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A B S T R A C T

This paper proposes a dynamic traffic-electric power network model to investigate the interactions between
the power distribution network (PDN) and the electric road network (ERN), whose operations are linked via
the local marginal electricity price and the electric vehicles (EVs) charging demand. For the ERN, a novel
formulation based on the link transmission model is proposed to: (1) accommodate the critical features of EVs
and fast charging stations (FCSs), such as EVs with different driving ranges, initial states of charge of EVs,
number of chargers and their charging power in a FCS; (2) explicitly model the charging process of EVs; (3)
solve the optimal dynamic traffic assignment problem considering the mix of EVs and gasoline vehicles. For
the economic operation of the PDN, an alternating current optimal power flow model is solved to minimize
the electricity expenditure. Moreover, we propose mathematical algorithms to describe the interdependent
and interactive schemas between the two networks by modeling the decentralized and centralized decision-
making environments. The proposed modeling framework is capable of capturing the dynamic interactions
that are not possible in classical traffic models. The illustrative traffic-power system shows that decentralized
decision-making always results in losses of operational cost and renewable integration, compared to centralized
decision-making; however, these losses can be greatly mitigated by having ERN and PDN operators share
information about the planned EV charging demand and the projected locational marginal electricity price.
1. Introduction

Electric vehicles (EVs) are increasingly deployed worldwide (In-
ternational Energy Agency (IEA), 2020), due to their potential con-
tribution to reducing green house gas emissions, increased economic
viability and convenience for the users. However, this brings new
challenges to both the transportation and power systems. EV drivers
need to consider the charging cost and time at different charging
stations, when planning their trips. Traffic patterns are affected by the
electricity price and the locations of fast charging stations (FCSs). On
the one hand, the spatial and temporal charging demand resulting from
the EVs charging patterns impacts the distribution of power flow, which
challenges the operation of the existing power systems. On the other
hand, this provides opportunities to efficiently operate power systems
through vehicle-to-grid exchanges which could stabilize the power flow
under the conditions of increased integration of renewable energy.
In this setting, the power systems and the electrified road networks
(ERNs) interact with each other through the dynamics of electricity
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price and charging demand. Such interplay brings challenges to control
and operate the two systems, but also brings opportunities to promote
integration and communication between each other.

Investigating how to model, operate and control the coupled ERNs
and power systems considering EV charging has gained attention in
recent years (Chen & Deng, 2024; Ding, Teng, Sarikprueck, & Hu, 2020;
Teng, Ding, Hu, & Sarikprueck, 2020; Zheng, Niu, Shang, Shao, & Jian,
2019). Some of the main challenges addressed in the literature are how
to properly model the physical features of the coupled transportation
systems and power systems, as well as, modeling EVs and EVs supply
equipment.

Some studies only consider the ERNs, ignoring the technical
constraints coming from the power systems. Their objectives are
mainly of optimizing allocation of FCSs (Bai et al., 2022; Chen, Qian,
Miao, & Ukkusuri, 2020; Kchaou-Boujelben & Gicquel, 2020; Liu,
Zou, Chen, & Long, 2021; Vosooghi, Puchinger, Bischoff, Jankovic, &
Vouillon, 2020; Yazdekhasti, Jazi, & Ma, 2021), charging navigation
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Nomenclature

Indices

𝑎 index of links
𝑡 index of periods
𝑠 index of destinations
𝑐 index for classes of EVs
𝑒 index for energy levels of EVs

The electrified road network sets

 set of arcs
 set of nodes
𝐴(𝑖) (𝐵(𝑖)) set of links whose tail (head) node is 𝑖
𝑅 set of source arcs
𝑆 set of sink arcs
𝐺 set of general arcs
𝐶 set of charging arcs
 set of periods

