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Handling of constraints in multiobjective blackbox optimization ∗

Jean Bigeon† Sébastien Le Digabel‡ Ludovic Salomon§

Abstract

This work proposes the integration of two new constraint-handling approaches into the
blackbox constrained multiobjective optimization algorithm DMulti-MADS, an extension of
the Mesh Adaptive Direct Search (MADS) algorithm for single-objective constrained opti-
mization. The constraints are aggregated into a single constraint violation function which
is used either in a two-phase approach, where the search for a feasible point is prioritized if
not available before improving the current solution set, or in a progressive barrier approach,
where any trial point whose constraint violation function values are above a threshold are
rejected. This threshold is progressively decreased along the iterations. As in the single-
objective case, it is proved that these two variants generate feasible and/or infeasible se-
quences which converge either in the feasible case to a set of local Pareto optimal points
or in the infeasible case to Clarke stationary points according to the constraint violation
function. Computational experiments show that these two approaches are competitive with
other state-of-the-art algorithms.

Key words. Multiple objective programming, Multiobjective optimization, derivative-free optimiza-
tion, blackbox optimization, constrained optimization.

1 Introduction
This work considers the following constrained multiobjective optimization problem

min
x∈Ω

f(x) = (f1(x), f2(x), . . . , fm(x))⊤ (MOP)

where Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J } ⊂ Rn is the feasible decision set, and X a subset of Rn. Rn and Rm

are respectively designed as the decision space and the objective space. The functions fi : Rn → R∪{+∞}
for i = 1, 2, . . . ,m and cj : Rn → R ∪ {+∞} for j ∈ J are the outputs of a program seen as a
blackbox. In this context, no gradient is available nor cannot be approximated and one cannot get
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any information on the structure of the problem (differentiability, continuity, convexity) in absence of
analytical expressions for the objective and the constraint functions. Many engineering applications,
which involve several, costly and conflicting objectives, over a given set of constraints, fit into this
framework (see for example [2, 30, 32, 50]). For more general information on derivative-free methods, the
reader is referred to [11, 25, 40].

The description of the feasible decision set Ω enables the modeller to distinguish different types of
constraints [42]. The set X is the set of unrelaxable constraints, which cannot be violated along the
optimization process (e.g. strict bound constraints). The constraints cj(x) ≤ 0, j ∈ J , constitute the set
of relaxable and quantifiable constraints, that can be violated during the optimization, i.e. the blackbox
will execute and the constraints outputs can be aggregated as a measure of violation of the constraints.
Finally, hidden constraints constitute the set of points in the decision space for which the blackbox does
not return any value, typically when the blackbox fails to execute. Allowing the fi and cj functions to
take infinity values refers to this last type of constraints.

Furthermore, in a multiobjective optimization context, due to the conflict between different objectives,
a solution is not always optimal for all criteria. The goal is then to provide the set of best trade-off
solutions to the decision maker [20, 23, 47].

In single-objective optimization, many algorithms have been proposed to solve blackbox constrained
optimization problems: direct search methods via the use of a filter [9, 7], a merit function [37] or an
augmented Lagrangian [39], a derivative-free linesearch algorithm coupled with a penalty function [45],
or quadratic model-based approaches (see for example [6, 17, 31]). The reader can refer to [40, Section 7]
for a more thorough review.

Evolutionary algorithms [20] are popular methods to tackle constrained multiobjective optimization
blackbox problems. Firstly investigated in the context of bound-constrained or unconstrained blackbox
optimization, researchers have adapted some of them to take into account inequality constraints (see [51,
52] for more details). However, these methods are mostly stochastic heuristics. They practically require an
important number of evaluations to perform. For example, the authors in [51] suggest a budget comprised
between 2 × 105 and 5 × 105 function evaluations in their experiments, which can be impracticable when
evaluations are too costly. Surrogate models remove this limitation by substituting true blackboxes by
less expansive surrogates, such as radial basis functions (see [48]), or Gaussian processes (see [33]).

Recently, researchers have proposed extensions of convergence-based deterministic single-objective
methods to multiobjective constrained optimization. Among the first ones, BiMADS [14] and Multi-
MADS [15] are scalarization-based algorithms. These two algorithms reformulate the multiobjective
optimization problem into a succession of single-objective subproblems. Each of them is solved by the
single-objective constrained blackbox MADS algorithm [8, 9]. Practically, it can be difficult to correctly
allocate the total budget of evaluations between all the subproblems, potentially resulting in a loss of
evaluations required to improve the diversity and density of the current solution set.

The Direct MultiSearch (DMS) [27], its variants [21, 26, 29] and Derivative-Free MultiObjective
(DFMO) [46] algorithms consider a different approach. They all keep a list of current feasible non-
dominated solutions that they improve along the iterations. DMS extends single-objective direct search
algorithms to constrained multiobjective optimization. It rejects non-feasible points via the use of an
extreme barrier function approach, i.e. non feasible points are assigned infinity values. This approach
does not exploit knowledge of constraint violations values, which could potentially help to improve the
solution set. Furthermore, DMS imposes the use of a feasible starting point, which is not practically
available (too costly) in a real engineering context. DFMO extends a derivative-free linesearch algorithm
to constrained multiobjective optimization. By aggregating constraints with the objective functions
via the use of a penalty function, DFMO reduces the initial constrained multiobjective optimization
problem to a simple bound constrained multiobjective optimization problem, easier to solve. However,
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its convergence assumptions are a bit restrictive in a blackbox optimization context, i.e. constraints
functions and objective functions must be Lipschitz continuous on the set X (but it allows to prove that
the limit point of every linked sequence produced by DFMO is a stationary point of the problem). On
the contrary, DMS requires that objective functions should satisfy locally Lipschitz continuity. Besides,
penalty function approaches can be sensitive to the scale of constraints (not always available in a blackbox
context) and their penalty parameters values.

Based on these remarks, this work proposes two other ways to handle blackbox constraints, based
on the DMulti-MADS algorithm [18]. DMulti-MADS is an extension of the MADS algorithm to multi-
objective optimization, strongly inspired by the DMS and BiMADS algorithms. It possesses convergence
properties similar to DMS.

At the same time, experiments have shown its competitiveness according to state-of-the-art solvers
on synthetic bound-constrained problems [18]. Similarly to DMS, the first version of DMulti-MADS,
described in [18] requires a feasible starting point. The two extensions described below remove this
limitation. The first one is an extension of the two-phase MADS algorithm described in [10] to constrained
multiobjective optimization, named DMulti-MADS-TEB. The second version is an extension of the MADS
algorithm with progressive barrier [9] to constrained multiobjective optimization, denoted as DMulti-
MADS-PB. Contrary to a penalty function approach, this last method:

• is less sensitive to the scale of the outputs of the blackbox as it does not aggregate the constraints
with the objective function;

• allows to explore around several incumbent points and not just one;

• proves convergence results assuming local Lipschitz continuity of the problem functions.

This work is organized as follows. Section 2 provides a summary of multiobjective optimization
concepts. Section 3 introduces the core elements of the DMulti-MADS algorithm. Section 4 describes the
DMulti-MADS-TEB and DMulti-MADS-PB variants to handle blackbox constraints. Main convergence
results are detailed in Section 5. Finally, experiments are conducted in Section 6 on synthetic benchmarks
and three real engineering applications in comparison with other state-of-the-art solvers.

2 Pareto dominance and optimal solutions in multiobjective op-
timization

This section summarizes some notation and concepts of multiobjective optimization. In order to charac-
terize optimal solutions, one needs the concept of Pareto dominance [47].

Definition 2.1. Given two feasible decision vectors x1 and x2 in Ω,

• x1 ⪯ x2 (x1 weakly dominates x2) if and only if fi(x1) ≤ fi(x2) for i = 1, 2, . . . ,m.

• x1 ≺ x2 (x1 dominates x2) if and only if fi(x1) ≤ fi(x2) for i = 1, 2, . . . ,m and there exists at least
an index i0 ∈ {1, 2, . . . ,m} such that fi0(x1) < fi0(x2).

• x1 ∼ x2 (x1 and x2 are incomparable) if and only if x1 does not dominate x2 and x2 does not
dominate x1.

With this definition, one is able to characterize locally optimal solutions and global optimal solutions
in a multiobjective context.
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Definition 2.2. A feasible decision vector x⋆ ∈ Ω is said to be (globally) Pareto optimal if it does not
exist any other decision vector x ∈ Ω which dominates x⋆.

Definition 2.3. A feasible decision vector x⋆ ∈ Ω is said to be locally Pareto optimal if it exists a
neighbourhood N (x⋆) of x⋆ such that there does not exist any other decision vector x ∈ N (x⋆)∩Ω which
dominates x⋆.

The set of all Pareto optimal solutions in Ω is called the Pareto set denoted by Xp and its image by
the objective function is designed as the Pareto front denoted by YP ⊆ Rm. Any set of locally Pareto
optimal solutions is called a local Pareto set. Ideally, one would wish to find the entire Pareto set and
consequently the entire Pareto front. But the Pareto set may be composed of an infinite number of
solutions. In practice, an algorithm tries to find a representative set of nondominated points, denoted as
a Pareto set approximation [53] (its mapping by the objective function f is designed as a Pareto front
approximation). In the best case, a Pareto set approximation should be a subset of the Pareto set or a
locally Pareto set, but this condition is not always satisfied.

Several objective vectors, i.e. points in the objective space, play an important role in multiobjective
optimization as bounds on the Pareto front. The ideal objective vector [47] yI ∈ Rm (if it exists) bounds
the Pareto front from below and is defined as

yI =
(

min
x∈Ω

f1(x),min
x∈Ω

f2(x), . . . ,min
x∈Ω

fm(x)
)⊤

.

From each component of the ideal objective vector, one can obtain information on the extreme points
of the Pareto set, i.e. the elements of the Pareto set and solutions of each single-objective problem
minx∈Ω fi(x) for i = 1, 2, . . . ,m. The nadir objective vector [47] yN ∈ Rm (if it exists) provides an upper
bound on the Pareto front. It is defined as

yN =
(

max
x∈XP

f1(x), max
x∈XP

f2(x), max
x∈XP

f2(x), . . . , max
x∈XP

fm(x)
)⊤

.

3 The DMulti-MADS algorithm
DMulti-MADS [18] is a direct search iterative method designed to solve constrained multiobjective black-
box optimization problems. It is an extension of the MADS [8] algorithm to multiobjective optimization,
strongly inspired by the DMS [27] and BiMADS algorithms [14]. The notations and following definitions
are taken from [9, 11].

