
HAL Id: hal-04684254
https://hal.science/hal-04684254v1

Submitted on 27 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Balancing the Quality and Cost of Updating
Dependencies

Damien Jaime, Pascal Poizat, Joyce El Haddad, Thomas Degueule

To cite this version:
Damien Jaime, Pascal Poizat, Joyce El Haddad, Thomas Degueule. Balancing the Quality and Cost
of Updating Dependencies. 39th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), Oct 2024, Sacramento, United States. �hal-04684254�

https://hal.science/hal-04684254v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Balancing theQuality and Cost of Updating Dependencies
Damien Jaime

Sorbonne Université, CNRS, LIP6

F-75005, Paris, France

SAP France S.A.

F-92300, Levallois-Perret, France

damien.jaime@lip6.fr

Pascal Poizat

Sorbonne Université, CNRS, LIP6

F-75005, Paris, France

Université Paris Nanterre

F-92000, Nanterre, France

pascal.poizat@lip6.fr

Joyce El Haddad

Université Paris Dauphine-PSL, CNRS, LAMSADE

F-75016, Paris, France

joyce.elhaddad@lamsade.dauphine.fr

Thomas Degueule

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800

Talence, France

thomas.degueule@labri.fr

ABSTRACT
Keeping dependencies up to date is a crucial software maintenance

task that requires significant effort. Developers must choose which

dependencies to update, select appropriate target versions, and

minimize the impact of updates in terms of breaking changes and

incompatibilities. Several factors influence the choice of a new

dependency version, including its freshness, popularity, absence of

vulnerabilities, and compatibility.

In this paper, we formulate the dependency update problem

as a multi-objective optimization problem. This approach allows

for updating dependencies with a global perspective, considering

all direct and indirect dependencies. It also enables developers to

specify their preferences regarding the quality factors to maximize

and the costs to minimize when updating. The update problem is

encoded as a linear program whose solution provides an optimal

update strategy that aligns with developer priorities and minimizes

incompatibilities.

We evaluate our approach using a dataset of 107 well-tested

open-source Java projects using various configurations that reflect

real-world update scenarios and consider three quality metrics: de-

pendency freshness, a time-window popularity measure, and a

vulnerability score related to CVEs. Our findings indicate that our

approach generates updates that compile and pass tests as well as

the naive approaches typically implemented in dependency bots.

Furthermore, our approach can be up to two orders of magnitude

better in terms of freshness. By considering a more comprehensive

concept of quality debt, which accounts for freshness, popularity,

and vulnerabilities, our approach is able to reduce quality debt

while maintaining reasonable memory and time consumption.
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1 INTRODUCTION
Leveraging the time-honored principles of modularity and reuse,

modern software systems development typically entails using exter-

nal software libraries. Instead of creating new systems from scratch,

developers incorporate libraries that provide the desired functionali-

ties into their projects. These libraries expose their features through

Application Programming Interfaces (APIs), which dictate the in-

teractions between client projects and libraries. The way dependen-

cies are managed varies across different software ecosystems [9].

Typically, it involves using a package manager or build system

to automatically retrieve specific versions of dependencies from

remote software repositories—along with their own (transitive)

dependencies—in order to build a so-called dependency graph [28].

For example, JavaScript and TypeScript developers can use npm

or Yarn to fetch dependencies from the npm registry, while Java

developers can use Maven or Gradle to retrieve dependencies from

the Maven Central repository.

Libraries continuously evolve to incorporate new features, bug

fixes, security patches, refactorings, etc. [1, 4]. Clients must stay

up to date with the libraries they use to benefit from these im-

provements and to avoid technical lag and the associated technical

debt [5, 11, 29]. However, when a library evolves, it may introduce

changes that break the contract previously established with its

clients, resulting in syntactic and semantic errors [35]. Developers

are thus faced with the challenge of maximizing the freshness and

quality of their dependencies while minimizing the costs associated

with updating them. This challenge is further complicated by the

nature of dependency graphs: updating a single dependency can

cause a snowball effect and result in incompatibilities with other

indirect dependencies. As a result, clients sometimes hesitate to up-

date their dependencies, raising security concerns [21] and making

future updates even more difficult.

The problem of assisting developers in updating their dependen-

cies has therefore attracted significant interest. This includes efforts

to identify client code that is affected by breaking changes [24, 25],

automatically migrate client code [36], or find versions that mini-

mize the impact on the dependency graph. UPCY [8], in particular,

is a novel approach that takes a library and a target version as

input to construct a migration plan that minimizes the number of

breaking changes within the graph induced by the update. While

this approach is particularly suitable for updating a single depen-

dency to a specific version (e.g., to avoid a particular vulnerability,

as exemplified by the recent log4shell mayhem), it is much less

suitable for updating the entire dependency graph at once, which

is critical for managing technical debt in decaying projects. Besides,

breaking changes may not accurately reflect the actual impact an

update has, as it has been empirically shown that many breaking

releases do not impact client projects in practice [19, 25].
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Migrating to the latest available version of each dependency

may not always be the optimal choice. Developers must juggle

various criteria to find a satisfactory solution, ranging from ensur-

ing license consistency across projects [32] to minimizing security

vulnerabilities [21] and easing the migration process [25]. In this

paper, we propose to model the problem of updating a dependency

graph as a custom multi-objective optimization problem. We for-

mulate the optimization problem as a linear programming problem

on a project-rooted extended dependency graph. Our approach

is generic regarding the quality and cost metrics considered. As

different developers prioritize these criteria differently, our multi-

objective problem incorporates weights for each, hence supporting

updates tailored to organizational rules or individual developers’

preferences. While other criteria can be considered, we focus in

our experimental evaluation on the joint use of three quality met-

rics: dependency freshness (to minimize the cost of future updates),

a time-window popularity measure (as a proxy for community

support), and a vulnerability score based on CVEs (as a proxy for

security concerns). For the cost of change, we estimate the impact

breaking changes introduced in a release have on the project.

We develop a new tool, GoblinUpdater, that automatically pro-

poses an update plan from developer-defined preferences. Goblin-

Updater targets the Java programming language and the Maven

ecosystem and leverages the Maven Dependency Graph [2] and

the enrichment capabilities offered by Goblin [16] to incorporate

quality and cost metrics into dependency graphs. GoblinUpdater

also leverages Maracas to mesure the impact of breaking changes

on client code [25]. Our experiments evaluate the correctness, ef-

fectiveness, and scalability of GoblinUpdater on a dataset of 107

well-tested open-source Maven projects. We show that GoblinUp-

dater outperforms naive approaches while maintaining reasonable

memory and time consumption.