Parameters

𝜙 time value
𝑝𝑒𝑣𝑎 charging power of charging link 𝑎
𝑁𝐶𝑎(𝑡) number of chargers at charging link 𝑎

during period 𝑡
𝛿 period length
𝐿𝑎 physical length of link 𝑎
𝑘𝑗𝑎𝑚∕𝑞𝑚𝑎𝑥∕𝑣𝑓 jam density/ maximum flow/ free-flow

speed
𝑤 backward shock-wave speed, 𝑤 = 𝑞𝑚𝑎𝑥 ⋅

𝑣𝑓∕(𝑞𝑚𝑎𝑥 − 𝑘𝑗𝑎𝑚 ⋅ 𝑣𝑓 )
𝛼𝑡𝑎 average charging speed for charging link 𝑎

during period 𝑡, 𝛼𝑡𝑎 = 𝑝𝑒𝑣𝑎 ∕(𝜂 ⋅ 𝑣𝑓 )
𝑓 𝐼
𝑎 (𝑡) inflow capacity of link 𝑎 during period 𝑡

𝑓𝑂
𝑎 (𝑡) outflow capacity of link 𝑎 during period 𝑡

𝐷𝐺𝑠
𝑎(𝑡) cumulative gasoline vehicle travel demand

between the entry of origin link 𝑎 and
destination 𝑠 at the end of period 𝑡

𝜈𝑎 free-flow travel time on link 𝑎, 𝜈𝑎 = 𝐿𝑎∕(𝛿 ⋅
𝑣𝑓 )

𝛽𝑎 travel time required by the backward shock
wave from the exit to the entry of link 𝑎,
𝛽𝑎 = 𝐿𝑎∕(𝛿 ⋅𝑤)

Variables

𝑈𝑎(𝑡) cumulative number of vehicles that enter
link 𝑎 by the end of period 𝑡

𝑉𝑎(𝑡) cumulative number of vehicles that leave
link 𝑎 by the end of period 𝑡

𝑈𝐺𝑎(𝑡) cumulative number of GVs that enter link 𝑎
by the end of interval 𝑡

𝑈𝐺𝑠
𝑎(𝑡) cumulative number of GVs that enter link 𝑎

to destination 𝑠 by the end of period 𝑡
𝑉 𝐺𝑎(𝑡) cumulative number of GVs that leave link 𝑎

by the end of interval 𝑡
𝑉 𝐺𝑠

𝑎(𝑡) cumulative number of GVs that leave link 𝑎
to destination 𝑠 by the end of period 𝑡

𝑈𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) cumulative number of EVs of class 𝑐

with energy level 𝑒 that enter link 𝑎 to
destination 𝑠 by the end of period 𝑡
2 
𝑉 𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) cumulative number of EVs of class 𝑐

with energy level 𝑒 that leave link 𝑎 to
destination 𝑠 by the end of period 𝑡

𝑥𝑠,𝑒𝑎,𝑐 (𝑡) occupancy of EVs of class 𝑐 with energy
level 𝑒 at charging link 𝑎 during period 𝑡

𝑥̂𝑠,𝑒𝑎,𝑐 (𝑡) occupancy of EVs of class 𝑐 with the up-
dated energy level 𝑒 at charging link 𝑎
during period 𝑡

The electric vehicle sets

 set of electric vehicle classes

Parameters

𝐵𝑐 battery capacity of EVs of class 𝑐
𝐸𝑐 maximum energy level of the EVs of class 𝑐
𝜂 energy consumption of EVs
𝜌𝑎 energy levels required to traverse link 𝑎,

𝜌𝑎 = 𝐿𝑎∕𝜂
𝐿𝑚𝑎𝑥
𝑐 driving range of EVs of class 𝑐, 𝐿𝑚𝑎𝑥

𝑐 = 𝐵𝑐∕𝜂
𝑐 set of energy levels for the EVs belonging to

class 𝑐, 𝑐 = 𝐿𝑚𝑎𝑥
𝑐 ∕(𝛿 ⋅ 𝑣𝑓 )