Definition 3.1. At iteration k, the set of feasible incumbent solutions is defined as

F k =
{

arg min
x∈V k

{f(x) : x ∈ Ω}
}

where V k ⊂ X is the set of trial points which have been evaluated by the start of iteration k.

Thus, all points in V k satisfy the set of unrelaxable constraints X . V 0 ̸= ∅ ⊂ X is then the set
of starting points provided by the user. DMulti-MADS keeps an iterate list of best feasible incumbents
found until iteration k, denoted as Lk

F and defined as

Lk
F =

{
(xl,∆l) : xl ∈ F k and ∆l > 0, l = 1, 2, . . . , |Lk

F |
}
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where ∆l is the frame size parameter associated to the lth non-dominated point xl of the list Lk
F . As

Lk
F keeps only feasible non-dominated points (which have distinct objective values by definition), it is

possible that |F k| ≠ |Lk
F |.

At the beginning of each iteration k, DMulti-MADS selects an element (xk,∆k) of the list Lk
F as the

current feasible frame center, and generates a finite number of new candidates. To ensure the convergence
properties, all generated candidates during iteration k must belong to the mesh Mk defined by

Mk =
⋃

x∈V k

{x+ δkDz : z ∈ NnD } ⊂ Rn

where δk > 0 is the mesh size parameter ; D = GZ ∈ Rn×nD is a matrix whose columns form a positive
spanning set for Rn (see [11, Chapter 6] or [25, Chapter 2]) for some non-singular matrix G ∈ Rn×n

and some integer matrix Z ∈ Zn×nD . Note that G,Z and D do not depend on the iteration indexes.
Generally, G and Z are chosen such as G = In and Z = [In − In] = D, with In the identity matrix
of dimensions n × n. Furthermore, the current incumbent selection must satisfy at least the following
condition:

(xk,∆k) ∈
{

(x,∆) ∈ Lk
F : τw+

∆k
max ≤ ∆ ≤ ∆k

max

}
(1)

where τ ∈ Q ∩ (0, 1) is the frame size adjustment parameter, w+ ∈ N a fixed integer and ∆k
max the

maximum frame size parameter at iteration k defined as

∆k
max = max

(x,∆)∈Lk
F

∆.

The mesh size parameter δl and frame size parameter ∆l associated to the lth non-dominated point xl

of Lk
F are linked to each other such that 0 < δl ≤ ∆l. When a subsequence of one of them goes to zero,

so does the other. Typically, the following relation δl = min
{

∆l, (∆l)2} meets these requirements.
Each iteration is decomposed into two steps: the search and the poll. The search is an optional and

flexible step which enables the user to design any strategy as long as the proposed trial points belong to
the mesh Mk and their number is finite. A common strategy is the use of surrogate models, proposed
for example in [21]. The finite set of points used in the search is denoted by Sk.

The poll is more rigorously defined, as the convergence analysis depends on it. The trial points
involved in this step, named the poll set and denoted by P k, must satisfy some specific requirements.
More precisely, the construction of P k involves the use of the current incumbent xk and its associated
frame size ∆k and mesh size δk parameters to obtain a positive spanning set Dk

∆. Each column of Dk
∆ must

be a nonnegative integer combination of the directions in D; the distance from the current incumbent xk

to a poll point must be bounded by a multiple of the frame size parameter ∆k. Note that the relation
between δk and ∆k given above meets these requirements. Formally, P k is described as

P k = {xk + δkd : d ∈ Dk
∆} ⊂ Mk.

All new candidates generated during the search and the poll are assigned a frame size parameter value
larger or equal to the frame size parameter of the current feasible frame center.

If a new generated candidate dominates the current feasible incumbent, the iteration is marked as a
success. Otherwise, it is a failure and the frame size parameter (and so the mesh size parameter) of the
current feasible frame center is decreased. The iteration can be opportunistic, meaning that as soon as it
is successful, the remaining candidates (if they exist) are not evaluated. In all cases, the iterate list Lk

F

is filtered to keep only best non-dominated feasible points found until the end of this iteration.
More details can be found in [18].
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4 Handling of constraints with DMulti-MADS
This section details several strategies to handle constraints with DMulti-MADS, using the terms of the
taxonomy of constraints [42]. The set of quantifiable and relaxable constraints is given by cj(x) ≤ 0, j ∈
J . A relaxable constraint can be violated during the optimization and still returns meaningful outputs for
the blackbox. A quantifiable constraint provides a measure of violation of feasibility. Only quantifiable
and relaxable constraints can be used to define the constraint violation function given below. All other
types of constraints (unrelaxable, hidden, non quantifiable), if present, are not expressed in Ω, but instead
they contribute to the definition of X .

4.1 The constraint violation function
Exploiting constraints to guide the algorithm towards optimal solutions requires a way to quantify con-
straint violations. The strategies described below rely on the constraint violation function h : Rn →
R ∪ {+∞} used in [9] and defined by

h(x) =


∑
j∈J

(max {cj(x), 0})2 if x ∈ X ,

+∞ otherwise.

With this definition, x belongs to Ω if and only if h(x) = 0, and 0 < h(x) < +∞ when x is infeasible but
belongs to X \ Ω. The use of a squared function instead of common ℓ1 norm enables some conservation
of first-order smoothness properties.

4.2 The extreme barrier (EB)
Similarly to DMS [27], the original version of the DMulti-MADS algorithm [18] treats constraints via the
use of an extreme barrier approach. It replaces the objective function f by

fΩ(x) =
{

(+∞,+∞, . . . ,+∞)⊤ if x /∈ Ω,
f(x) otherwise.

In other terms, all infeasible points are assigned an infinite value. This approach requires a feasible
starting point, which is not always available in an engineering context. To allow the use of an infeasible
starting point, this work proposes a Two-phase Extreme Barrier (TEB) approach, in the continuation
of [10]. When starting from an infeasible point, the new strategy, called DMulti-MADS-TEB, performs a
single-objective minimization of the h constraint violation function using the MADS algorithm. As soon
as a feasible point is found, DMulti-MADS-TEB moves to the second phase, which is the minimization
of the original Problem (MOP) from the feasible point found in the first phase.

Although this approach is simple, its performance has never been investigated in the context of
deterministic multiobjective derivative-free optimization. It also shares some convergence properties
with MADS and DMulti-MADS, summarized in Section 5. Note that this strategy can be applied to any
multiobjective blackbox algorithm.

4.3 The progressive barrier (PB)
This subsection introduces the DMulti-MADS-PB extension of the single-objective MADS-PB algo-
rithm [9] for multiobjective derivative-free optimization.
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4.3.1 Feasible and infeasible incumbents
Similarly to the MADS-PB algorithm [9], DMulti-MADS-PB constructs two sets of incumbent solutions
from V k. F k still denotes the set of feasible incumbent solutions. To define the set of infeasible incumbent
solutions, one needs to extend the notion of dominance for infeasible solutions, as it is required in the
design of filter algorithms [34, 35].

Definition 4.1 (Dominance relation for constrained multiobjective optimization). In the context of
constrained multiobjective optimization, x1 ∈ X is said to dominate x2 ∈ X if

• Both points are feasible and x1 ∈ Ω dominates x2 ∈ Ω, denoted as x1 ≺f x
2.

• Both points are infeasible and fi(x1) ≤ fi(x2) for i = 1, 2, . . . ,m and h(x1) ≤ h(x2) with at least
one strict inequality, denoted as x1 ≺h x

2.

This extension of the dominance relation is different from the definition proposed in [48]. Indeed,
in this work, feasible and infeasible points are never compared, and the dominance relation takes into
account both objective function values and the constraint violation function values. Another extension
of dominance to constrained optimization appears in [36], but as in the previous case, it allows the
comparison of feasible and infeasible points. Note that if m = 1, the dominance relation reduces into the
dominance relation of MADS-PB [9].

With this dominance relation, one can define the set of infeasible nondominated points.

Definition 4.2. At iteration k, the set of infeasible nondominated points is defined as

Uk =
{
x ∈ V k \ Ω : there is no y ∈ V k \ Ω such that y ≺h x

}
.

As for the MADS-PB algorithm, DMulti-MADS-PB relies on a nonnegative barrier threshold hk
max,

set at each iteration k, to construct the set of infeasible incumbent solutions.

Definition 4.3. At iteration k, the set of infeasible incumbent solutions is

Ik =
{

arg min
x∈Uk

{
f(x) : 0 < h(x) ≤ hk

max
}}

.

All evaluated points having a value of h above hk
max are automatically rejected by the algorithm.

Furthermore, the barrier threshold is nonincreasing with the iteration number k. Its value at each
iteration is detailed in Section 4.3.3.

Figure 1 illustrates these definitions. Note that Ik is not a singleton. The images of fourteen trial
points generated at the beginning of iteration k, i.e. V k, in the “augmented” objective space (a triobjective
space with two objectives f1, f2 and the constraint violation function h) for a biobjective minimization
optimization problem are represented. The set of feasible incumbent solutions, indicated by black bullets,
contains four elements. Two other feasible generated points are equally visible, but each of them is
dominated by a feasible incumbent solution. These six generated trial points belong to the biobjective
space. The set of infeasible non-dominated points contains six elements, identified by black lozenges and
diamonds. Among them, only three qualify to be infeasible incumbent solutions. Indeed, one element
among the others is above the threshold value hk

max. The two other ones are dominated by at least one
solution of Ik in terms of f objective values. Two elements of Uk dominate the two last remaining trial
points, marked by × symbols. Notice that all elements among Ik and F k could have been generated
before iteration k − 1, by definition of V k.
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◦Feasible dominated points
×Infeasible dominated points

Figure 1: An example of feasible and infeasible incumbent solutions at iteration k for a biobjective
minimization problem in the “augmented” objective space (a triobjective space with the two objectives
f1, f2 and the constraint violation function h). On the left, a 3D view; on the right, the projection on
the biobjective space.

From the sets F k and Ik, DMulti-MADS constructs two lists of incumbent solutions, the iterate list
of best feasible incumbents found until iteration k,

Lk
F =

{
(xl,∆l) : xl ∈ F k and ∆l > 0, l = 1, 2, . . . , |Lk

F |
}

and the iterate list of best infeasible incumbents found until iteration k

Lk
I =

{
(xl,∆l) : xl ∈ Ik and ∆l > 0, l = 1, 2, . . . , |Lk

I |
}
.

Each element of both lists possesses its own associated frame size parameter ∆l.