The remainder of this paper is organized as follows. Section 2

introduces the problem of balancing the quality and cost of depen-

dency updates and the existing approaches. Section 3 gives a general

overview of our approach, Section 4 discusses the construction of

project-rooted dependency graphs, and Section 5 the encoding of

the problem as a linear program. Section 6 evaluates the benefits of

our approach on various update configurations. Section 7 presents

the threats to validity. Finally, Section 8 discusses some lessons

learned in using linear programming for dependency update and

Section 9 concludes the paper.

2 PROBLEM STATEMENT & RELATEDWORK
To illustrate the challenges of balancing the quality and cost of up-

dating dependencies, consider the dependency graph𝐺 shown in

Figure 1. The figure depicts a simple root project 𝑝 that declares two

direct dependencies towards libraries l1 (in version l1-1) and l2 (in
version l2-1), and inherits indirect dependencies towards libraries

l3–l4. Each library offers a set of releases that act as candidates

for replacing existing dependency versions (l1, for instance, offers
releases l1-1, l1-2, and l1-3, with l-3 the most recent release). Mi-

grating from one library version to another incurs a change cost,

depicted with dotted arrows in Figure 1.

Updating the dependencies of project 𝑝 involves finding a sub-

graph 𝐺 ′ of 𝐺 that satisfies ecosystem-specific well-formedness

Figure 1: An extended dependency graph rooted in p. This
dependency graph for p (purple/dark squares and circles) in-
corporates all alternative versions of p’s direct dependencies
(grey rounded boxes) and change edges with associated costs.
The direct and indirect dependencies of these alternative
versions are depicted with white squares and circles. The cur-
rent dependencies of p are {l1-1, l2-1, l3-1, l4-1}. Alternative
dependency graphs for p are {l1-1, l2-2, l3-1, l4-1, l6-1}, {l1-1,
l2-2, l3-1, l4-1, l6-2}, {l1-2, l2-1, l4-1, l5-1, l6-1}, {l1-2, l2-1, l4-1,
l5-1, l6-2}, {l1-2, l2-2, l4-1, l5-1, l6-1}, {l1-2, l2-2, l4-1, l5-1, l6-2},
{l1-3, l2-1, l5-1, l6-1}, {l1-3, l2-1, l5-1, l6-2}, {l1-3, l2-2, l5-1, l6-1},
and {l1-3, l2-2, l5-1, l6-2} (changes are underlined).

constraints (e.g., one can only directly depend on a single version

of a given library), maximizes the quality of each dependency in

the graph rooted in 𝑝 , and minimizes the cost of migrating to new

versions. A given solution must specify the version of each depen-

dency, whether direct or transitive, to ensure that no version is left

open for the dependency resolver to pick arbitrarily. The goal is

to find an optimal solution with respect to specific user-defined

quality and cost preferences. Even in the simple example of Fig-

ure 1, combining every candidate version of each library yields

ten candidate solutions 𝐺 ′. In real-world settings with dozens or

hundreds of dependencies, the number of possible solutions quickly

becomes unmanageable with naive algorithms and approaches.

Several factors can be considered when selecting a dependency.

These can range from its freshness and the compatibility of its

license with the project, to the absence of known security vulnera-

bilities (CVEs) or its overall popularity and community support. In

this paper, we choose to focus on three quality metrics: freshness,

popularity, and the number of known vulnerabilities. We choose

these metrics because they have been used in prior work and reflect

real-world concerns [21, 32]. However, our approach is both generic

and extensible, allowing for the integration of additional criteria,

such as licensing constraints, into the solution.
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In Figure 1, consider the simple case where a developer wants to

maximize the freshness of their dependencies while minimizing the

cost of migrating to these versions. Updating would mean choosing

{l1-3, l2-2, l5-1, l6-2}—assuming that these do not incur significant

costs in terms of breaking changes. Another developer may choose

to prioritize maximizing the freshness of dependencies and min-

imizing the presence of vulnerabilities, regardless of the cost of

migrating to this new configuration. A successful approach should

enable developers to (i) express their quality and cost preferences

precisely and (ii) determine an optimal solution based on these

preferences within a reasonable time.

Several tools have been developed to assist developers in man-

aging their dependencies (e.g., Dependabot [13], Renovate [26],

and Greenkeeper [27]). These tools monitor the release of new de-

pendencies and automatically create pull requests submitted for

approval to project maintainers. They operate at the level of indi-

vidual releases and do not aim to find a global solution that satisfies

user-defined criteria. UPCY [8], on the other hand, is a novel ap-

proach to dependency update that takes as input one library to

update and one target version to construct a migration plan that

minimizes the number of breaking changes induced by version

updates across the entire dependency graph. While this approach is

well-suited for updating a single dependency to a specific version

(e.g., to avoid a specific vulnerability), it is much less suitable for

updating the entire dependency graph at once. Besides, the number

of breaking changes is a poor indicator of the actual impact of an up-

date, as it has been shown empirically that many breaking releases

have no practical impact on client projects [19, 25]. In contrast, our

approach considers the impact of breaking changes on the root

project 𝑝 and allows for updating all project dependencies simulta-

neously. Hejderup et al. studied to which extent test suites of client

projects can detect regression caused by dependency updates and

found that tests can only detect 47% of artificial faults injected in di-

rect dependencies and 35% of those injected in transitive ones [14].

They advocate that a successful approach to dependency update

should incorporate static analysis to compensate the inadequacy of

tests. Our approach follows this path by incorporating the precise

cost of dependency updates directly within the dependency graph.

3 APPROACH OVERVIEW
In this section, we give an overview of our approach for updating a

project’s dependencies. Our approach is depicted in Algorithm 1. It

takes as input:

• the project of interest, including its POM file (to retrieve di-

rect dependencies) and its source code (to compute the cost of

change),

• a non-empty set 𝑄 of user-chosen quality metrics, to which we

add a specific cost of change metric (cost), yielding a set 𝑄+,
• a function𝑤 associating to each 𝑞 in 𝑄+ a user-defined weight

in [0, 1], with𝑤𝑞 denoting the weight for 𝑞. We further require

that

∑
𝑞∈𝑄 𝑤𝑞 = 1 (the sum of weights for quality metrics is 1).

Note that this means that

∑
𝑞∈𝑄+ 𝑤𝑞 is in [1, 2].

The algorithm consists of two main steps: constructing the de-

pendency graphs and solving the dependency update using linear

programming.

Constructing the dependency graphs. In the first step, we start

(line 1) by constructing a dependency graph called the rooted de-
pendency graph (rDG) from 𝑝’s direct dependencies. In addition to

containing all direct and indirect dependencies for 𝑝 , this graph

also contains additional libraries and releases corresponding to a

potential for update. This information is extracted from the whole

dependency graph (e.g., Maven Central). Values for the quality met-

rics of interest for the user are also computed and associated with

each release in the rDG. Then, the rDG is extended into a rooted
extended dependency graph (rEDG) with information related to the

cost of change when switching from a library version to another

one, based on the practical use of the library by project 𝑝 (line 2).

