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Abstract

Dynamic Cell Clustering (DCC), also referred as Cell Agglomeration, is an optimisation technique used to re-
duce the cost of finite-rate chemistry in reactive flows. It consists of three steps: i) grouping of elements with
similar composition into clusters, ii) computation of a single element per cluster and iii) mapping of the com-
puted elements to the remaining elements of the cluster through interpolation and extrapolation. The size of the
clusters results from a compromise between cost reduction and desired accuracy. A new Jacobian-free mapping
method (JFM) combined to Principal Component Analysis (PCA) is introduced in order to provide the accuracy
of a higher-order mapping without the overhead of a Jacobian evaluation. The increased accuracy is obtained by
creating a connectivity map between adjacent clusters. Along the cluster connections, composition and source
term gradients are known enabling an approximation of the Jacobian. The JFM methodology is validated on
a hydrogen-air triple flame, a multi-regime flame which covers a wide region in the species/temperature phase
space. It is shown that for realistic clustering conditions the JFM method shows a similar accuracy to the ex-
plicit Jacobian. Compared to other mapping methods, an error reduction of up to 74% is observed while the cell
agglomeration overhead remains less than 1% of the initial cost.

Keywords: Reactive flows; Dynamic Cell Clustering; Cell agglomeration; Principal Component Analysis; Jacobian-free map-
ping
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Information for Colloquium Chairs and Cochairs, Editors, and Reviewers

1) Novelty and Significance Statement

A new mapping method for cell agglomeration is introduced. Prior methods have shown limitations in terms of
efficiency or accuracy. The proposed Jacobian-Free Mapping (JFM) method combined with Principal Component
Analysis for cell agglomeration is both accurate and efficient, no longer requiring a compromise between both
properties. The method is original and performs very well for challenging multi-regime flames such as H2/air
triple flames, which is of high interest for the decarbonation of the transport and energy sectors. As it is based on a
Cartesian mapping and as it does not depend on the underlying chemical mechanism, it can be easily implemented
in many codes and has a great potential for wide acceptance.

2) Author Contributions

• A. S. : performed research, implementation, paper writing

• V. M. : guided research, paper writing

• J. L. : guided research, paper writing

• R. M. : guided research, paper writing

3) Authors’ Preference and Justification for Mode of Presentation at the Symposium

The authors prefer OPP presentation at the Symposium, for the following reasons:

• The presentation can focus on outcomes and results without requiring the inclusion of extensive background
information

• A room-audience-level discussion about the proposed method would be profitable

• The proposed cell clustering method can be implemented in many codes, deserving a wide audience
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1. Introduction1