4.3.2 An iteration of the DMulti-MADS-PB algorithm
As for the single-objective optimization MADS-PB algorithm [9], the search and the poll which constitute
the two steps of an iteration for DMulti-MADS-PB are organized around two iterate incumbents at
iteration k: a feasible one (xk

F ,∆k
F ) ∈ Lk

F and an infeasible one (xk
I ,∆k

I ) ∈ Lk
I . However, as the frame

size parameters associated to the feasible incumbent xk
F and infeasible incumbent xk

I can be distinct, it
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is necessary to adapt the definition of the mesh Mk. At iteration k, Mk is defined as

Mk =


⋃

x∈V k

{x+ δk
FDz : z ∈ NnD } if Lk

F ̸= ∅;⋃
x∈V k

{x+ δk
IDz : z ∈ NnD } otherwise,

where δk
F > 0 and δk

I > 0 are respectively the mesh size parameters associated to the feasible and
infeasible incumbents xk

F and xk
I defined as δk

F = min
{

∆k
F , (∆k

F )2} and δk
I = min

{
∆k

I , (∆k
I )2}. In other

terms, the configuration of the mesh Mk at iteration k is primarily based on the selection of the feasible
frame center if this last one exists.

It is then possible to adapt the definition of the poll set P k. At iteration k, P k is defined as

P k =


P k(xk

F ,∆k
F ) for some (xk

F ,∆k
F ) ∈ Lk

F if Lk
I = ∅,

P k(xk
I ,∆k

I ) for some (xk
I ,∆k

I ) ∈ Lk
I if Lk

F = ∅,
P k(xk

F ,∆k
F ) ∪ P k(xk

I ,∆k
F ) for some (xk

F ,∆k
F ) ∈ Lk

F and (xk
I ,∆k

I ) ∈ Lk
I , otherwise,

where P k(x,∆k) = {x + δkd : d ∈ Dk
∆} ⊂ Mk represents the poll set centered at x at iteration k with

δk = min
{

∆k, (∆k)2}.
Figure 2 illustrates a construction of the poll set P k when both the feasible frame center xk

F and the
infeasible frame center xk

I exist. Here, Ω ⊂ R2. All poll candidates belong to one of the frames generated
by xk

F or xk
I of size ∆k

F > 0 (this is not mandatory as long as the definition of the poll holds). The set
P k is the union of the sets P k(xk

F ,∆k
F ) =

{
p1, p2, p3, p4} and P k(xk

I ,∆k
I ) =

{
p5, p6}. Section 4.3.4 gives

more implementation details on the construction of the poll set.

• xk
F

•
p1

•
p2

•
p3

•p4

•
xk

I

•p5

•
p6

∆k
F

δk
F

Ω

Figure 2: Example of a poll set P k =
{
p1, p2, p3, p4, p5, p6} for Ω ⊂ R2 when both xk

F and xk
I exist

(inspired by [9]).

It remains to address the choice of the feasible and infeasible frame centers at iteration k. In the case
of the MADS-PB algorithm, the set of feasible and infeasible incumbent solutions are often singletons
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(or composed of points which have the same objective function value and the same h-constrained value).
Their selection is then unambiguous.

When Lk
F possesses at least one element, the choice of the current feasible frame center must satisfy

the same condition as described in Section 3. Practically, to get a good Pareto front approximation, it
is also recommended to take into consideration the gap between the different non-dominated solutions
found until iteration k, as it is done in [18].

If Lk
F is empty, the infeasible frame center must satisfy

(xk
I ,∆k

I ) ∈
{

(x,∆) ∈ Lk
I : ∆k

hmin ≤ ∆
}

where ∆k
hmin

is defined as
(xk

hmin ,∆
k
hmin) ∈ arg min

(x,∆)∈Lk
I

h(x).

The idea behind this selection criterion is to prioritize exploration along the least infeasible point with
the best objective values hoping to find a “good” feasible point. At the same time, this selection criterion
allows to explore some potentially interesting regions of the objective space. Intuitively, the infeasible
current best incumbents associated with a frame size parameter value superior to the least current infea-
sible point are the ones which have not yet been explored or are promising, due to the update procedure,
detailed in Section 4.3.3. Several infeasible incumbents can satisfy this criterion. Then, following the
selection procedure described in [18], this work proposes Algorithm 1 to take into account the density of
the set of best infeasible incumbents in the objective space.

There remains the case where Lk
F and Lk

I are both non-empty. A first approach would be to indepen-
dently select the feasible and infeasible frame centers, based for example on a spacing criterion to densify
the set of best feasible and best infeasible current solutions. However, this strategy does not exploit the
“dominance” order which exists between both sets. More precisely, one could hope that exploring around
a carefully chosen infeasible incumbent leads to the generation of a new feasible point which significantly
improves the set of current feasible solutions. The proposed approach is inspired by the works of [43].

At iteration k, considering the non-empty iterate list of feasible incumbents Lk
F , this work introduces

the function ψLk
F

: X → R given as

ψLk
F

(x) = ΦLk
F

(f(x))

=



min
(xF ,∆)∈Lk

F

m∑
i=1

[
fi(xF ) − min

{
fi(x), fi(xF )

}]
if there is no (xF ,∆) ∈ Lk

F such that

fi(xF ) ≤ fi(x) for i = 1, 2, . . . ,m;

− min
(xF ,∆)∈Lk

F

m∑
i=1

[
fi(x) − min

{
fi(x), fi(xF )

}]
otherwise.

The level sets of ΦLk
F

are depicted in Figure 4. Note that all potential feasible decision vectors which
are not dominated by a current feasible incumbent solution of Lk

F are given a positive ψLk
F

value. All
dominated feasible decision vectors correspond to a negative ψLk

F
value.

The current infeasible frame center is then chosen as the element of Lk
I which maximizes the ψLk

Ffunction, i.e.
(xk

I ,∆k
I ) ∈ arg max

(x,∆)∈Lk
I

ψLk
F

(x).

Intuitively, exploring around an infeasible frame center with a large positive value can lead to the gen-
eration of a feasible point which significantly improves the current Pareto front approximation. If the

10



Algorithm 1 selectCurrentInfeasibleIncumbent(Lk
I )

Let Lselect
I :=

{
(x,∆) ∈ Lk

I : ∆k
hmin

≤ ∆
}

with ∆k
hmin

= arg min
(x,∆)∈Lk

I

h(x).

if |Lselect
I | = 1 then

return (x,∆) with Lselect
I = {(x,∆)}.

else if |Lselect
I | = 2 and |Lk

I | = 2 then
Let l0 ∈ arg max

l=1,2
maxi=1,2,...,m fi(xl).

return (xl0 ,∆l0).
else

for i = 1, 2, . . . ,m do
Order Lk

I =
{

(x1,∆1), (x2,∆2), . . . , (x|Lk
I |,∆|Lk

I |)
}

such that
fi(x1) ≤ fi(x2) ≤ . . . ≤ fi(x|Lk|).
for l = 1, 2, . . . , |Lk

I | do
Compute γi(xl) defined as

γi(xl) =



2 fi(x2) − fi(x1)
fi(x|Lk

I
|) − fi(x1)

if l = 1,

2fi(x|Lk
I |) − fi(x|Lk

I |−1)
fi(x|Lk

I
|) − fi(x1)

if l = |Lk
I |,

fi(xl+1) − fi(xl−1)
fi(x|Lk

I
|) − fi(x1)

otherwise.

end for
end for
Let l0 ∈ arg max

l=1,2,...,|Lselect
I

|
maxi=1,2,...,m γi(xl).

return (xl0 ,∆l0).
end if

Figure 3: A procedure to select the current incumbent at iteration k taking into account the spacing
between elements of the iterate list of best infeasible incumbents Lk

I in the objective space, inspired
by [18].

selected infeasible frame center possesses a negative value, one could expect it to be potentially “close”
to the non-dominated zone relative to the current Pareto front approximation. An exploration around it
can still improve the current feasible set.

4.3.3 Update of the mesh parameter at the end of an iteration
At the end of the search and the poll at iteration k, DMulti-MADS-PB has evaluated a finite number
of candidates on the mesh Mk. The cache V k+1 is then the union of the cache V k at the beginning of
iteration k and all the candidates evaluated during iteration k. As for MADS-PB [9], the values of f and
h stored in V k+1 for DMulti-MADS-PB determine the way the threshold value hk+1

max (see (2)) and the
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f1

f2

•

•

•

•

•

ΦLk
F
> 0

ΦLk
F
< 0

ΦLk
F

= 0

• Points in Lk
F

Figure 4: Level sets in the objective space of ΦLk
F

for a biobjective minimization problem.

mesh and frame size parameters of the elements of iterate lists of feasible and infeasible incumbents Lk+1
F

and Lk+1
I are updated.

Similarly to MADS-PB [9], this work uses the concept of dominating, improving and unsuccessful
iteration. A dominating iteration occurs when DMulti-MADS-PB generates a trial point which dominates
a current frame incumbent. An improving iteration is not dominating but improves the feasibility of the
infeasible frame center. Otherwise, the iteration is unsuccessful. More precisely,

• Iteration k is said to be dominating whenever a trial point xt ∈ V k+1 dominates one frame incum-
bent, i.e.

h(xt) = 0 and xt ≺f x
k
F or h(xt) > 0 and xt ≺h x

k
I

is found.

• Iteration k is said to be improving if it is not dominating, but generates a trial point xt ∈ V k+1 \V k

which satisfies

0 < h(xt) < h(xk
I ) and there exists i0 ∈ {1, 2, . . . ,m} such that fi0(xk

I ) < fi0(xt).

• Iterations which are neither dominating nor improving are labelled as unsuccessful. It happens
when every trial point xt ∈ V k+1\V k is such that

h(xt) = 0 and xt ⊀f x
k
F , or h(xt) = h(xk

I ) and xt ⊀h x
k
I or h(xt) > h(xk

I ).