Solving. In the second step, we formulate the update problem as

a linear program using the rEDG, quality metrics, cost of change,

and weight function. The objective is to determine the optimal set
of dependency updates that balance quality improvement and cost

of change. Since quantitative information (i.e., values for quality
metrics and change cost) can vary significantly in scale, we need

to perform normalization first (line 3) to ensure a consistent basis

for comparison when using linear programming. Then, we can

proceed with the encoding itself (line 4). Finally, we use a linear

programming solver (line 5) to find the optimal solution. This solu-

tion always exists, although in the worst case, it can be 𝑝’s current

set of dependencies. The solution indicates which part of the rEDG

should be considered to update 𝑝’s dependencies (line 6).

4 MODELS & GRAPH CONSTRUCTION
4.1 Models

Dependency graphs. Our first model is used to represent de-

pendencies and versioning between libraries and their releases.

Such models can be retrieved from software ecosystems to address

ecosystem-wide research questions and support software-related

maintenance processes. Our model is a formalization of the graph

database used by Goblin [16].

Definition 1 (Dependency Graph). A Dependency Graph (DG)
𝐺 is a tuple (𝑁𝐿, 𝑁𝑅, 𝐸𝐷 , 𝐸𝑉 , req) where 𝑁𝐿 is a set of library nodes,
𝑁𝑅 is a set of release nodes, 𝐸𝐷 ⊆ 𝑁𝑅 ×𝑁𝐿 is the dependency relation
(edges), 𝐸𝑉 ⊆ 𝑁𝐿 × 𝑁𝑅 is the version relation (edges), and req is a
version constraint function associating to each edge in 𝐸𝐷 a version
in a set𝑉𝑒𝑟 denoting semantic versions. We also define 𝑁 = 𝑁𝐿 ∪𝑁𝑅

and 𝐸 = 𝐸𝐷 ∪ 𝐸𝑉 .

Algorithm 1 Update project dependencies

Inputs: the project 𝑝 (code and POM file), the set of metric values

𝑄+ = 𝑄 ∪ {cost}, the weight function𝑤
Output: 𝑝′ an update of 𝑝

1: 𝐺 ← computeRDG(𝑝.𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 , 𝑄)

2: 𝐺 ← extendRDG(𝑝 , 𝐺)

3: 𝐺 ← normalize(𝐺 , 𝑄+)
4: 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ← generateLinearProgram(𝐺 , 𝑄+,𝑤 )

5: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← solve(𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

6: 𝑝′ ← update(𝑝 , 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

7: return 𝑝′
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An edge 𝑒 = (r, l) in 𝐸𝐷 denotes a dependency relation between

release r and library l, with required version being req(𝑒). A pre-

liminary experiment on our data revealed that, on Maven Central,

only approximately 1% of dependency relations use range version

requirements (e.g., [1.0, 2.0)). Hence, we assume that𝑉𝑒𝑟 strictly

corresponds to semantic versions, not ranges. An edge (l, r) in 𝐸𝑉
denotes a version relation between l and r meaning that r is a ver-
sion of l.

Rooted dependency graphs. We say that a DG 𝐺 is rooted when

𝐺 has a distinct node 𝑝 in 𝑁𝑅 and𝐺 contains only nodes and edges

that are reachable from 𝑝 . In this paper, we only use rooted DGs, or

rDGs, since our objective is to update the dependencies of a project

of interest that acts as the root of the graph. There are different
strategies to compute rDGs when it comes to the versions of libraries.

For libraries that are direct dependencies of the root, a strategy

could, for instance, keep all versions, only versions newer than

the one currently required by the root, or only non-patch versions.

The same choice applies to libraries that are indirect dependencies

of the root; one could decide to keep only required versions. The

choice of a strategy to compute an rDG has implications on its size,

the possible updates, and the time/memory required to compute

the best update plan.

Extended dependency graphs. To support dependency updates,

we extend rDGs with a new kind of edge denoting the cost of

changing from one version to another. This is done using change
edges and a cost function associated with them.

Definition 2 (Extended Dependency Graph). An Extended
Dependency Graph (EDG)𝐺 , is a tuple (𝑁𝐿, 𝑁𝑅, 𝐸𝐷 , 𝐸𝑉 , 𝐸𝐶 , req, cost)
such that (𝑁𝐿, 𝑁𝑅, 𝐸𝐷 , 𝐸𝑉 , req) is a DG and 𝐸𝐶 ⊆ 𝑁𝑅 × 𝑁𝑅 is the
change relation (edges), and cost is a cost function associating to each
edge in 𝐸𝐶 a cost in some abstract set𝐶𝑜𝑠𝑡 (a measure of change debt
is typically used here, see in the sequel). Further, we require that there
can only be an edge (r1, r2) in 𝐸𝐶 when there is an edge (r1, l) in 𝐸𝐷
and an edge (l, r2) in 𝐸𝑉 .

Rooted extended dependency graphs. As for DGs and rooted DGs,

we have EDGs and rooted EDGs, or rEDGs. As for the computation

of rDGs, the computation of change edges is a matter of strategy.
The global strategy is to compute themaximal set of possible change

edges (i.e., all that fulfill the requirements in Definition 2). The

local strategy, on the other hand, is to compute only change edges

outgoing from the root.

Illustration. An example of an rEDG is given in Figure 1. There,

the strategy for the computation of the rDG is to include all versions

for direct dependencies. For indirect dependencies, the strategy is to

include only the versions that are required (e.g., the two versions of
l6). Even if l3, l4, or l5 had more than one version, only one would be

present in the graph. Finally, the strategy for computing the change

edges to obtain the rEDG is to include all possible change edges

for the root and none for the other nodes. Other combinations of

strategies would have produced different rEDGs.

4.2 Rooted dependency graph construction
To construct the rDG for a project 𝑝 , we rely on features provided

by Goblin [16]: the whole Maven Central dependency graph (stored

in a graph database), the possibility to extract sub-graphs using

predefined REST routes or Cypher queries [23], and the possibility

to compute and insert additional metrics on the nodes and edges of

the graphs.

A release strategy dictates where dependencies are expanded

into candidate versions: only for direct dependencies (the “local”

strategy) or for all direct and indirect dependencies (the “global”

strategy). Even with a local strategy, multiple versions can co-exist

for an indirect dependency, for instance l6 in Figure 1.

Regarding the additional metrics required in our experiments

(Section 6), we reuse Goblin’s “CVE” and “Freshness” metrics asso-

ciated with release nodes [16]. For the latter, we reuse as-is the data

computed by Goblin. For CVEs, we perform a post-treatment since

Goblin only provides us with the list of CVEs that impact a release.

To make this usable for updating, we compute the number of CVEs

in each of four criticality categories (low, moderate, high, critical)

and aggregate them using coefficients from the Fibonacci suite. We

also extend Goblin with a new popularity metric we rely on.