Reactive flows are a prominent subject of study,2

with applications spanning from combustion pro-3

cesses in engines to industrial reactors. Large-Eddy4

Simulation (LES) and Direct Numerical Simulations5

(DNS) have emerged as powerful tools for simulating6

turbulent reactive flows, providing valuable insights7

into the complex interactions between turbulence and8

chemical reactions. One of the primary challenges in9

unsteady modelling of reactive flows is the accurate10

computation of chemical source terms.11

Finite-rate chemistry (FRC) is the most direct ap-12

proach in combustion simulations. It involves solving13

a system of transport equations for each participating14

chemical species and calculating the rates of chemi-15

cal reactions based on kinetic mechanisms. In reac-16

tion regions, chemical timescales can be several order17

of magnitude smaller than the flow timescales, thus18

requiring splitting approaches where chemistry is in-19

tegrated separately from the flow. As a result, FRC20

offers precise representation of chemical processes21

but can become prohibitively expensive, particularly22

when increasing the size of kinetic schemes.23

Several methodologies have been developed over24

the years to enhance the efficiency of solving25

chemistry. These methods include reducing ki-26

netic schemes through advanced techniques such as27

DRGEP [1, 2], CSP [3], analytical reduction [4], and28

virtual chemistry [5]. Additionally, dynamic adaptive29

chemistry (DAC) [6, 7] offers the ability to perform30

on-the-fly kinetic mechanism reduction.31

For a given kinetic scheme further gain can be32

achieved with chemistry tabulation [8]. Tabulation33

techniques are very popular and efficient but rely on34

the flamelet hypothesis and necessitate to precompute35

a look-up table based on canonical flames. Tabulation36

reaches its limits when departing from the flamelet37

regime or from the tabulated canonical flames. This38

can be overcome by storage-retrieval techniques like39

in-situ adaptive tabulation (ISAT) [9–11] or cell ag-40

glomeration techniques [12–17].41

Cell agglomeration, also called Dynamic Cell42

Clustering (DCC) can be broken down into three43

steps: i) grouping of cells with similar composition44

into clusters, ii) computation of a single source term45

per cluster and iii) mapping of the computed cells to-46

wards remaining cells of the same cluster. This pa-47

per focuses on the mapping step and presents a new48

method that combines high accuracy and low compu-49

tational cost. The use of Principal Components Anal-50

ysis to create an optimal low-dimensional representa-51

tion of the composition is also discussed. Section 252

presents the methodology and Section 3 validates the53

chosen approach on a H2/air triple flame.54

2. Methodology55

2.1. Cluster creation56

Clustering methods aim at grouping similar com-57

putational cells together. Each cell acts as a chemical58

reactor, therefore clustering has to consider each pa-59

rameter defining the reactor’s behaviour. A common60

state vector is ϕ = {P, T, Y1, ..., YNsp}, comprising61

the pressure, temperature and mixture composition.62

Further parameters could be required according to the63

combustion model: partially stirred reactors (PSR) or64

turbulent combustion models for instance.65

2.1.1. Dimensionality reduction66

To ease the clustering process, dimensionality re-67

duction is performed on the species fractions. The68

most basic approach consists in retaining the most69

relevant species and ignoring the others. This re-70

quires user knowledge and is likely to result in a71

sub-optimal clustering. An alternative is Principal72

Component Analysis (PCA) [18, 19], which automat-73

ically creates an optimal low-dimensional representa-74

tion of a mixture [20–22]. PCA identifies the prin-75

cipal components, which are linear combinations of76

the state variables. These combinations can be re-77

lated to known properties such as a progress variable78

or mixture fraction. Mathematically, PCA involves79

finding the eigenvectors and eigenvalues of the co-80

variance matrix of the input data. These eigenvec-81

tors represent the directions in the high-dimensional82

space along which the data varies the most, while83

the eigenvalues indicate the variance explained along84

each eigenvector. The low-dimensional representa-85

tion of ϕ is referred to as M . In the current context86

only mass fractions are considered in the reduction,87

individual Principal Components are expressed as:88

PCi = ViY

PCi =

Nspecies∑
k=1

Vi,kYk

(1)

with Vi the ith eigenvector and Vi,k the weight coef-89

ficients of individual species.90

2.1.2. Clustering algorithm91

K-Means [23] is one of the most popular and sim-92

plest clustering algorithms. It aims at partitioning93

data into K clusters, where each data point belongs94

to the cluster with the nearest mean value. It iter-95

atively minimises the sum of squared distances be-96

tween data points and their assigned cluster’s centroid97

by moving the latter until an optimum is found. It has98

been used for cell agglomeration in [13]. An alter-99

native approach is grid-based clustering [24]. This100

method divides the data space into a grid of cells.101

Each data point is then assigned to the grid cell that102

corresponds to its state coordinates. The goal is to103

group data points that fall within the same grid cell,104

effectively simplifying the clustering process and po-105

tentially making it more efficient for large datasets or106
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Fig. 1: Coarse clustering of data points along two dimen-
sions of a H2-air triple flame