These three cases are described in Figure 5.
All points generated during iteration k are given a frame size parameter ∆ ≥ ∆k where ∆k is the

frame size parameter associated to Mk. More precisely, for any trial element (xt,∆) generated during

12



f1 f2

h

•(
f(xk

I ), h(xk
I )
)

•(
f(xk

F ), 0
)

Dominating iteration

f1 f2

h

•(
f(xk

I ), h(xk
I )
)

•(
f(xk

F ), 0
)

Improving iteration

f1 f2

h

•(
f(xk

I ), h(xk
I )
)

•(
f(xk

F ), 0
)

Unsuccessful iteration

Figure 5: Iterations cases for DMulti-MADS-PB.

iteration k,

(xt,∆) =



(xt, τ−1∆k) if h(xt) = 0 and there exists at least x ∈ F k such that xt ≺f x, or
(xt, τ−1∆k) if h(xt) = 0 and there exists at least an index i0 ∈ {1, 2, . . . ,m} such

that fi0(xt) < minx∈F k fi0(x), or
(xt, τ−1∆k) if h(xt) > 0 and there exists at least x ∈ Ik such that xt ≺h x, or
(xt, τ−1∆k) if 0 < h(xt) ≤ maxx∈Ik h(x) and for i = 1, 2, . . . ,m, fi(xt) ≤ minx∈Ik fi(x)

with at least one index i0 ∈ {1, 2, . . . ,m} such that fi0(xt) < minx∈Ik fi0(x),
(xt,∆k) otherwise;
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where τ ∈ (0, 1) ∩ Q is the frame size adjustment parameter chosen by the user. Thus, all candidates
which dominate one of the points in Lk

F or Lk
I or improve the extent of the objectives values covered by at

least one of the iterate list have their associated frame size parameter increased. When Lk
F is empty and

no feasible point has been generated at iteration k, these candidates are likely to be potential frame center
candidates at iteration k+1. If Lk

F is not empty, the update of the frame size parameter associated to a new
feasible generated point is similar to the one proposed in the original DMulti-MADS-EB algorithm [18].
If the iteration is labelled as unsuccessful, no generated point at the end of iteration k dominates at
least one of the frame center incumbents. In this case, DMulti-MADS-PB replaces (xk

center,∆k
center) by

(xk
center, τ∆k) with τ ∈ (0, 1) ∩ Q and xk

center ∈ {{xk
F }, {xk

I }, {xk
F , x

k
I }} relatively to the emptiness of the

iterate lists Lk
F or Lk

I . If the iteration is improving, the frame size parameters associated to the existing
frame center incumbents keep the same value as in iteration k.

Figure 6 illustrates the frame update rules for a biobjective minimization problem in the “augmented”
objective space (a triobjective space with two objectives f1, f2 and the constraint violation function h).
All candidates whose image is outside combined gray areas are affected a frame size parameter ∆ := ∆k.

f1 f2

h

−hk
max

••

•
•

♦

♦

♦

f1

f2

•

•

•

•

♦

♦

♦

• Set of feasible non dominated points F k

♦ Set of infeasible incumbent solutions Ik

Zone of increasing mesh for feasible candidates
Zone of increasing mesh for infeasible candidates

Figure 6: An example of an increasing zone for frame size parameters at iteration k for a biobjective
minimization problem. On the left, a 3D view of the “augmented” objective space (a triobjective space
with the two objectives f1, f2 and the constraint violation function h); on the right, projection on the
biobjective space.
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The threshold barrier is then updated according to the following rules:

hk+1
max :=


max

xt∈Uk+1

{
h(xt) : h(xt) < h(xk

I )
}

if iteration k is improving,

h(xk
I ) if h(xk

I ) = max
x∈Ik

h(x),

max
xt∈V k+1

{
h(xt) : h(xk

I ) ≤ h(xt) < max
x∈Ik

h(x)
}

otherwise.

(2)

The threshold update rule guarantees in the case where an iteration is considered as not improving
that the set Ik will change if the infeasible frame incumbent does not possess the maximum violation
function value h among the elements of Ik at iteration k. Another consequence (similar to MADS-PB [9])
is that hk

max is nonincreasing with iteration k and that if Ik ̸= ∅, Iq ̸= ∅ for all iteration indexes q ≥ k.
Note that even if an iteration is marked as unsuccessful, the algorithm can still generate new feasible

non-dominated points or infeasible non-dominated points below the value maxx∈Ik h(x), which may be
used as frame incumbents in some next iteration.
Remark. It is also possible to set the update rules of the threshold hk+1

max according to the h(xk
I ) barrier

value. Nonetheless, in some preliminary experiments, it has been observed that this approach prevents
the algorithm to explore some parts of the objective space, potentially interesting to greatly improve the
current feasible solution set.

Finally, the iterate lists Lk
F and Lk

I are filtered to add new non-dominated points generated during
iteration k and remove potential resulting dominated elements.

Algorithm 2 summarizes the different steps of the DMulti-MADS-PB algorithm.
Remark. When m = 1, the classification of the different type of iterations used in the DMulti-MADS-PB
context is almost equivalent to the one used for the MADS-PB algorithm [9]. The equivalence can be
reached if an iteration is considered as improving if the algorithm generates a trial point belonging to
V k+1 and not V k+1 \V k, satisfying improving conditions. Note that convergence properties for infeasible
refining subsequences (see Section 5.2) still hold. However, efficiency gains can be lost. The experiments
done in [24] use the approach presented in this work. There also exists many configurations of itera-
tion classifications criteria such that the generalization of the MADS-PB algorithm for multiobjective
optimization and the convergence properties still hold. For example, one can declare an iteration as
dominating when a trial point changes the set Ik. Practically, not all of them have the same perfor-
mance. The definitions used below correspond to the most efficient variant observed on some preliminary
experiments.

4.3.4 A frame center selection rule for the DMulti-MADS-PB algorithm
The constrained single-objective MADS-PB algorithm uses a classification of its two frame centers to
practically improve the performance of the poll step. More precisely, the two frame centers are ordered,
based on their objective values into primary and secondary poll centers. MADS-PB concentrates more
efforts (based on the number of poll directions) on the primary poll center than the secondary poll
center [9]. Inspired by this strategy, this subsection proposes an extension of the so-called frame center
selection rule to constrained multiobjective optimization.

As in the single-objective case, DMulti-MADS-PB executes the poll around at least one frame center.
When Lk

F = ∅ or Lk
I = ∅, there is only one frame center, designed as the primary frame center. A

complete set of poll points can be evaluated based on a positive spanning set Dk
∆ composed of at least of

n+ 1 directions (more details for the construction of Dk
∆ can be found in [1, 12]).
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Algorithm 2 The DMulti-MADS-PB algorithm for constrained optimization
Initialisation : Given a finite set of points V 0 ⊂ X , choose ∆0 > 0, D = GZ a positive span-
ning set matrix, τ ∈ (0, 1) ∩ Q the frame size adjustment parameter, and w+ ∈ N a fixed in-
teger parameter. Define the frame trigger parameter ρ > 0 (optional). Initialize the lists L0

F ={
(xl

F ,∆0), l = 1, 2, . . . , |L0
F |
}

and L0
I =

{
(xl

I ,∆0), l = 1, 2, . . . , |L0
I |
}

for some (xl
F , x

l
I) ∈ V 0.

for k = 0, 1, 2, . . . do
Selection of the current infeasible frame centers. Select feasible and/or infeasible elements
of respective iterate lists Lk

F and Lk
I as described in [18] and Algorithm 1. Define the current

frame size parameter ∆k according to the associated frame size parameters of the feasible incumbent
element (xk

F ,∆k
F ) and/or infeasible current incumbent element (xk

I ,∆k
I ). Set δk = min

{
∆k,

(
∆k
)2
}

.
Initialize Ladd := ∅.
Search (optional) : Evaluate f and h at a finite set of points Sk ⊂ X on the mesh Mk =

⋃
x∈V k {x+

δkDz : z ∈ NnD }. Set Ladd := {(x,∆k) : x ∈ Sk}.
If an improving or dominating success criterion is satisfied, the search may terminate. In this case,
skip the poll and go to the parameter update step.
Poll : Select a positive spanning set Dk

∆. Evaluate f and h on the poll set P k ⊂ Mk as defined in
Subsection 4.3.2. Set Ladd := Ladd ∪

{
(x,∆k) : x ∈ P k

}
. If an improving or dominating criterion is

satisfied, the poll may terminate opportunistically.
Parameter update : Define V k+1 as the union of V k and all new candidates evaluated in X during
the search and the poll. Classify the iteration as dominating, improving or unsuccessful. Update
hk+1

max according to Section 4.3.3. Remove points above the threshold from Lk
I . Update iterate lists

Lk+1
F and/or Lk+1

I by adding new non-dominated points from Ladd with their updated associated
frame center ∆ ∈ {∆k, τ−1∆k}, as explained in Section 4.3.3. Remove new dominated points from
Lk

F and/or Lk
I .

If the iteration is unsuccessful, replace (if they exist) the frame center elements (xk
F ,∆k

F ) and (xk
I ,∆k

I )
respectively by (xk

F ,∆k+1), (xk
I ,∆k+1) with ∆k+1 := τ∆k.

end for

Figure 7: A summary of the DMulti-MADS-PB algorithm, inspired by [18].

When Lk
F and Lk

I are both non-empty, polling is done around a feasible and an infeasible frame
centers. DMulti-MADS-PB orders these two frame centers into a primary frame center and a secondary
frame center. This ordering is based on an user-supplied parameter ρ > 0, called the frame trigger
parameter.

Recall that if Lk
F and Lk

I are nonempty, the selection of the infeasible frame center is done based on
the ψLk

F
: X → R function parametrized by Lk

F , defined in Section 4.3.2. The following frame center
selection rule is then proposed.

Definition 4.4 (frame center selection rule). Let ρ > 0 provided by the user and suppose that Lk
F ̸= ∅

and Lk
I ̸= ∅. Let (xk

F ,∆k
F ) ∈ Lk

F be the feasible current incumbent and (xk
I ,∆k

I ) ∈ Lk
I be the infeasible

current incumbent. If ψLk
F

(xk
I ) − ρ ξ(Lk

F ) > 0, where ξ(Lk
F ) is given by

ξ(Lk
F ) =

m∑
i=1

µ

(
max

(x,∆)∈Lk
F

fi(x), min
(x,∆)∈Lk

F

fi(x)
)
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with µ : R × R → R+ defined as

µ(a, b) =
{

|a− b| if a ̸= b,

|a| otherwise;

then the primary poll center is chosen as xk
I and the secondary poll center is chosen as xk

F , otherwise the
primary poll center is chosen as xk

F and the secondary poll center is chosen as xk
I .

As for the single-objective MADS-PB algorithm, DMulti-MADS-PB puts more effort on the primary
frame center than on the secondary frame center. The implementation of the poll strategy in this work
follows the one developed in [12]: n+1 directions are used for the primary frame center and two directions
for the secondary frame center by taking the negative of the first one.

If there exists at least one element (x,∆) ∈ Lk
F such that fi(x) ≤ fi(xk

I ) for i = 1, 2, . . . ,m, then xk
F

will be chosen as the primary poll center. Figure 8 illustrates the zone in the biobjective space where Ik

elements must be to be considered as potential primary poll centers. One could hope that putting more
effort on the infeasible frame center in this case should enable it to reach a better part of the feasible
decision region [9].

f1

f2

•

•

•

•

ξ(Lk
F )

ρ ξ(Lk
F )

Primary poll zone for Ik

• Set of feasible non dominated
points F k

Figure 8: Representation of the selection of Ik frame incumbent as primary poll in the objective space
for a biobjective minimization problem.