The power network sets

𝑁 set of buses
𝐿 set of distribution lines
𝛤 (𝑗) Successor set of bus 𝑗

Parameters

𝑎𝑗 , 𝑏𝑗 Energy production cost coefficients at bus 𝑗
𝜇(𝑡) Contract electricity price with the main grid

in period 𝑡
𝑝𝑟𝑎𝑚𝑝𝑗 Ramp limits of generators at bus 𝑗

Variables

𝑝𝑔𝑗 (𝑡) Active power generation at bus 𝑗 during
period 𝑡

𝑝𝑑𝑐𝑗 (𝑡) Charging load at bus 𝑗 during period 𝑡
𝑃𝑖𝑗 (𝑡) Active/Reactive power flowing from buses 𝑖

to 𝑗 during period 𝑡

Acronym

EVs Electric Vehicles
FCSs Fast Charging Stations
ERN Electrified Road Network
PDN Power Distribution Network

(Erdoğan, Tural, & Khoei, 2023; Qian, Shao, Wang, & Shahidehpour,
2019) and routing (Alqahtani, Scott, & Hu, 2022; Basso, Kulcsár,
Sanchez-Diaz, & Qu, 2022; Hiermann, Hartl, Puchinger, & Vidal, 2019;
Tahami, Rabadi, & Haouari, 2020; Zhang et al., 2022), as well as
simulating coordinated and uncoordinated charging modes (Zhang,
Wang, & Qu, 2021). Some studies, instead, only consider detailed
power systems modeling including EVs charging load, without con-
sidering realistic features of ERNs. Some of the topics considered can
be summarized as: (1) Investigating the impacts of EVs on power
systems in terms of safety (Wang, Dehghanian, Wang, & Mitolo, 2019),
reliability (Hariri, Hejazi, & Hashemi-Dezaki, 2021; Li, Zhao, Zhang,
Ye, & He, 2024), normal operation (Tang & Wang, 2016), among others.
(2) Long-term planning problems (Quddus, Kabli, & Marufuzzaman,
2019), e.g., optimizing the allocation of smart grid components and
charging stations (Tran, Keyvan-Ekbatani, Ngoduy, & Watling, 2021);
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reinforcing power systems capacity to enable the massive deployment
of solar photovoltaics, electric heat pumps and EVs, among others. (3)
Coordinating EVs charging (He, Liu, & Song, 2020), such as, minimizing
the number of coordinated EVs to mitigate voltage unbalance (Islam,
Lu, Hossain, & Li, 2020); coordinating EVs charging while maintaining
the voltage deviation within acceptable power quality limits (Zahed-
manesh, Muttaqi, & Sutanto, 2020); managing day-ahead electricity
procurement and real-time EVs charging to minimize the total oper-
ating cost (Liu et al., 2018). In the majority of cases, the spatial and
temporal charging demand are required to be estimated statistically
from existing data, which is, however difficult to access.

Other studies consider the coupled power systems and ERNs, and in-
vestigate the interdependency between the two systems. The literature
presents traffic-power models typically comprising three components:
a dynamic traffic assignment (DTA) model or a static traffic assignment
(STA) model, an electric power model, and interdependent/dependent
mechanisms. Several frameworks (Shin, Choi, & Kim, 2019; Wang,
Fang, & Zio, 2021; Yang, Guo, Xu, & Sun, 2021) have been proposed
to capture the interaction of traffic-power systems, with most models
incorporating electricity price, EV charging or discharging behaviors,
and traffic tolls to regulate the coupled systems. However, understand-
ing the precise nature of interactions between these coupled systems
remains an open issue. In modeling the electric power system, alter-
nating current (AC) (Lv, Wei, Chen, Sun, & Wang, 2021; Xie, Xu,
& Zheng, 2021) or direct current (DC) (Wei, Tang, & Hong, 2021;
Yan, Zhao, & Guan, 2024; Zhao, Yan, Liu, & Ding, 2022) power flow
models are commonly utilized. DTA models consist of a route choice
model (i.e., assignment mechanism) and a dynamic network loading
(DNL) model for propagating traffic flow through assigned routes in
the network. System optimal (SO) and dynamic user equilibrium (DUE)
assignment are two typical traffic assignment principles in the context
of dynamic traffic-power models. Exit functions (Xie et al., 2021), link
performance functions (Lv et al., 2021), and discrete versions of the
continuum kinematic wave model (e.g., cell transmission models (Wei
et al., 2021) and link transmission models (Yan et al., 2024)) are
three main approaches for describing traffic flow propagation within an
analytical DTA framework in relation to traffic-power dynamics. How
to accommodate the critical characteristics related to EVs and charging
infrastructures into traditional DTA models is a primary concern in the
existing literature.