high cluster counts. A representation is given in fig-1

ure 1. This method has been used for cell agglomera-2

tion in [12] and is chosen here for its efficiency.3

2.2. Mapping4

Once clusters have been formed and a single re-5

actor computed, the result has to be mapped to all6

the elements within the cluster. As all elements have7

slightly distinct states, inevitably, errors are intro-8

duced when mapping the compositions. However, ac-9

cording to the choice of the mapping method, this10

error may be minimised. Backward mapping [14]11

consists in redistributing source term relative to mass12

fractions, while avoiding negative mass. This formu-13

lation is efficient but suffers from low accuracy and14

results in poor species gradients, as it will be shown15

in the validation section. Conversely, Jacobian-based16

mapping [16] has great accuracy but the computation17

of the Jacobian of a time-integrated chemical reactor18

is very expensive if not prohibitive.19

This paper present a new mapping method, based20

on a Jacobian-free estimation. This estimation is de-21

signed to be low-cost while providing similar accu-22

racy to an explicit Jacobian. Connectivity is created23

between the clusters, which is then used to approxi-24

mate the Jacobian. Mapping is done based on those,25

while limiting degenerate cases.26

2.2.1. Cluster connectivity27

A connectivity map of adjacent clusters is created28

based on the cluster grid coordinates. Two clusters29

MC1 and MC2 are considered adjacent when they30

connect orthogonally:31

|MC1,i −MC2,i |= 1 ,

MC1,j −MC2,j = 0 for all j ̸= i .
(2)

An example of this connectivity, which can be com-32

puted efficiently using sparse matrices and sorting, is33

represented in Fig. 2. In this figure, the cluster center34

is the computed reactor, which is chosen as the one35

that minimizes composition difference f(Mϕi) to the36

other reactors:37

f(Mϕi) =
∑
j ̸=i

∥∥Mϕi −Mϕj

∥∥2

2
. (3)

Fig. 2: Cluster connectivity based on computed reactor po-
sition based on Eq. 3

2.2.2. Jacobian-free mapping38

Each edge of the connectivity graph allows to com-39

pute the Jacobian vector of the reaction rates within40

the reduced space M integrated along the edge. Let41

ϕCi and ϕCj , be the time-integrated reactors of two42

neighbour clusters Ci and Cj :43

ϕt0+∆t
Ci = ϕt0

Ci + ω̇i , (4)

with ω̇ the source term. The source term difference44

between two adjacent clusters i and j is expressed as:45

∆ω̇j→i = ω̇i − ω̇j . (5)

Similarly, composition difference between clusters i46

and j is expressed as:47

∆Mj→i = M
ϕ
t0
Ci

−M
ϕ
t0
Cj

. (6)

The ratio of those differences is first-order approx-48

imation of the Jacobian JM projected onto the unit49

vector dMj→i.50

JMdMj→i ≈
∆ωj→i

∆Mj→i
. (7)
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Let ϕe be a reactor to be estimated within Ci, thus1

∆ωi→e needs to be estimated from the know dis-2

placement ∆Mi→e. Based on the knowledge of the3

Jacobian projected onto several known directions, the4

full Jacobian may be reconstructed and used to com-5

pute the change in the source terms:6

∆ωi→e = JM∆Mi→e . (8)

However, degenerate cases can happen due to an7

insufficient number of projection directions or highly8

co-linear directions (see Sec. 3). Rather than comput-9

ing the Jacobian at the cluster level, the source term10

variation can be expressed as a weighted sum of vari-11

ations in known directions:12

∆ωi→e =

n∑
j=1

αj∆ωi→j , (9)

with n the number of connected clusters and αj the13

interpolation coefficients to be determined from14

∆Mi→e =

n∑
j=1

αj∆Mi→j = Mα . (10)

Eq. 10 can directly be inverted only if n = d, with15

d the number of dimensions of subspace M :16

α = M−1∆Mi→e . (11)

The case n = 0 is very unlikely as chemistry17

is continuous or is characteristic of an over-resolved18

clustering. This case is shared with other mapping19

methods. Solving for 1 ≤ n < d may be obtained by20

a least square algorithm:21

α =
(
MMt)−1 M∆Mi→e . (12)

The least square returns α which minimises f :22

f(α) = ∥∆Mi→e −Mα∥22 . (13)

The obtained solution is the best possible projection23

of ∆Mi→e given the insufficient amount of vectors24

in M. This case is illustrated in Fig. 3a.25

For d < n, Eq. 12 has an infinite number of so-26

lutions as there is an infinite number of vector com-27

binations from M that are equal to ∆Mi→e. An ad-28

ditional constraint is set to obtain α with the smallest29

norm, which is expected to introduce minimal error.30

This is achieved with a least-square algorithm with31

ridge regression [25]:32

α =
(
MMt + λI

)−1 M∆Mi→e . (14)

The ridge regression returns α which minimises f :33

f(α) = ∥∆Mi→e −Mα∥22 + λ ∥α∥22 . (15)