Remark. If m = 1, the frame center selection rule is equivalent to f(xk
I ) < f(xk

F ) − ρ|f(xk
F )|, used

in [6]. In this work, this rule was privileged to the original one in [6] f(xk
F ) − f(xk

I ) > ρ, as it takes into
account the scale of the objective function values. A corresponding frame center selection rule extension
to multiobjective optimisation would have been ψLk

F
(xk

I ) −mρ > 0.

5 Convergence analysis
This section is devoted to the convergence analysis of the DMulti-MADS-TEB and DMulti-MADS-PB
algorithms, inspired by [9, 18]. This work makes use of the following assumptions, taken from [9]:
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Assumption 5.1. There exists some point x0 in the user-provided set V 0 such that x0 ∈ X and f(x0)
and h(x0) are both finite.

Assumption 5.2. All iterates considered by the algorithm lie in a bounded set.

If Assumption 5.1 is not satisfied, DMulti-MADS cannot start. Assumption 5.2 is ensured if one
imposes the existence of a bounded set in Rn containing V k for all k ∈ N. As V k for k ∈ N is always
composed of points satisfying the unrelaxable constraints, it is sufficient to guarantee that the set of
unrelaxable constraints is itself a bounded set. For example, many engineering problems possess bound
variables constraints, which cannot be violated.

As in single-objective MADS-PB algorithm [9], combining assumptions 5.1 and 5.2 and the structure of
the mesh Mk enables to show that lim

k→+∞
inf ∆k = lim

k→+∞
inf δk = 0 (see for example [27, Theorem A.1]).

The classical convergence analysis of direct search methods focuses on subsequences of generated frame
centers for which corresponding mesh size and frame size parameters converge to zero. The following
notations and definitions are adapted from [9].

Let U ⊂ N be the set of unsuccessful iterations indexes. The poll generates one or several trial points
around at least one of the two feasible and infeasible incumbents. If k ∈ U and the poll is executed
around the feasible current frame center xk

F , this last one is designed as a feasible minimal frame center.
Otherwise, if k ∈ U and the poll is executed around the infeasible current frame center xk

I , this last
one is designed as an infeasible minimal frame center. From the rest of this work, these subsequences
of frame centers are investigated separately. Note that for the DMulti-MADS-TEB variant, studying a
subsequence of infeasible minimal frame centers means that the algorithm does not manage to find a
feasible point.

Definition 5.1. A subsequence {xk}k∈K of DMulti-MADS frame centers, for some infinite subset of
indexes K ⊆ U is said to be a refining subsequence if {∆k}k∈K converges to zero. The limit point x̂ of a
refining subsequence is called a refining point.

Definition 5.2. Given a corresponding refining subsequence {xk}k∈K and its refining point x̂, a direction
d is said to be a refining direction if and only if there exists an infinite subset of indexes K ′ ⊆ K such
that dk ∈ Dk

∆ with xk + δkdk ∈ X and d = limk∈K′
dk

∥dk∥ .

The convergence analysis also requires some mathematical tools from nonsmooth analysis. The
following definitions are taken from [9].

Definition 5.3. A vector d ∈ Rn is said to be a Clarke tangent vector to the set Ω ⊆ Rn at the point x
in the closure of Ω if for every sequence {yk} of elements of Ω that converge to x and for every sequence
of positive real numbers {tk} converging to zero, there exists a sequence of vectors {wk} converging to d
such that yk + tkwk ∈ Ω.

The set of all Clarke tangent vectors to Ω at x is the Clarke tangent cone to Ω at x denoted as TCl
Ω (x).

The DMulti-MADS analysis in a general constrained optimization context makes use of the hypertangent
cone [49], which is the interior of the Clarke tangent cone, defined as:

TH
Ω (x) = {d ∈ Rn : ∃ ϵ > 0 such that y + tw ∈ Ω, for all y ∈ Ω ∩Bϵ(x), w ∈ Bϵ(d), and 0 < t < ϵ}

where Bϵ(x) is the open ball of radius ϵ > 0 centered at x.
The DMulti-MADS analysis also requires that the objective function f is locally Lipschitz continuous

in X , i.e. each of its components fi for i = 1, 2, . . . ,m is locally Lipschitz continuous in X . If this
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condition is satisfied, the Clarke-Jahn generalized derivatives [38] of fi at x ∈ X in the direction d ∈ Rn

exist and are defined by

fo
i (x; d) = lim sup

y → x, y ∈ X
t ↘ 0, y + td ∈ X

fi(y + td) − fi(y)
t

, for i = 1, 2, . . . ,m.

This work can then introduce the main stationary conditions.

Definition 5.4. Let f be Lipschitz continuous near a point x̂ ∈ Ω. x̂ is a Pareto-Clarke critical point of
f in Ω if for all directions d ∈ TCl

Ω (x̂), there exists i(d) ∈ {1, 2, . . . ,m} such that fo
i(d)(x̂; d) ≥ 0.

With the additional assumption that each component of f is equally strictly differentiable at x̂ (i.e.
the corresponding Clarke generalized gradient [22, page 27] is a singleton containing only the gradient of
this objective component at x̂), the previous definition can be reformulated.

Definition 5.5. Let f be strictly differentiable at a point x̂ ∈ Ω. x̂ is a Pareto-Clarke-KKT critical point
of f in Ω if for all directions d ∈ TCl

Ω (x̂), there exists i(d) ∈ {1, 2, . . . ,m} such that ∇fi(d)(x̂)⊤d ≥ 0.

As in the single-objective case [9], this work divides the convergence analysis into two cases: the study
of subsequences of feasible minimal frame centers and the study of subsequences of infeasible minimal
frame centers. For each case, the following methodology is used:

1. Prove that a subsequence of mesh size parameters and frame size parameters converges to zero.
2. Determine a particular subsequence of iterate points associated to the previous subsequence of

parameters, i.e. a so-called refined subsequence.
3. This subsequence of iterate points converges to a refined point. Prove that this point satisfies some

stationary properties.

5.1 Feasible case: results for f

As in [18], one wants to show that starting from a set of feasible points, DMulti-MADS produces at the
limit locally stationary points for the constrained multiobjective optimization problem. To do that, this
work proves the existence of finer refining subsequences, as it is done in [18]. The following analysis is a
summary of the convergence analysis developed in [18] and covers the two variants DMulti-MADS-TEB
and DMulti-MADS-PB.

Theorem 5.1. Let Assumptions 5.1 and 5.2 hold and suppose DMulti-MADS generates a sequence of
feasible iterates lists {Lk

F } with Lk
F = {(xj ,∆j), j = 1, 2 . . . , |Lk

F |}. Then

lim
k→+∞

inf δk
max = lim

k→+∞
inf ∆k

max = 0.

Proof. Combining assumptions 5.1, 5.2, and the selection criterion of the feasible frame center with
the structure of the mesh has been shown to be enough to ensure lim

k→+∞
inf δk

max = lim
k→+∞

inf ∆k
max = 0

(see [18, Theorem 5.1] for more details).

This work wants to prove the convergence of specific elements of the feasible iterate list generated by
DMulti-MADS to stationary points. The concept of a feasible linked list, adapted from [18, 46], is then
introduced.
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Definition 5.6. Suppose DMulti-MADS generates the sequence of feasible iterate lists {Lk
F }k≥k0 with

Lk
F = {(xl,∆l), l = 1, 2, . . . , |Lk

F |} and k0 ∈ N the iteration index such that k0 ∈ arg min
{
k ∈ N : F k ̸= ∅

}
.

A feasible linked sequence is defined as a sequence {(xlk ,∆lk )} such that there exists an iteration index
ℓ0 ≥ k0 such that for any k = ℓ0 + 1, ℓ0 + 2, . . ., the pair

{
(xlk ,∆lk )

}
∈ Lk

F is generated at iteration k− 1
of DMulti-MADS from the pair (xlk−1 ,∆lk−1) ∈ Lk−1

F .

For the DMulti-MADS-PB variant algorithm, the following cases can occur:
1. Dominating iteration: either the algorithm generates at least one point which dominates the feasible

frame center xk−1
F , or it generates some infeasible points which have triggered the dominating

success condition in the infeasible case.

• ∀(xlk ,∆lk ) ∈ Lk
F \ Lk−1

F ,

xlk = xk−1 + δk−1Dzk−1 for some zk−1 ∈ NnD and ∆lk ∈ {∆k−1, τ−1∆k−1}

with xk−1 ∈ {xk−1
F , xk−1

I }.
• ∀(xlk ,∆lk ) ∈ Lk

F ∩ Lk−1
F ,

xlk = xlk−1 and ∆lk = ∆lk−1 .

2. Improving iteration: the algorithm may generate some new feasible non-dominated points without
dominating the feasible frame incumbent.

• ∀(xlk ,∆lk ) ∈ Lk
F \ Lk−1

F ,

xlk = xk−1 + δk−1Dzk−1 for some zk−1 ∈ NnD and ∆lk ∈ {∆k−1, τ−1∆k−1}

with xk−1 ∈ {xk−1
F , xk−1

I }.
• ∀(xlk ,∆lk ) ∈ Lk

F ∩ Lk−1
F ,

xlk = xlk−1 and ∆lk = ∆lk−1 .

3. Unsuccessful iteration: the algorithm may generate some new feasible non-dominated points with-
out dominating the feasible frame incumbent.

• ∀(xlk ,∆lk ) ∈ Lk
F \ Lk−1

F ,

xlk = xk−1 + δk−1Dzk−1 for some zk−1 ∈ NnD and ∆lk ∈ {∆k−1, τ−1∆k−1}

with xk−1 ∈ {xk−1
F , xk−1

I }.
• ∀(xlk ,∆lk ) ∈ (Lk

F ∩ Lk−1
F ) \ {(xk−1

F ,∆k−1
F )},

xlk = xlk−1 and ∆lk = ∆lk−1 .

• ∀(xlk ,∆lk ) ∈ {(xk−1
F ,∆k−1

F )},

xlk = xk−1
F and ∆lk = τ∆k−1.

Similar relations can be drawn for the DMulti-MADS-TEB variant algorithm: note that for all k > k0,
no point at iteration k can be generated from an infeasible point at iteration k − 1.

