correlated random walk for marine animal move-
ment data. arXiv:1806.08582 [q-bio].

GURARIE, E., FLEMING, C. H., FAGAN, W. F., LAIDRE, K. L., HERNÁNDEZ-PLIEGO, J. and
OVASKAINEN, O. (2017). Correlated velocity models as a fundamental unit of animal movement: synthesis
and applications. Movement Ecology 5 13. https://doi.org/10.1186/s40462-017-0103-3

JOHNSON, D. S., LONDON, J. M., LEA, M.-A. and DURBAN, J. W. (2008). Continuous time correlated random
walk model for animal telemetry data. Ecology 89 1208–1215. https://doi.org/10.1890/07-1032.1

MICHELOT, T., GLENNIE, R., HARRIS, C. and THOMAS, L. (2021). Varying-Coefficient Stochastic Differential
Equations with Applications in Ecology. Journal of Agricultural, Biological and Environmental Statistics 26
446–463. https://doi.org/10.1007/s13253-021-00450-6

WENSVEEN, P. J., THOMAS, L. and MILLER, P. J. O. (2015). A path reconstruction method integrating dead-
reckoning and position fixes applied to humpback whales. Movement Ecology 3 31. https://doi.org/10.1186/
s40462-015-0061-6

https://doi.org/10.1186/s40462-017-0103-3
https://doi.org/10.1890/07-1032.1
https://doi.org/10.1007/s13253-021-00450-6
https://doi.org/10.1186/s40462-015-0061-6
https://doi.org/10.1186/s40462-015-0061-6

	More details about the data
	Proof of Proposition 3.1
	Measurement error
	Code example
	References