λ is chosen to be negligible compared to eigenvalues34

of M to not deteriorate the solution but way larger35

than machine accuracy to break the super-colinearity36

of the system. The constraint minimising the norm37

of α is optimal as it reduces extrapolation and thus38

error magnitude. Once α is found, degenerate cases39

have to be handled. It can be shown that Eq. 9 is an40

interpolation and not an extrapolation if and only if:41

{ ∑n
j=1 αj ≤ 1 , (16)

αj ≥ 0 for all j ∈ {1, ..., n} . (17)

Illustrations of these special cases are given in42

Figs. 3c and 3b. It will be shown that extrapolation is43

beneficial to some extent in Sec 3, however avoiding44

excessive extrapolations remains crucial. Rescaling45

of α may be introduced with a user-defined limit αlim:46

αrescaled =
α

max

(
1;

∑n
j=1|αj |
αlim

) , (18)

with typical values of αlim ranging from 1 to 10.47

(a) Projection due to n < d.

(b) Extrapolation due to violation of Eq. 16.

(c) Extrapolation due to violation of Eq. 17.

Fig. 3: Special cases for Jacobian-free mapping.

3. Validation48

3.1. Simulation set-up49

The implementation is done in YALES2 [26],50

which is a low-Mach number LES solver for mas-51

sive unstructured meshes. Numerical methods are52
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4th-order in time and space and finite-rate chem-1

istry is integrated with CVODE [27] with analytical2

Jacobian and full vectorization. PCA is performed3

with PETSc [28] using dgesvd(). A H2-air triple4

flame [29, 30] in standard conditions is used as a ref-5

erence case. It is solved using the San Diego mecha-6

nism [31], which counts 21 species and 64 reactions7

for H2-air combustion with nitrogen chemistry. In-8

let velocity is uniform and equal to 1m.s−1 and air-9

fuel equivalence ratio ranges from 0 to 24 to have10

non flammable conditions on the sides. This set-

Fig. 4: Temperature field in the full simulation domain. Ve-
locity streamlines are represented in white.

Fig. 5: Heat release rate (HRR) field in the full simulation
domain with a HRR contour line to materialise the flame
branches.

11

up is chosen as it spans a large region in the phase12

space with lean-premixed, rich-premixed and diffu-13

sive flame regimes altogether. The mesh, represented14

in Fig. 6, is refined within reactive areas thanks to15

feature-based mesh adaptation to limit the cost and16

the clustering of fresh gases.17

3.2. Results18

Error is measured on instantaneous quantities pro-19

duced by the reactors: the Heat Release Rate (HRR)20

Fig. 6: Triple flame mesh, made of 50’000 elements with
smallest elements size of 20 microns.

and the species source terms ω̇k related by:21

HRR =

Nspecies∑
k=1

ω̇kH
0
f,k , (19)

with H0
f,k the standard enthalpy of formation of22

species k. The analysis is focused on HRR here23

but the same conclusions are obtained for individual24

species. Within a solver iteration, reactors are solved25

twice, with and without clustering, computation is ad-26

vanced based on the reference without clustering. Rel-27

ative error is obtained based on the integrated differ-28

ence:29

E =

∑Nelem
i=1 |HRRcluster,i −HRRref,i|Vi∑Nelem

i=1 |HRRref,i|Vi

. (20)

Measurement of the error is started from a quasi-30

steady state of the triple flame. The error should tend31

to zero when the size of the clusters ε is reduced.32

Fig. 7 shows this behaviour when varying the clus-33

tering dimensions.

Fig. 7: Relative error on heat release rate relative to cluster
resolution.
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(a) PC1 field

(b) PC2 field

(c) PC3 field

(d) PC4 field
Fig. 8: Normed Principal Component fields of the triple
flame

1

Principal Components of the triple flame are shown2

in Fig. 8 and Fig. 9 and their variance, i.e. fluctuations3

of composition is given in Tab. 1.4

Using only T or T +PC1 is insufficient as the rel-5

ative error on HRR remains higher than relative clus-6

ter size. When advanced with clustering, these cases7

diverge, unless cluster resolution is extremely high.8

(a) PC1 coefficients

(b) PC2 coefficients

(c) PC3 coefficients

(d) PC4 coefficients
Fig. 9: Principal Component coefficients of the triple flame