One can then prove that feasible linked sequences contain a feasible refining subsequence. The original
proof can be found in [18], but for better understanding, it is restated below.
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Theorem 5.2. Let assumptions 5.1 and 5.2 hold and suppose DMulti-MADS generates the sequence of
feasible iterate lists {Lk

F }k≥k0 with Lk
F = {(xl,∆l), l = 1, 2, . . . , |Lk

F |} and k0 ∈ N the iteration index such
that k0 ∈ arg min

{
k ∈ N : F k ̸= ∅

}
. Then every feasible linked sequence {(xlk ,∆lk )} contains a refining

subsequence {xlk }k∈K for some infinite subset of indexes K ⊂ U.

Proof. ∀k ≥ k0, 0 ≤ ∆lk ≤ ∆k
max. By combining Theorem 5.1 and the squeeze theorem, one gets

lim
k→+∞

inf ∆lk = lim
k→+∞

inf ∆k
max = 0,

which implies by definition the existence of a refining feasible subsequence within {(xlk ,∆lk )}.

The analysis which follows is similar to [18, 27].

Theorem 5.3. Let assumptions 5.1 and 5.2 hold and suppose DMulti-MADS generates a feasible refining
subsequence {xk

F }k∈K , with xk
F ∈ F k, converging to a refining point x̂F ∈ Ω. Assume that f is Lipschitz

continuous near x̂F . If d ∈ TH
Ω (x̂F ) is a refining direction for x̂F , then there exists an objective index

i(d) ∈ {1, 2, . . . ,m} such that fo
i(d)(x̂F ; d) ≥ 0.

Proof. Let {xk
F }k∈K , with xk

F ∈ F k, be a refining subsequence converging to a feasible refining point
x̂F ∈ Ω and d = limk∈K′

dk

∥dk∥ ∈ TH
Ω (x̂F ) a refining direction for x̂F , where K ′ ⊆ K is an infinite

subsequence of some infinite subset of unsuccessful iteration indexes, with poll directions dk ∈ Dk
∆ such

that xk
F + δkd ∈ Ω. Denote by ν ≥ 0 the Lipschitz constant of f near x̂F .

Then, for i ∈ {1, 2, . . . ,m}, the inequality

fo
i (x̂F ; d) = fo

i (x̂F ; d) + lim sup
k∈K′

ν δk∥dk∥
∥∥∥ dk

∥dk∥ − d
∥∥∥

δk∥dk∥

≥ fo
i (x̂F ; d) + lim sup

k∈K′

|fi

(
xk

F + δkdk
)

− fi

(
xk

F + δk∥dk∥d
)

|
δk∥dk∥

≥ lim sup
k∈K′

fi

(
xk

F + δk∥dk∥d
)

− f(xk
F )

δk∥dk∥

+ lim sup
k∈K′

|fi

(
xk

F + δkdk
)

− fi

(
xk

F + δk∥dk∥d
)

|
δk∥dk∥

≥ lim sup
k∈K′

f(xk
F + δkdk) − fi

(
xk

F + δk∥dk∥d
)

+ fi

(
xk

F + δk∥dk∥d
)

− fi(xk
F )

δk∥dk∥

= lim sup
k∈K′

fi(xk
F + δkd) − fi(xk

F )
δk∥dk∥

is satisfied.
{xk

F }k∈K being a refining subsequence, the infinite subset of indexes K ′ ⊆ K corresponds to unsuc-
cessful iterations. Consequently, the point xk

F + δkd ∈ Ω does not dominate xk
F . One can then find an

infinite subsequence of indexes K ′′ ⊂ K ′ such that there exists an index i(d) ∈ {1, 2, . . . ,m} satisfying

fo
i(d)(x̂F ; d) ≥ lim sup

k∈K′′

fi(d)(xk
F + δkd) − fi(d)(xk

F )
δk∥dk∥

≥ 0.
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When the set of refining directions is dense in a non-empty hypertangent cone at Ω, Pareto Clarke
stationarity is ensured, similarly to the analysis conducted in [18, 27].

Theorem 5.4. Let assumptions 5.1 and 5.2 and suppose DMulti-MADS generates a feasible refining
subsequence {xk

F }k∈K , with xk
F ∈ F k, converging to a refining point x̂F ∈ Ω. Assume that f is Lipschitz

continuous near x̂F and TH
Ω (x̂F ) ̸= ∅. If the set of refining directions is dense for x̂F in TCl

Ω (x̂F ), then
x̂F is a Pareto-Clarke critical point of (MOP).

Proof. The authors in [8] prove than for any direction v in the Clarke tangent cone,

f0
i (x̂F ; v) = lim

d ∈ TH
Ω (x̂F )

d → v

fo
i (x̂F ; d) for i = 1, 2, . . . ,m.

By hypothesis, the set of refining directions is dense for xF ∈ Ω in TCl
Ω (x̂F ). Then there exists a sequence

of refining directions {dr}r∈R ∈ TH
Ω for x̂F such that limr∈R dr = v. Since the number of components of

the objective function is finite, one can find a subsequence {dr}r∈R′ with R′ ⊆ R such that v = limr∈R′ dr

and fi(v)(x̂F ; v) ≥ 0 by Theorem 5.3 for all indexes r ∈ R′. Passing at the limit concludes the proof.

5.2 Infeasible case: results for h

In this subsection, the goal is to analyse refining subsequences of infeasible points according to the
h violation function as in [9] for the single-objective constrained case. In the specific context where
the algorithm does not find feasible solutions, this analysis offers a guarantee to converge towards a
“good” infeasible point. Two cases can occur. The refining point x̂I of an infeasible refining subsequence
satisfies h(x̂I) = 0. In this case, it means that the feasible set is non-empty, and that x̂I is a global
minimum for the single-objective problem minx∈X h(x). Otherwise, this work proves than x̂I satisfies
some stationarity results relatively to h. Note that the DMulti-MADS-TEB variant generates an infeasible
refining subsequence if and only if it starts from an infeasible point belonging to V 0 and generates no
feasible points along the iterations.

Contrary to the feasible case, this work does not characterize particular infeasible sequences of points
within the sequence of infeasible frame incumbents.

Theorem 5.5. Let assumptions 5.1 and 5.2 hold and suppose DMulti-MADS generates a refining sub-
sequence {xk

I }k∈K , with xk
I ∈ Ik, converging to a refining point x̂I ∈ X. Assume that h is Lipschitz

continuous near x̂I . If d ∈ TH
X (x̂I) is a refining direction for x̂I , then ho(x̂I ; d) ≥ 0.

Proof. The proof is similar to that of Theorem 5.3, h and X playing respectively the roles of fi for a
fixed objective index i ∈ {1, 2, . . . ,m} and Ω.

The next theorem’s proof is identical to Theorem 5.4.

Theorem 5.6. Let assumptions 5.1 and 5.2 hold and suppose DMulti-MADS generates a refining sub-
sequence {xk

I }k∈K , with xk
I ∈ Ik, converging to a refining point x̂I ∈ X . Assume that h is Lipschitz

continuous near x̂I and TH
X (x̂I) ̸= ∅. If the set of refining directions for x̂I is dense in TCl

X (x̂I), then x̂I

is a Clarke stationary point for
min
x∈X

h(x).
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Proof. The authors in [8] prove than for any direction v in the Clarke tangent cone,

h0(x̂I ; v) = lim
d ∈ TH

X (x̂I)
d → v

ho(x̂I ; d).

By hypothesis, the set of refining directions is dense for x̂I ∈ X in TCl
X (x̂I). Then there exists a sequence

of refining directions {dr}r∈R ∈ TH
X for x̂I such that limr∈R dr = v. By Theorem 5.5, for all r ∈ R,

ho(x̂I ; d) ≥ 0. Passing at the limit concludes the proof.

Note that for DMulti-MADS-PB, it may exist a point x ∈ ∪k∈NV
k with 0 < h(x) < h(x̂I) where

x̂I ∈ X is an infeasible refining point.

6 Computational experiments
This section is devoted to the computational experiments of DMulti-MADS on constrained multiobjective
problems. The first part presents the considered solvers. The second part is dedicated to the comparison
of all solvers and DMulti-MADS variants on a set of analytical problems using data profiles for multiob-
jective optimization [18]. The last part shows comparison of solvers on “real” engineering problems using
convergence profiles.

To assess the performance of different algorithms, this work relies on the use of data profiles for mul-
tiobjective optimization [18] and convergence profiles. Both tools require the definition of a convergence
test for a given computational problem, based on the hypervolume indicator [54].

The hypervolume indicator represents the volume of the objective space dominated by a Pareto front
approximation YN and delimited from above by a reference point r ∈ Rm such that for all y ∈ YN ,
yi < ri for i = 1, 2, . . . ,m. The hypervolume possesses many useful properties: Pareto compliant with
the dominance ordering, it can capture many properties of a Pareto front approximation as spread,
cardinality, convergence to the Pareto front, or extension [5, 44].

The convergence test requires a Pareto front approximation reference Y p for a given problem p ∈ P,
where P is the set of considered problems, from which the approximated ideal objective vector

ỹI,p =
(

min
y∈Y p

y1, min
y∈Y p

y2, . . . , min
y∈Y p

ymp

)⊤

and the approximated nadir objective vector

ỹN,p =
(

max
y∈Y p

y1, max
y∈Y p

y2, . . . , max
y∈Y p

ymp

)⊤

are extracted, with mp the number of objectives of problem p ∈ P. Y p is constructed using the set of best
non dominated points found by all algorithms on problem p ∈ P for a maximal budget of evaluations.

Assuming Y e is a Pareto front approximation generated after e evaluations by a given deterministic
solver for problem p, a scaling and translating transformation is applied to this last one defined by:
∀y ∈ Y e ∪ Y p ∪ {ỹN,p},

T (y) =
{

(y − ỹI,p) ⊘ (ỹN,p − y) if ỹN,p ̸= ỹI,p,

y − ỹI,p otherwise;
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where ⊘ is the element wise-divisor operator. Note that this transformation conserves the dominance
order relation. The computational problem is said to be solved by the algorithm with tolerance ετ > 0 if

HV
(
T (Y e), T (ỹN,p)

)
HV (T (Y p), T (ỹN,p)) ≥ 1 − ετ

where HV (YN , r) is the hypervolume indicator value of the volume dominated by the Pareto front ap-
proximation YN and delimited above by the reference point r ∈ Rm. All elements of T (Y e) which are
dominated by T (ỹN,p) ∈ Rm are removed during the computation of the hypervolume indicator. If no
element of T (Y e) dominates T (ỹN,p), then HV

(
T (Y e), T (ỹN,p)

)
is set to zero.

Data profiles show the proportion of all computational problems solved by an algorithm in function of
the number of groups of n+1 evaluations required to build a gradient simplex in Rn. In these experiments,
stochastic solvers are also considered. In this case, data profiles are modified to take into account their
performance variability, as described in [18].