4.3 Rooted extended dependency graph
construction

Once the rDG is obtained, it must be extended with the edges in

𝐸𝐶 and the values in cost to integrate the cost of change in the

update process. The first step is to determine the desired change

edges. This decision is based on strategy, as previously discussed.

The local strategy involves computing change edges only between

the root and its direct dependencies, as shown in Figure 1, while

the global strategy involves computing change edges whenever a

library in the rDG has multiple versions to consider indirect change

costs. For example, in Figure 1, the global strategy would involve

adding six additional change edges: (l2-2, l6-1), (l2-2, l6-2), (l1-3,
l2-1), (l1-3, l2-2), (l5-1, l6-1), and (l5-1, l6-2).

The idea behind the computation of the cost of change is to

accept possible breaking changes in exchange for a better overall

quality of the dependencies. The cost of change is computed as

follows for each change edge. Suppose a release r that depends
on a library l and uses its version ri (as specified by req). Suppose

we want to compute the cost on the change edge between r and
another version of l, say rj. To compute the cost, we invoke the

tool Maracas [25] with: the jar file of ri, the jar file of rj, and the

source code of r. Maracas computes all breaking changes (removed

methods, changed exceptions, altered visibilities, etc.) between ri
and rj, and the impact these changes would have on the code of r
(unresolved methods, uncaught exceptions, etc.) as a set of broken
uses. The number of broken uses, i.e., the number of code locations

in r that would be impacted by the update from ri to rj, constitutes
the cost on the corresponding change edge.

It should be noted that in the case one accepts possible breaking

changes in indirect dependencies (e.g., for l5-1 (resp. l2-2) using l6-1
(resp. l6-2) instead of l6-2 (resp. l6-1) one cannot use Maracas to

compute the cost of change as it not suited to measure the impact

of indirect dependencies. Instead, we use the Japicmp tool [22].

Contrary to Maracas, Japicmp can only compute the list of breaking
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changes between two releases, not their impact on client code, so

the extracted cost of change is more pessimistic in this case.

5 LINEAR PROGRAMMING FOR
DEPENDENCY UPDATE

In this section, we present how dependency update can be encoded

as a linear program that maximizes the quality of dependencies

while minimizing the cost of change.

In a linear program [6] three elements are required: a set of

decision variables, a set of constraints, and an objective function,
where both the constraints and the objective function must be

linear. The output of a linear program is the optimal value of the

objective function (maximum or minimum) and the corresponding

values of the decision variables that achieve this optimum.

5.1 Graph-based decision variables
We use the following decision variables:

• for each library 𝑙 in 𝑁𝐿 , a binary variable vlib
l

representing

whether 𝑙 is present (equals 1) or not (equals 0) in the solution;

• for each release 𝑟 in 𝑁𝑅 , a binary variable vrel
r

representing

whether 𝑟 is present or not in the solution;

• for each change edge between release nodes 𝑟 and 𝑟 ′ in 𝐸𝐶 , a

binary variable vchg
rr
′ representing whether the edge is present

or not in the solution.

These decision variables are used in the sequel to express con-

straints that an update solution must fulfill.

5.2 Conditions & constraints for a valid update
Several conditions are required for an update solution to be correct

(whether optimal or not):

• for releases, (a) the root is present, (b) if a release (including

root) is present then all its dependencies (libraries) are present,

and (c) if a release (but for root) is present then the library it is

a version of is present.

• for libraries, if a library is present, then (d) exactly one of its ver-

sions (releases) is present and (e) at least one of its dependants

(releases) is present.

• for change edges, (f) if a change edge (𝑟, 𝑟 ′) is present then both

𝑟 and 𝑟 ′ are present, and (g) conversely, if two nodes 𝑟 and 𝑟 ′

connected by a change edge are present then the change edge

is present.

Here, “present” means that some node or edge is included in the

solution, i.e., the corresponding variable is set to 1.

The set of linear constraints that encode these conditions is the

following one, the correspondence being (1)⇔ (a), (2)⇔ (b), (3)⇔
(c) ∧ (d), (4)⇔(e), and (5)⇔ (f) ∧ (g).

1

vrel
p

= 1 (1)

∀𝑑 = (𝑟, 𝑙) ∈ 𝐸𝐷 , vlib
l
≥ vrel

r
(2)

∀𝑙 ∈ 𝑁𝐿,
∑︁

𝑙𝑖 ∈{𝑙𝑖 | (𝑙,𝑙𝑖 ) ∈𝐸𝑉 }
vrel
li

= vlib
l

(3)

1
A proof is available in our reproduction package [18].

∀𝑙 ∈ 𝑁𝐿,
∑︁

𝑟 ∈{𝑟 | (𝑟,𝑙 ) ∈𝐸𝐷 }
vrel
r
≥ vlib

l
(4)

∀𝑒 = (𝑟, 𝑟 ′) ∈ 𝐸𝐶 , v
chg

rr
′ = vrel

r
× vrel

r
′ (5)

which, using linearization, becomes ∀𝑒 = (𝑟, 𝑟 ′) ∈ 𝐸𝐶 ,

vchg
rr
′ ≤ vrel

r
(6a)

vchg
rr
′ ≤ vrel

r
′ (6b)

vchg
rr
′ ≥ vrel

r
+ vrel

r
′ − 1 (6c)

5.3 From MO-MC to SO-SC optimization
Now that we have defined what a correct update solution is, we

would like to find one solution that is indeed optimizing conflict-

ing criteria, i.e., quality and cost. Multi-Objective Multi-Criteria

Decision-Making is the field concerned with solving such prob-

lems [33]. The difficulty there stems from the presence of more

than one criterion, with some to be maximized and some to be

minimized. Multiple Pareto optimal solutions usually exist in such

a case. Therefore, many methods to solve Multi-Objective Multi-

Criteria (MO-MC) optimization problems proceed by transforming

them into a Single-Objective Single-Criterion (SO-SC) problem.

From MC to SC. We use one of these methods, called Simple

Additive Weighting (SAW) [10]. This method is based on weights
assigned by the developer to each criterion. SAW consists in com-

bining multiple criteria values into a single criterion value using

a weighted sum. Before this phase, SAW requires a normalization
phase to scale criteria values and compare the ratings of all existing

solutions. Some of the criteria are positive (w.r.t. maximizing an

objective function), i.e., the higher the value, the higher the quality.
This includes popularity metrics such as stars or downloads. Other

criteria are negative (w.r.t. maximizing an objective function), i.e.,
the higher the value, the lower the quality. This includes criteria

such as the cost of change or the vulnerability score related to

CVEs that we use in our experiments. There are several normal-

ization techniques [30]. To choose one of them, we need to take

into account the objective function (should it be maximized or min-

imized) and the nature of the criteria (positive or negative w.r.t. the

objective function).