Variance Cumulated Variance
PC1 0.7526 0.7526
PC2 0.2454 0.9980
PC3 0.0015 0.9995
PC4 0.0004 0.9999

Table 1: Normalized variance along the 4 first principal com-
ponents. All simulation points are considered here.
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Using 2 PC or more is satisfactory, which is consis-1

tent as the two first PC hold most of the explained2

variance. When advanced with clustering these cases3

show great stability unless cluster resolution is ex-4

tremely coarse.5

Clustering along Principal Components with little6

variance, like PC3 and PC4 is sub-optimal as way7

more reactors need to be solved for a small error de-8

crease. This is investigated by introducing a reduced9

computational time:10

RCT =
Wall clock time(µs).Ncores

Nelements.Niterations
. (21)

Fig. 10 shows the relation between HRR error and11

RCT. As previously, T and T + 1PC have poor per-12

formance. T + 2PC, T + 3PC and T + 4PC have13

very similar behaviour. T + 4PC becomes slightly14

more expensive at high cluster resolution due to some15

excessive clustering.16

Fig. 10: RCT of source term computation depending on the
number of Principal Components. Dashed line represents
the reference cost without cell agglomeration.

The Jacobian-free mapping is now considered us-17

ing two Principal Components. An accuracy com-18

parison between backward, Jacobian and Jacobian-19

free mapping is performed in Fig. 11. As expected20

Jacobian mapping is at all times more accurate than21

backward mapping. On large clusters, the Jacobian-22

free mapping has a higher accuracy than the explicit23

Jacobian. This is because it is computed based on24

a variation of cluster size, thus filtering most of the25

high-frequency non-linear species production rates.26

On small cluster size the accuracy of the Jacobian-27

free mapping drops to the level of the backward map-28

ping due to a lack of connectivity. It should be noted29

that clustering is most likely to be used with relatively30

large cluster sizes.31

Performance of the Jacobian-free mapping is given32

by Fig. 12. Jacobian performance is not shown as33

an efficient implementation is not trivial. In the cur-34

rent study its evaluation cost exceeds by far the source35

Fig. 11: Accuracy comparison between backward, Jacobian
and Jacobian-free mapping.

Fig. 12: RCT of source term computation versus αlim.

Fig. 13: Values of α per mapped element at ϵ = 0.01.

term computation cost. At equivalent RCT, error is di-36

minished by up to 74% using Jacobian-free mapping.37

Best results are obtained when extrapolation is used38

at αlim = 4 but larger extrapolation deteriorate the39

solution. This is also clearly shown by HRR fields40

of Fig. 14. While αlim = 4 provides a smoother and41

more realistic solution than backward mapping, using42

extrapolation without a limiter can create extremely43

sharp local errors. Fig. 13 also stresses the need for44

a limiter by showing that a few elements can reach45
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prohibitive values of α, reaching a magnitude of over1

1000.2

Overhead induced by the cell agglomeration re-3

mains less than 1% of the initial source term cost and4

is given in Tab. 2. Largest cost is associated with5

PCA. It should be noted that this is the cost if PCA6

was to be performed at every single iteration, which7

is not needed in most combustion cases. The cluster8

creation cost is negligible as it mainly relies on radix9

sort, which is very efficient on integers. Mapping cost10

consists mainly in solving the ridge regression while11

creation of connectivity is negligible.12

(a) backward

(b) αlim = 4

(c) αlim = ∞
Fig. 14: HRR field depending on α at ϵ = 0.01.

4. Conclusions13

A new mapping method for cell agglomeration14

has been introduced. Its accuracy and cost-reduction15

has been demonstrated in a challenging hydrogen-air16

triple flame. While the methodology parallelism has17

Reference run RCT %
Source terms 440.0 100.00
Cell agglomeration RCT %
Source terms 122.1 27.80
+ PCA 1.8 0.41
+ Clustering 0.3 0.07
+ Mapping 1.1 0.25

Table 2: Source term cost and cell agglomeration overheads
at ϵ = 0.01.

not been discussed here, cell agglomeration can be18

easily performed in parallel for partitioned domains,19

with each core having its own clusters. Future investi-20

gations should therefore be focused on massive DNS21

and LES of turbulent flames.22
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