6.1 Tested solvers and variants of DMulti-MADS
The following constrained solvers are considered:

• the deterministic solver NOMAD [41] which implements the BiMADS algorithm (Bi-objective Mesh
Adaptive Direct Search) [14] tested only for m = 2 objectives - www.gerad.ca/nomad;

• the deterministic solver DFMO (Derivative-Free Multi Objective) [46] - www.iasi.cnr.it/~liuzzi/
DFL;

• the stochastic heuristic solver NSGA-II (Non Dominating Sorting Algorithm II) [28]; a constrained
version is implemented in the Pymoo Library [19] version 0.4.2.2 - pymoo.org.

For the BiMADS algorithm, two variants based on NOMAD 3.9.1 are considered. The first uses the default
settings of the MADS algorithm, detailed in [12, 16, 13, 24]. The second deactivates models and other
heuristics such that BiMADS relies only on the MADS algorithm with n + 1 directions, a speculative
search1 and an opportunistic polling strategy, for a fair comparison with DMulti-MADS. DFMO and
NSGA-II are used with their default settings. NSGA-II uses an initial population with 100 elements.

In these experiments, this work considers another variant of DMulti-MADS for constrained multiob-
jective optimization based on the penalty approach used in [46]. More specifically, given the constrained
multiobjective problem (MOP), the authors of [46] introduce the following penalty functions

Zi(x; ε) = fi(x) + 1
ϵ

∑
j∈J

max{0, ci(x)}, i = 1, 2, . . . ,m

where ϵ > 0 is an external parameter and consider the following multiobjective problem

min
x∈X

Z(x) = (Z1(x; ϵ), Z2(x; ϵ), . . . , Zm(x; ϵ))⊤ (MOPp)

The DMulti-MADS-Penalty variant uses the DMulti-MADS-TEB variant on the modified (MOPp)
multiobjective problem. The external parameter ϵ > 0 is set to the default value proposed by [46]. Note
that this approach has already been used by these authors to compare DMS (which cannot start from
infeasible points) and DFMO on constrained multiobjective problems [46]. As the first strategy proposed

1The speculative search consists in generating a trial point along the last direction of success.
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to handle constraints with convergence results, it is natural to see if this approach performs well compared
to the two new variants proposed in this paper.

For all constrained variants of DMulti-MADS, a speculative search strategy is implemented as in [18]
for one or both feasible and infeasible current incumbents if they exist, combined with a polling strategy
with n + 1 directions [12]. The implementation of the mesh follows a granular mesh strategy [13]. All
variants stop as soon as one component of the mesh size vector is below 10−9 or after running out of
evaluations budget. All variants use an opportunistic strategy: as soon as a new candidate dominates at
least one current incumbent, the iteration stops. All variants also apply a spread selection with parameter
value w+ = 1.2 For the DMulti-MADS-PB variant, the trigger parameter is set to ρ = 0.1. When DMulti-
MADS-TEB switches from the first phase to the second phase, the frame and mesh size parameters of
the generated feasible points are not resettled to their respective initial values ∆0 and δ0.

The code used for experiments can be found at github.com/bbopt/DMultiMadsPB.

6.2 Comparing solvers on synthetic benchmarks
In this subsection, this work considers a set of 214 analytical multiobjective optimization problems pro-
posed by [46], with n ∈ [3, 30], m ∈ {2, 3, 4} and |J | ∈ [3, 30]. Among them, 103 problem possess m = 2
objectives.

In a first part, this work compares the three variants of DMulti-MADS on this set of problems. The
three of them use a maximum budget of 30,000 evaluations. For each problem, the three variants start
from the same set of initial points, using the linesearch strategy described in [27]. Each variant on each
problem executes 10 replications by changing the random seed which controls the generation of polling
directions.

The data profiles given in Figure 9 show that for the three tolerance values considered, DMulti-
MADS-Penalty solves slightly less problems on the long term than the two other variants introduced in
this work. One can equally observe than DMulti-MADS-PB performs better for a medium to high budget
of evaluations for the lowest tolerance ετ = 10−2. For the largest tolerance ετ = 10−1, DMulti-MADS-PB
solves more problems for a high budget of evaluations. However, for medium tolerance, the performance
of DMulti-MADS-PB is similar to DMulti-MADS-Penalty. A closer look at the considered problems
shows than in this case, it is better to firstly look for feasible solutions than to explore the infeasible
decision space. It then gives an advantage to DMulti-MADS-TEB over the two other variants. The
reader is invited to consult Appendix A for additional results with performance profiles. For the rest of
this subsection, only DMulti-MADS-PB and DMulti-MADS-TEB are kept, as they are more performant.

For the comparison with the other algorithms, the same maximum budget of 30,000 function evalua-
tions is kept. Practically, for NSGA-II, the total number of population generations is fixed to 300, with a
fixed population size equal to 100. For each problem, the deterministic solvers start from the same initial
points using the linesearch strategy [27]. For each problem, NSGA-II is run 30 times with different seeds
to capture stochastic behavior and analyze its performance variation.

From Figures 10 and 11, one can see that DMulti-MADS-PB outperforms the other solvers on this
set of analytical functions, for all tolerances considered. The same conclusions can be drawn for DMulti-
MADS-TEB. The reader can find additional results with performance profiles in Appendix A.

6.3 Comparing solvers on real engineering benchmarks
In this subsection, this work considers three multiobjective optimization problems: the biobjective SO-
LAR8 and SOLAR9 design problems and the triobjective STYRENE design problem [4, 15]. These

2See (1) for the definition of w+.
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Figure 9: Data profiles obtained from 10 replications from 214 multiobjective analytical problems taken
from [46] for DMulti-MADS-PB, DMulti-MADS-TEB and DMulti-MADS-Penalty with tolerance ετ ∈
{10−2, 5 × 10−2, 10−1}.

three applications are more costly to solve than the analytical benchmarks considered in the previous
subsection. The use of data profiles to compare solvers on these problems is then difficult to put into
practice.

To assess the performance of solvers on these problems, an adaptation of convergence profiles (see [11,
Appendix A] for a description) to multiobjective optimization is proposed. Convergence profiles for
multiobjective optimization make use of the normalized hypervolume value, presented at the beginning
of Section 6 and given by:

HV
(
T (Y e), T (ỹN,p)

)
HV (T (Y p), T (ỹN,p))

where Y p is the Pareto front approximation reference for problem p, Y e the Pareto front approximation
generated after e evaluations by a given solver on an instance of problem p, T a scaling and translating
transformation applied and ỹN,p the approximated nadir objective vector of Y p.

Convergence profiles for multiobjective optimization on a given problem p visualize the evolution
of the normalized hypervolume indicator for a given solver against the number of evaluations used.
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Figure 10: Data profiles using NOMAD (BiMADS), DFMO, DMulti-MADS-PB and NSGA-II obtained
on 103 biojective analytical problems from [46] with 30 different runs of NSGA-II with tolerance ετ ∈
{10−2, 5 × 10−2, 10−1}.

Consequently, a normalized hypervolume value equal to one means that the solver has solved the problem
p. A normalized hypervolume equal to zero means that the solver has not generated points which dominate
the approximated nadir objective vector of the Pareto front approximation reference.

6.3.1 Comparing solvers on the SOLAR8 and SOLAR9 design problems
SOLAR8 and SOLAR9 are two biobjective optimization problems derived from a numerical simulator
coded in C++ of a solar plant with a molten salt heat storage system [3]. The simulation is composed of
three steps. The heliostats field captures sun rays which are transmitted to a central cavity receiver. The
sun energy is given to the thermal storage which converts it to thermal energy. This last one activates the
powerblock, which triggers a steam turbine, generating electrical power output. Numerical simulations
intervene all along the different phases of the process, which make it impossible to provide gradients. For
more details, the reader can refer to [3]. The simulator can be found at github.com/bbopt/solar.

For the two considered problems, a blackbox evaluation can take more than 10 seconds (on a machine
with 8 Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz 16G RAM). Experiments equally reveal the presence
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Figure 11: Data profiles using DFMO, DMulti-MADS-PB and NSGA-II obtained on 214 multiobjective
analytical problems from [46] with 30 different runs of NSGA-II with tolerance ετ ∈ {10−2, 5×10−2, 10−1}.

of hidden constraints. Tables 1 and 2 describe the objectives, constraints and starting points used for
each problem.

SOLAR8 and SOLAR9 both possess integer decision variables. In the experiments, the only solver
which can treat integer variables is NOMAD (BiMADS). Therefore, for a fair comparison, all integer variables
are fixed at their starting values for all solvers.

All deterministic algorithms are allocated a maximal budget of 5,000 evaluations and start from the
same infeasible point for each problem. NSGA-II does not take starting points as arguments. To compare
it with the others, NSGA-II is run 10 times to capture stochastic behaviour, with a population size fixed
to 100 and a total number of generations equal to 50.

From Figure 12(a), one can see that DMulti-MADS-PB performs better than the other algorithms
on SOLAR8. When looking at the Pareto front plots (Figure 12(b)), one can note that DMulti-MADS-
PB captures a portion of the Pareto front on the top left. DMulti-MADS-TEB is slightly better than
DMulti-MADS-Penalty. DFMO does not perform well on this problem, due to the different scales on the
constraints included in the penalty objective function, which impacts its efficiency.

Figure 13(a) shows the convergence profiles for the SOLAR9 problem for different solvers. On this
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Constraints/Objectives Description of constraints and objectives
−f1 Maximize heliostat field performance (absorbed energy)
f2 Minimize cost of field, tower and receiver
Heliostat design constraints Four constraints related to the dimensions of the heliostat field
Receiver constraints Three constraints related to the design of the receiver
Energy constraints Two constraints which depend on the energy production
Variables Description and type
Heliostats field Nine variables related to the dimensions of the heliostats field

Eight real and one integer
Heat transfer loop Four variables related to the design of the heat transfer system

Three real and one integer
Starting point (infeasible) (11.0, 11.0, 200.0, 10.0, 10.0, 2650, 89.0, 0.5, 8.0, 36, 0.30, 0.020, 0.0216)

Table 1: Objectives, constraints, variables and starting point of the SOLAR8 problem.