From MO to SO. The linear programming solver attempts either

to maximize or minimize the value of the objective function by

adjusting the values of the decision variables while enforcing the

constraints. When updating dependencies, our goal is to maximize

certain quality metrics (e.g., popularity) while minimizing change

cost and other quality metrics (e.g., vulnerabilities). To make this

amenable to a SO problem, we adopt the following perspective:

we consider that quality metrics are a measure of a form of quality
debt, and thus they should also be minimized. This allows us to

focus solely on criteria to minimize. Therefore, positive metrics like

popularity are treated as negative criteria for minimization. Con-

versely, negative metrics like CVE-based vulnerabilities or release

age are treated as positive criteria for minimization. This inversion

is necessary because we are working with an objective function

that must be minimized rather than maximized.
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Normalization. We can now define our normalization process.

Since we use an objective function to be minimized, values 𝑞𝑖 for a

positive metric 𝑞 are scaled according to
𝑞max−𝑞𝑖
𝑞max−𝑞min

where 𝑞min
and

𝑞max
are, respectively, the minimal and maximal possible values

for 𝑞. For example, suppose that release popularity ranges from

10 stars to 100 stars. The normalized value for a release with 80

stars (which is quite popular) is
100−80
100−10 = 0.22. Accordingly, values

for a negative metric are scaled using 1 − 𝑞max

𝑖
−𝑞𝑖

𝑞max

𝑖
−𝑞min

𝑖

. For example,

suppose that release age ranges between 5 days and 365 days. The

normalized value for a release that is 300 days old (which is quite

old) is 1 − 365−300
365−5 = 0.82.

To increase the solver efficiency [3] and to make the possible

feedback of quality debt enhancement more legible for developers,

we apply a multiplicative factor 𝑘 = 1000 when normalizing. For

the examples above, one would thus get values of 220 and 820.

5.4 Optimization objective function
We must now establish the objective function of the linear program.

This function will be minimized to identify the optimal solution for

updating dependencies, referred to as 𝑠𝑜𝑙 . Our proposed objective

function is outlined as follows:

𝑀𝑖𝑛

( (
1 −𝑤 (𝑐𝑜𝑠𝑡)

)
×𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑠𝑜𝑙 +𝑤 (𝑐𝑜𝑠𝑡) ×𝐶𝑜𝑠𝑡𝑠𝑜𝑙

)
(7)

where, 𝑤 (𝑐𝑜𝑠𝑡) is the weight assigned by the developer to the

cost of change metric, and 1 −𝑤 (𝑐𝑜𝑠𝑡) is the weight of the overall
quality of the solution, referred to as𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑠𝑜𝑙 . This overall quality

is in turn computed using the following aggregation function:

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑠𝑜𝑙 =
∑︁
∀𝑞∈𝑄

𝑤 (𝑞) × 𝑓𝑞 (8)

where𝑤 (𝑞) is the weight assigned by the developer to the quality
metric 𝑞, and 𝑓𝑞 is the aggregation function for the computation of

the quality metric 𝑞 of solution 𝑠𝑜𝑙 . The aggregation function of any

metric depends on the nature of the criterion it seeks to aggregate.

For instance, the aggregation function for vulnerabilities related

to CVEs is defined by the sum of the vulnerability values of each

release within the solution 𝑠𝑜𝑙 , as illustrated below:

𝑓𝑞 =
∑︁
∀𝑟 ∈𝑠𝑜𝑙

𝑞(𝑟 ) × vrel
r

(9)

where 𝑞(𝑟 ) is the vulnerability value of release 𝑟 and vrel
r

is used

to prune releases that are not in the solution (remind that vrel
r

is 1

if release 𝑟 is present in the solution, else it is 0).

Similarly, the cost of change metric values must be aggregated.

The cost of change for the solution 𝑠𝑜𝑙 is computed as the sum of

the cost of change values associated with change edges within 𝑠𝑜𝑙

as follows:

𝐶𝑜𝑠𝑡𝑠𝑜𝑙 =
∑︁

∀(𝑟,𝑟 ′ ) ∈𝑠𝑜𝑙
𝑐𝑜𝑠𝑡 (𝑟, 𝑟 ′) × vchg

rr
′ (10)

again, with vchg
rr
′ being used to prune change edges that are not

present in the solution.

5.5 Retrieval of the updated set of dependencies
Given the solution, the optimal set of (direct and indirect) depen-

dencies correspond to all nodes r in 𝑁𝑅 such that vrelr =1 in the

solution. Yet, a specificity of the Maven package manager is that

whenever there are several paths from the project to some library

l, the shortest path is used to discriminate the version of l to be

selected. In Figure 1, for example, there are two paths from the root

to l6: one ending with l5-1, requiring version 2, and one ending

with l2-2, requiring version 1, the latter being the shortest. This

means that if the best solution is (l1-3, l2-2, l5-1, l6-2), one cannot
just update 𝑝’s dependency file using l1-3 instead of l1-1 and l2-2
instead of l2-1 because l6-1 would be used and not l6-2. A simple

solution to this is to update 𝑝’s dependency file with all releases in

the solution, here l1-3, l2-2, l5-1, and l6-2. Although this approach

may lock the versions and complicate the dependency file by adding

indirect dependencies to the root, it ensures the quality we commit

to.

6 EXPERIMENTAL EVALUATION
In this section, we report on the empirical evaluation of our ap-

proach, driven by the following research questions:

RQ1 (correctness) Does our approach generate correct updates?

For zero-cost updates, does our approach generate updates that

compile and pass tests?

RQ2 (effectiveness) Which quality gain and update cost can be

expected when using our approach and how does it compare to

naive approaches?

RQ3 (performance and scalability) Howdoes our approach per-

form on different graph sizes and with different strategies?

In this evaluation, we compare our solution to three naive ap-

proaches to update direct dependencies that are typically imple-

mented in popular dependency management bots. The max version
approach (MMP) always picks the latest release, the max version
with same major approach (mMP) picks the latest release within

the same major version, and the max version with same major and
minor (mmP) picks the latest release within the same major and

minor versions. The data and results discussed in this section are

available in our replication package [18].

6.1 Subject application & methodology
Choice of metrics. Different quality metrics can be used to mea-

sure the quality of releases, each representing some quality aspect.

Although our approach is open-ended and can accommodate new

metrics beyond the ones discussed in this paper, we consider the

following quality metrics in our evaluation. We remind the reader

that these are normalized before being fed to the LP solver.