Constraints/Objectives Description of constraints and objectives
f1 Minimize production costs
−f2 Maximize energy production
Heliostats design constraints Four constraints related to the dimensions of the heliostat field
Heat storage constraints Four constraints relative to the molten salt heat thermic/pressure

storage system
Receiver design constraints Two constraints which depend on the tube size and diameter receiver
Steam constraints Five constraints related to steam temperature, power output

and steam design.
Variables Description and type
Heliostats field Nine variables related to the dimensions of the heliostats field

Eight real and one integer
Heat transfer loop Nineteen variables related to the design of the heat transfer system

Fourteen real and five integer
Powerblock One variable: type of turbine; integer
Starting point (infeasible) (9.0, 9.0, 150.0, 6.0, 8.0, 1000, 45.0, 0.5, 5.0, 900.0,

9.0, 9.0, 0.30, 0.20, 560.0, 500, 0.30, 0.0165, 0.018, 0.017,
10.0, 0.0155, 0.016, 0.20, 3, 12000, 1, 2, 2)

Table 2: Objectives, constraints, variables and starting point of the SOLAR9 problem.

problem, NOMAD (BiMADS) are the most efficient, even if DMulti-MADS-PB catches it for the last eval-
uations. As shown on Figure 13(b), the extent of the Pareto front approximation reference is low, which
favours scalarization-based approaches such as BiMADS. This problem also illustrates the default of
penalty-based approaches against other methods. As the constraint functions possess different ampli-
tudes, the penalized optimization problem differs from the original, which explains why DFMO and
DMulti-MADS-Penalty fail.

6.3.2 Comparing solvers on the STYRENE design problem
STYRENE is a single-objective optimization problem related to the production of styrene, first described
in [4] and available at github.com/bbopt/styrene. The triobjective version of the problem, introduced
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Figure 12: (a) On the left, convergence profiles for the SOLAR8 problem using DFMO, DMulti-MADS,
NOMAD (BiMADS) and NSGA-II with 10 different runs of NSGA-II for a maximal budget of 5,000 evalu-
ations. (b) On the right, Pareto front approximations obtained at the end of the resolution of SOLAR8
for DFMO, DMulti-MADS, NOMAD (BiMADS) and an instance of NSGA-II in the objective space.
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Figure 13: (a) On the left, convergence profiles for the SOLAR9 problem using DFMO, DMulti-MADS,
NOMAD (BiMADS) and NSGA-II with 10 different runs of NSGA-II for a maximal budget of 5,000 evalu-
ations. (b) On the right, Pareto front approximations obtained at the end of the resolution of SOLAR9
for DFMO, DMulti-MADS, NOMAD (BiMADS) and an instance of NSGA-II in the objective space.

in [15], is considered here. Styrene production process is composed of four steps: reactants preparation,
catalytic reactions, a first distillation to recover styrene and a second one to recover benzene. The
second distillation equally involves the recycling of unreacted ethylbenzaline, reintroduced into the styrene
production as an initial reactant. The proposed triobjective optimization problem, based on a numerical
implementation coded in C++, aims at maximizing the net present value associated to the process (f1),

30



the purity of produced styrene (f2), and the overall ethylbenzene conversion into styrene (f3). This
application possesses eight bounded variables, and nine general inequality constraints related to the
chemical process (e.g. environmental regulations), or costs (e.g. investment). More details can be found
in [15].

A simulation takes around one second to run, starting from a feasible point (on a machine with 8
Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz 16G RAM). This problem has hidden constraints. Even
when starting from a feasible point, the simulation can sometimes fail to produce a finite numerical value.

A maximal budget of 20,000 evaluations is allocated for all deterministic solvers, which all start from
the same feasible point. This experiment does not consider NOMAD (BiMADS), as it only treats biojective
problems. NSGA-II is run 10 times, with a population size fixed to 100, and a maximal number of
generations equal to 200.
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Figure 14: (a) On the left, convergence profiles for the STYRENE design problem using DFMO, DMulti-
MADS, and NSGA-II with 10 different runs of NSGA-II for a maximal budget of 20,000 evaluations. (b)
On the right, Pareto front approximations obtained at the end of the resolution of STYRENE for DFMO,
DMulti-MADS, and an instance of NSGA-II in the objective space.

Figure 14(a) shows the convergence profiles obtained for the STYRENE design triobjective problem.
This figure shows that DMulti-MADS-PB performs better than the other solvers, followed by DMulti-
MADS-TEB. From Figure 14(b), one can observe that DMulti-MADS-PB captures more parts of the
Pareto front reference than all the other methods. Finally, even when taking into account variability,
NSGA-II is less efficient than all the other solvers on this problem.

7 Discussion
This work proposes two extensions of the DMulti-MADS algorithm [18] to handle blackbox constraints,
generalizing the works conducted for the single-objective MADS algorithm [9, 10]. It is proved that these
two extensions possess the same convergence properties than DMulti-MADS [18] when studying feasible
sequences generated by these two extensions. Convergence analysis for the infeasible case is also derived,
as in [9].

Experiments show that these two variants are competitive comparing to other state-of-the-art meth-
ods, and more robust on real engineering applications than a penalty-based approach, as proposed in [46].
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These experiments also reveal that a two-phase approach performs surprisingly well on blackbox multiob-
jective optimization problems, contrary to single-objective ones [10]. Future work involves the integration
of surrogate methods into a search strategy [21, 24], and the use of parallelism. An integration in the
NOMAD solver is also planned.
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Appendix A Comparing DMulti-MADS with other algorithms
using performance profiles

This appendix provides additional comparison results between the different variants of DMulti-MADS
and the multiobjective solvers NOMAD (BiMADS), DFMO, and NSGA-II, using performance profiles.
The performance profiles are presented using the purity metric, the Γ and ∆ spread metrics, and the
hypervolume indicator. One can find a description of the first three metrics in [27]. The construction of
the performance profiles based on the hypervolume indicator follows almost all the procedure described
in [21]. More specifically, the normalized hypervolume described at the beginning of Section 6 is used to
compute the performance profile ratio. The solver settings are the same as described in Section 6.1. All
solvers are run with a budget of 30,000 evaluations and start from the same set of initial points. Finally,
if an algorithm fails to generate a Pareto front approximation for a benchmark test, it is given an +∞
ratio value. The average performance profiles for the stochastic solver NSGA-II uses only runs that find
feasible solutions.

From Figure 15, using the full budget of evaluations, DMulti-MADS-Penalty performs better than
DMulti-MADS-PB for the purity and hypervolume metrics when the ratio value is equal to α = 1.
However, in terms of robustness, for small to large ratio values, DMulti-MADS-PB is more robust than
DMulti-MADS-Penalty for these metrics, as it manages to solve about 1 − 2% and 5% more problems
than DMulti-MADS-Penalty for the purity and hypervolume metrics, respectively. In terms of spread
metrics (see Figure 16), DMulti-MADS-PB outperforms DMulti-MADS-Penalty for all ratio values. When
comparing DMulti-MADS-TEB and DMulti-MADS-PB, the first variant solves more problems than the
second for a ratio value equal to 1 in terms of the purity metric, the hypervolume and the ∆ spread
metric. However, both variants exhibit similar performance when increasing the ratio for the three metrics
mentioned above. For the Γ spread metric, DMulti-MADS-PB is slightly better than DMulti-MADS-EB.
Finally, DMulti-MADS-TEB performs better both in terms of efficiency and robustness according to
DMulti-MADS-Penalty.

From Figures 17 and 18, DMulti-MADS-PB is less efficient than NOMAD (BiMADS) with and without
models for all performance profiles metrics when using the whole evaluation budget on this set of multi-
objective optimization problems. Looking more closely at the runs, this result can be explained. Given a
sufficiently large budget of evaluations, BiMADS can significantly densify some parts of its Pareto front
approximation due to its scalarization strategy. It results in a better Pareto front approximation in terms
of purity, hypervolume, ∆ and Γ spread metrics, as shown in Figures 17 and 18. However, DMulti-MADS-
PB can generate a Pareto front approximation target faster for a lower budget of evaluations scaled by
the number of variables, as shown in Figure 10. It is also not restricted to biobjective problems.

From the performance profiles in Figure 19, DFMO solves more problems in terms of purity and
hypervolume (around 10% for each both) for a ratio value of 1. In terms of robustness, DMulti-MADS-
PB slightly outperforms DFMO for purity, but remains slightly below DFMO for hypervolume. Both
solvers display similar performance in terms of robustness for spread metrics.

Figures 20 and 21 depict performance profiles between DMulti-MADS-PB and NSGA-II, with the
best of 30 runs, the worst of 30 runs and for average values. DMulti-MADS-PB on average is more robust
and efficient in terms of purity than NSGA-II. It is slightly less efficient than NSGA-II on average in
terms of hypervolume and Γ spread metric. Both solvers (on average) show similar performance in terms
of ∆ metric. When comparing to the best and worst runs, DMulti-MADS-PB performs better than the
worst run in terms of purity metric and hypervolume, and shows similar performance in terms of spread
metrics; but it is outperformed for all metrics by the best run.

In conclusion, DMulti-MADS-PB is competitive with NSGA-II and DFMO on the set of analytical
problems when using a budget of 30,000 evaluations.
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Figure 15: Performance profiles using purity metric and hypervolume with DMulti-MADS-PB, DMulti-
MADS-TEB and DMulti-MADS-Penalty obtained from 214 multiobjective analytical optimization prob-
lems taken from [46] with a maximal budget of 30,000 function evaluations.
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Figure 16: Performance profiles using the Γ and ∆ spread metrics with DMulti-MADS-PB, DMulti-
MADS-TEB and DMulti-MADS-Penalty obtained from 214 multiobjective analytical optimization prob-
lems taken from [46] with a maximal budget of 30,000 function evaluations.
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Figure 17: Performance profiles using purity metric and hypervolume with DMulti-MADS-PB and
NOMAD (BiMADS) with and without models from 103 biobjective analytical optimization problems taken
from [46] with a maximal budget of 30,000 function evaluations.
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Figure 18: Performance profiles using the Γ and ∆ spread metrics with DMulti-MADS-PB and NOMAD (Bi-
MADS) with and without models from 103 biobjective analytical optimization problems taken from [46]
with a maximal budget of 30,000 function evaluations.
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Figure 19: Performance profiles using DMulti-MADS-PB and DFMO from 214 multiobjective analytical
optimization problems taken from [46] with a maximal budget of 30,000 function evaluations.
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Figure 20: Performance profiles using purity metric and hypervolume with DMulti-MADS-PB and NSGA-
II from 214 multiobjective analytical optimization problems taken from [46] with a maximal budget of
30,000 function evaluations with 30 different runs from NSGA-II.
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Figure 21: Performance profiles using the Γ and ∆ spread metrics with DMulti-MADS-PB and NSGA-
II from 214 multiobjective analytical optimization problems taken from [46] with a maximal budget of
30,000 function evaluations with 30 different runs from NSGA-II.
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