CVEs Our vulnerability score is based on the set of CVEs that (di-

rectly) impact a release. This set, denoted as𝐶r for a release r, is
computed using Goblin. To obtain the score, we use the formula∑
𝑐∈𝐶 𝑘 (𝑐)×𝑛𝑏 (𝑐,𝐶r) where𝐶 = {𝑙𝑜𝑤,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, ℎ𝑖𝑔ℎ, 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙}

denotes the criticality of a CVE, 𝑛𝑏 (𝑐,𝐶r) counts the CVEs of
criticality 𝑐 in 𝐶r, and 𝑘 is a function associating a coefficient

in the Fibonacci suite (2, 3, 5, and 8) to each element 𝑐 in 𝐶 .

Freshness Freshness [7] materializes the age of a release. Given

some release 𝑟 of a library 𝑙 , freshness can be computed using
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Table 1: Configurations used for experiments. F = freshness,
P = popularity, CVE = vulnerability score.

id weights cost strategy

F P CVE for releases for cost

cfg1 1.0 – – 0.0 global local

cfg2 1.0 – – 0.5 global local

cfg3 1.0 – – ≤ 0.0 global local

cfg4 1.0 – – ≤ 0.0 local global

cfg5 0.4 0.4 0.2 0.5 global local

cfg6 0.4 0.4 0.2 0.5 local local

the release date of 𝑟 and a more recent date of reference, e.g.,
the present day, the day the ecosystem information was last

extracted, or the date of the latest release of 𝑙 . In our experiments,

we use the latter which is directly computed by Goblin.

Popularity There are several possibilities for popularity too [34]:

“stars” on social development forges, number of downloads, etc.
The former requires all libraries in the ecosystem to be present

on the social network, which is not always the case. Further,

stars and other metrics often apply to libraries, not releases. The

number of downloads is influenced by inflation issues [20] and

the passage of time, with older releases naturally accumulating

more downloads. A mitigation for the first issue is to use the

number of dependants and a mitigation for the second issue

is to use a time window. Thus, in our experiments, we use the

number of dependants in the ecosystem over a 1-year window

and have extended Goblin accordingly.

Configurations. Our approach exposes a high degree of variabil-

ity regarding graph construction strategies and the weights one can

assign to the quality metrics. To evaluate our approach accurately

in different situations, we define six representative configurations,

depicted in Table 1. Each configuration specifies weights for each of

the quality metrics, as well as for cost. Although our tool supports

expressing an upper bound on the number of vulnerabilities in the

solution, we do not evaluate it here. Similarly, the cost metric allows

expressing both weights (e.g., 0.5 for cfg2) and hard constraints

(e.g., ≤ 0.0 in cfg3, which forces the cost of the solution to be zero).

While weights and constraints can be mixed, we do not evaluate

this scenario here. The last two columns specify the strategies used

in the configurations. For releases, it means either developing al-

ternatives to direct dependencies only (local) or for all libraries in

the graph (global). For cost, it means computing change edges and

costs either only at the root level (local) or whenever a library has

more than one version (global). Costs are computed either using

Maracas at the root level or Japicmp at any other level. Figure 1

is an example where a local strategy is used for both releases and

costs. With a global strategy for releases, possibly more versions

of l3–l6 would be present. With a global strategy for costs, there

would be change edges between the two dependants of l6 and the

two versions of this library (hence, four more change edges). In ad-

dition, all the configurations here use a strategy that only considers

releases newer than the ones currently used in the project to be

updated, i.e., our approach will never downgrade a dependency.

Table 2: Demographics of our dataset of 107 Java projects

Q1 Q2 Q3 min max

𝑝’s direct dependencies 4.5 7 9 2 22

releases (𝑁𝑅 ) 138 336 2771 16 39474

libraries (𝑁𝐿) 12.5 40 134 4 960

dependency edges (𝐸𝐷 ) 114.5 394 7066 9 141429

versions edges (𝐸𝑉 ) 137 335 2770 15 39473

We use configurations cfg1 to cfg4 for RQ1 and RQ2 under vari-

ous update strategies. These configurations only use freshness as a

quality metric to provide a fair comparison with naive approaches

that only aim to update dependencies to the latest available version.

cfg1 does not account for cost and is thus the one closest to naive

approaches. cfg2 gives an average relevance to cost. cfg3 enforces

the absence of cost for direct changes. cfg4 enforces the absence

of cost for both direct and indirect changes. We use configurations

cfg5 and cfg6 for RQ3. These two configurations exploit the full

potential of our approach by combining different quality metrics

and weights with different strategies.

Dataset. To evaluate our approach, we reuse the dataset of 462
well-tested Java projects from Hejderup and Gousios [14]. Addition-

ally, we filter projects that cannot be cloned (8), lack a root pom.xml

file (13), or feature multi-module pom.xml hierarchies which are

not supported in our tool (216). We also filter stall projects that

have not been updated since 2020 (77), that cannot be analyzed

by Maracas (8), that have missing direct dependencies (14), or that

take prohibitively long time to analyze (19). In the end, we obtain a

subset of 107 well-tested and active Java Maven projects that can

be analyzed with our tools. Table 2 details descriptive statistics

of the resulting dataset in terms of rEDG size for cfg1 (different

configurations yield different graph sizes).

Comparing solutions. Comparing solutions requires a common

referential. The space of all possible solutions, i.e., the rEDG and the

normalized values for the different quality and costmetrics, play this

part. As an illustration, Figure 1 contains both the solution obtained

with our approach and other solutions that could be obtained with

naive strategies such as using the most recent releases of the direct

dependencies ({l1-3, l2-2, l5-1, l6-1} due to Maven’s shortest path

semantics) or using the most recent zero-cost releases ({l1-2, l2-1,
l4-1, l5-1, l6-2} assuming that cost p/l1-1/l1-2 is zero and cost p/l1-
1/l1-3 and cost p/l2-1/l2-2 are non-zero). To compute the aggregated

quality value, the cost value, and the global value of a solution is

then just using the formulas𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑠𝑜𝑙 ,𝐶𝑜𝑠𝑡𝑠𝑜𝑙 , and their weighted

sum, as given in Section 5.4. This does not require the use of the

solver, only the rEDG and normalized values for its release nodes

and change arcs.

Methodology. For RQ1 (correctness), we select each project that

can be successfully compiled and tested in our environment before

updating dependencies. For these projects, we launch our tool with

configurations 1 to 4 to retrieve the proposed updates and compare

them with those obtained from the three naive approaches (MMP,

mMP, and mmP). We update the pom.xml file according to the

solution before building and testing the project again to check

whether compilation and tests are still successful.
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For RQ2 (effectiveness), we compare the quality and cost ob-

tained from our approach and the three naive ones. All the values

given in this section are normalized on the same graph so that they

can be compared.

Finally, for RQ3 (performance and scalability), we run our tool

with cfg5 and cfg6 on all projects within our dataset. For each

execution, we retrieve various operational metrics such as execu-

tion times, graph size, memory usage, and the obtained solutions.

Between each launch, we clean the Goblin database to avoid mem-

oization and caching biases between subsequent runs.

Experimental setup and reproducibility. All the experiments pre-

sented in the rest of this section were carried out on a Windows

Server 2019, 64 GB memory, 8 CPUs Intel(R) Xeon(R) CPU E7-8880

v4 @2.19GHz on a Docker instance using the openjdk:17-jdk image

(Oracle Linux 8). The Maven Central dependency graph is the ver-

sion dated April 12, 2024 [15] and the CVE database is dated May

07, 2024 [18]. We used version 1.0.0 of our GoblinUpdater tool [17]

in the experiments, version 2.1.0 of Goblin, version 0.5.0 of Maracas,

version 0.17.2 of Japicmp, and version 9.8 of OR-tools.

6.2 Results
RQ1 (correctness). To address post-update correctness, it is

mandatory to use projects that compile and pass tests before any

update attempt. Among the 107 projects in our dataset, only 48%

compiled and passed tests in our Docker environment, yielding a

total of 51 projects. This is due to several factors, e.g., Java version,
OS compatibility, and license requirements. The difficulty of repro-

ducing passing builds is a common issue that has been reported in

other studies with similar failure rates [12]. We excluded two more

projects because cfg4, which calculates transitive costs, could not

be completed in two days. This highlights the substantial computa-

tional resources required to implement a full-cost approach. The

analysis in this section considers the remaining 49 projects.

Figure 2 shows the percentage of projects that still compile and

pass tests after the update suggested by naive approaches and

different configurations of our approach. Note that, for cfg3, our

approach did not find a zero-cost solution for 17 projects, so their

solution graphs remain unchanged and the projects continue to

compile and pass tests successfully. The same situation arises for

28 projects in configuration cfg4. We can see that the local zero-

cost approach (cfg3) does not always yield a solution that compiles

and passes tests. This is because this configuration attempts to

update all dependencies in the graph (not just direct dependencies

like naive approaches) but only considers the cost associated with

direct dependencies. To maximize the chances of finding a zero-cost

solution, we use cfg4, which combines Maracas to compute the cost

for direct dependencies and Japicmp to compute the cost for indirect

dependencies. With this zero-cost configuration, we achieve better

results than any other approaches. However, it does not achieve

100% success due to arbitrary constraints in the configuration of one

project that arbitrarily enforce specific versions and licenses to be

used. This stresses the importance of taking license consistency into

account when updating software dependencies. It is also interesting

to note that naive approaches that update direct dependencies

to the latest release within the current major version or current

major/minor version also yield projects that cannot be compiled or

Figure 2: Correctness of the solutions generated by different
approaches and configurations

Figure 3: Freshness of the solutions generated by different
approaches and configurations

tested. This confirms that one cannot fully trust semantic versioning

within the Maven ecosystem [25].

RQ2 (effectiveness). The data presented in this section is de-

rived from the same 49 projects discussed above, illustrating the

correlations among compilation, testing, quality, and cost. cfg1, cfg2,

and cfg3 share identical graphs and metrics, thus ensuring uniform

normalization in terms of quality and cost values. In contrast, cfg4

employs a different graph, and naive approaches lack quality and

cost values. To standardize the normalization process for all solu-

tions and enable comparison, we have applied normalization to

cfg4 and the naive approaches’ graphs using values from the graph

of one of the earlier configurations.

Figure 3 shows the varying levels of freshness across solutions

generated by different approaches. Since quality is assessed over

the entire graph, even the naive approach of setting all direct depen-

dencies to their most recent version fails to deliver optimal quality

in the majority of cases. This highlights the importance of taking

transitive dependencies into account when assessing the quality

of software dependency graphs. Configuration cfg1 consistently

yields solutions of maximum quality as it ignores cost constraints.



Balancing theQuality and Cost of Updating Dependencies

Figure 4: Cumulative cost of change of the solutions gener-
ated by different approaches and configurations

This approach selects the most recent versions for all nodes in the

graph, thereby ensuring the highest possible quality. Configuration

cfg2, which maintains a quality/cost balance of 50%, provides solu-

tions of average quality and cost. Finally, configurations cfg3 and

cfg4 prioritize zero-cost solutions and are paying the price in terms

of quality.

Figure 4 shows the varying costs associated with the solutions

generated by different approaches. Here, the results are normalized

based on the local cost metrics between root and direct dependen-

cies. Figure 4 presents the aggregate costs for updating projects to fit

with the new direct dependencies, as calculated by Maracas, across

different approaches. Configurations cfg3 and cfg4 consistently pro-

vide solutions with the minimum cost because they constrain the

solver to achieve zero-cost solutions. Configuration cfg1 gives the

same cost as the naive MMP method, as the cost is only calculated

locally. The same direct dependencies are used, with the transitive

dependencies being the point of variation. Finally, the balanced

configuration cfg2 yields update costs between mMP and MMP but

delivers much better quality (Figure 3). Our different configurations

deliver results that are in line with expectations regarding quality

and cost. It is up to the developer to select the optimal configuration

to meet specific requirements by adjusting the tool’s parameters

accordingly.

RQ3 (performance and scalability). In this experiment, we

use the entire dataset of 107 projects as successful compilation and

testing of the projects is not required. We start by comparing the dif-

ference in expected quality gain between a global (cfg5) and a local

(cfg6) approach. As a reminder, the local approach considers all ver-

sions of direct dependencies, while the global approach considers all

versions of (possibly transitive) dependencies. Therefore, the global

approach considers additional solutions but increases the size of

the solution graph. Figure 5 shows the distribution of initial project

quality debt and that of a local and a global approach. Surprisingly,

the difference in quality between the local and global approaches is

small. The local approach delivers on average a reduction in quality

debt of 57% and the global approach 60%.

Let us now compare the distribution of average execution time

(Figure 6.a) and memory used (Figure 6.b) for these two approaches.

Even if memory consumption does not vary significantly between

the two approaches, the execution time differs greatly, going from

Figure 5: Quality debt before and after update

(a) Execution time (b) Max memory usage

Figure 6: Time and memory for updating projects

an average of 19 min locally to 120 min globally (+533%) when

considering outliers. The global approach yields much longer calcu-

lation times for very little potential quality benefit. Therefore, we

believe that the average user should most likely opt for the local

approach, though the global approach may still be useful in certain

scenarios.

Figure 7 dives deeper into different phases of our approach. In

the global case, the generation of the graph and the solving phase

dominate execution times. The graph generation includes the cre-

ation of the rDG and the weaving of metrics onto nodes and edges

(realized using Goblin). In fact, the popularity metric consumes a

lot of time as it requires retrieving the associated library, identify-

ing the dependents using the appropriate version, and retrieving

these dependents to apply the 1-year time window. This process is

extremely time-consuming for popular libraries. In normal circum-

stances, Goblin memoization would help greatly, but we deactivated

it in our experiments to ensure fair comparisons. The computation

time of our approach varies greatly with the chosen quality metrics

and their individual computation times. Also, solving time repre-

sents a significant cost, and as we would expect, it increases with

the size of the graph and the number of considered constraints. The

generation of change edges and the computation of costs remain

consistent in terms of time across both configurations. Since both
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Figure 7: Execution time distribution

(a) Time (log) / direct dependencies (b) Time (log) / graph nodes

Figure 8: Relation between size and computation time

configurations rely on a local cost, they produce the exact same

change edges.

Finally, we look at how to estimate the computation time of

our approach on a project. In Figure 8.a, we can see that the num-

ber of direct dependencies does not significantly impact the total

computation time. On the other hand, we can see from Figure 8.b

that the total number of nodes in graphs does. This means that,

unfortunately, computation times cannot be reliably estimated from

the number of direct dependencies. To conclude, our tool’s execu-

tion times mainly depend on the size of the graph, the number of

constraints in the problem, and the chosen quality metrics.

7 THREATS TO VALIDITY
For the construction of our threats to validity, we follow the struc-

ture proposed by Wohlin et al. [31].

7.1 Internal & construct validity
In our approach, we operate under the hypothesis that the external

tools we rely on (Goblin, Maracas, Japicmp, and OR-tools) yield

accurate results and that the ecosystem dependency graph and

metric values associated with release nodes, provided by Goblin, are

both complete and accurate. This is reasonable as these tools have

been independently evaluated by other researchers. Aswe used tests

to check for update correctness, it should be noted that Hejderup

and Gousios have shown that tests may have a low coverage of

calls to dependencies (58% for calls to direct dependencies and 21%

for calls to indirect ones [8, 14]). To mitigate this risk, we have

used a dataset of well-tested projects. Furthermore, for calls to

direct dependencies, we alleviated the issue with our cost of change

computation using Maracas, which plays the role of the Updatera

tool proposed in [14] for finding semantic breaks but goes further

in being integrated within the update process itself. Yet, this still

means that correctness computed with tests is a lower bound [8].

Our approach assumes that dependency versions are fixed, thereby

excluding version ranges (e.g., [1.0, 2.0)). This is not an issue in

the Java/Maven context since the use of dependency ranges is very

rare. To verify this, we have examined the whole Maven Central

dependency graph as of January 26, 2024. It revealed that only 1.12%

of dependencies (i.e., 1,173,629 dependencies out of 104,949,615)

employ ranges. Our tool uses a POM file to infer the list of direct

dependencies of a project. The adaptation to other file formats (e.g.,
Gradle’s build files) should be straightforward. At present, the cost

of change is based on counting the number of broken uses iden-

tified by Maracas and/or Japicmp. This can be simplistic, as one

can easily imagine that the cost associated with a renamed method

differs from that of a removed method, or that 𝑛 identical changes

yield a lesser cost compared to 𝑛 distinct changes. Enhancing the

cost function is a priority for future evolution perspectives. Finally,

for the experimental evaluation part, we have discarded certain

projects from the study that were prohibitively long to analyze,

thus reducing average calculation times.

7.2 External validity
Our approach does not account for libraries that are not hosted on

Maven Central, such as those available through GitHub Package

or proprietary dependencies internal to a company. In practice,

Goblin could be extended for this, provided specific miners are

developed. While our approach is adaptable to different software

ecosystems, the primary concerns regarding generalization stem

from the Java/Maven specifications. First, in contrast with Maven,

ecosystems such as npm allow for multiple versions of a library

to coexist in a project. The LP encoding can be modified for this,

relaxing the single library version constraint. The absence of con-

sideration for version ranges may be a challenge when applying

our tool to ecosystems like npm where version ranges are used

extensively.

8 DISCUSSION
In this section, we present lessons learned in the use of our Gob-

linUpdater tool. Our approach and tool offer different degrees of

freedom:

• DF1: the strategy to retrieve an rDG from a project 𝑝 , i.e., where
to compute sets of candidate versions (locally at the root di-

rect dependencies or globally) and how to compute them (all

versions, more recent versions),

• DF2: the strategy to obtain an rEDG from an rDG, i.e., where to
compute change edges (locally at the root direct dependencies

or globally) and how to estimate cost (Maracas and/or Japicmp),

• DF3: where to compute the quality metrics (on the Goblin side,

on the GoblinUpdater side, or both),
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• DF4: the chosen set of quality metrics, associated weights, and

possible hard constraints for CVEs and cost.

We observed that global and version-exhaustive strategies for

DF1 are costly, while using a local strategy and limiting the set

of versions of a library to the ones newer than the current one is

more efficient. This is reasonable considering the use one would

make of our tool, a notable counter-example being, e.g., the recent
xz backdoor (CVE-2024-3094) which required downgrading from

versions 5.6.0/5.6.1 to an earlier one.

The number of change edges selected by DF2 is also an important

parameter. The computation of change edges is quite efficient. Yet,

for each of them a JAR file must be retrieved (which can be done

once, offline) and Maracas or Japicmp has to check for all possible

breaking changes, which is costly.

Metrics can be computed, following DF3, either on the Goblin

side, on the GoblinUpdater side, or a combination of both. The

first solution requires forking and extending the Goblin tool, but

then the memoization mechanisms available in Goblin speed up the

computation of metrics on releases that have already been analyzed.

This is the solution we have used for our popularity metric. The

second solution is easier but does not benefit from Goblin’s Neo4J-

based algorithms nor from memoization. The last one, where basic

“atoms” are computed by Goblin and metrics are computed on top

of these provides a good balance.

DF4 enables a personalized update solution with selected met-

rics and their respective weights chosen either at the organization

or developer level. This choice is also connected to DF3: if a par-

ticular metric is of interest, one could incorporate it in Goblin to

benefit from memoization. Finally, RQ1 made clear the importance

of license consistency. To account for this in updates, one could

select a set of compatible acceptable licenses, check each depen-

dency against them, and set a limit constraint on the solution (as is

currently done for CVE and cost).

9 CONCLUSION
Updating dependencies is a crucial practice in software develop-

ment for projects relying on external libraries. While some develop-

ers might resist updating their project’s dependencies to avoid the

cost of change, others might prioritize finding a middle ground be-

tween the immediate costs of updating and the long-term benefits

of maintaining up-to-date dependencies. This paper advocates for

balancing the benefits of maintaining up-to-date dependencies and

the costs of updating. We introduce a multi-objective optimization

approach to the dependency update dilemma, aiming to identify the

most beneficial update solution based on criteria such as popularity,

freshness, vulnerability, and the minimization of breaking changes.

We implement our optimization approach in a new tool Goblin-

Updater, available online [17], and show using a dataset of 107

well-tested open-source Maven projects that it successfully finds

update solutions and outperforms the naive approaches typically

implemented in dependability bots.
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