In this paper, we consider that the traffic flow within the ERNs and
the power flow are interdependent through the charging demand at
each FCS and the associated locational marginal price (LMP). Within
this interaction process, from an ERN operator’s perspective, the dy-
namic electricity price (i.e., LMP) and the capacity of FCSs are impor-
tant parameters. The former is obtained from power systems and the
latter is a key physical feature of an ERN. Both can influence the route
choice of EV drivers and non-EV drivers, since EV drivers share the
limited capacity of an FCS, and EVs and non-EV drivers share the lim-
ited capacities of roads. Therefore, traffic flow patterns are affected by
both factors and, further impact the distribution of charging demand.
From a power system operator’s perspective, the accurate data of the
spatial and temporal charging demand from an ERN can help to manage
electricity production and balance the power flow of the systems. The
spatial and temporal charging loads affect the power flow distribution
subject to power system constraints, such as limitation of the grid and
generator capacities, as well as ramp limits of generators. The power
flow distribution, in return, influences the LMP, which would further
affect traffic flow distribution. In this way, the ERN and power system
interact with each other and both FCSs and EVs play critical roles in
these interdependent traffic-power systems. The former is the interface
connecting the ERN and power system, and the latter acts as the power
prompting the interplay between traffic and power flow. Therefore,
properly modeling the detailed physical features of EVs and FCSs is
important to adequately study the interaction between the ERN and

the power system. Here, we list some of the critical features that need t

3 
to be modeled when investigating the interdependency of traffic-power
systems and how they have been considered in the literature. A detailed
comparison of these features in the literature is listed in Table 1.

Dynamics (feature of the coupled systems): A dynamic traffic-
ower system model is required due to: (1) the spatial and temporal
ature of EVs; (2) the time-varying evolution of traffic flow; (3) the
amp limits of power generators. Most existing studies only considered
static model (Geng et al., 2019; Wang, Shahidehpour, Jiang, & Li,

018; Wei, Wu, Wang, & Mei, 2018; Zhang, Hu, & Song, 2020), whereas
ecently increasing attention has been paid to modeling dynamic (Rossi,
glesias, Alizadeh, & Pavone, 2019; Zhou, Zhang, Guo, & Sun, 2021)
r semi-dynamic (Lv, Wei, Sun, Chen, & Zang, 2019) traffic-power
ystems.
Charging time (feature of EV): It is part of the travel time cost,

hen the time value is considered. Refs. Geng et al. (2019), Xie, Hu,
ang, and Chen (2020) assumed that all EVs, had (A1) the same

xogenously given fixed charging time. This assumption is marked as
A1).
Charging demand (feature of EV): It influences the charging cost

or EV drivers, and influences power production as well as power
low distribution. Refs. Geng et al. (2019), Wang et al. (2018), Wei
t al. (2018), Xie et al. (2020) assumed all EVs had (A2) the same
xogenously given fixed charging demand; Refs. Lv et al. (2019), Wang
t al. (2018), Zhou et al. (2021) assumed the charging demand was
A3) only related to traffic flow through the FCSs without considering
he real charging needs. It could cause the EVs to charge multiple
imes without considering the remaining battery capacity leading to an
verestimation of the charging demand.
Driving range/Battery capacity (feature of EV): It influences the

umber of times an EV has to recharge during a trip.
Initial state of charge (SoC) (feature of EV): It influences whether

t is required to recharge an EV at the beginning of the time horizon. If
t has, the initial SoC of an EV influences which FCSs this EV is able to
each without running out of battery. Ref. Wei et al. (2018) assumed
A4) an EV was able to reach any FCS. This assumption may result in
he assigned charging point being beyond the remaining driving range
f an EV.
Mix of gasoline vehicles (GVs) (feature of an ERN): EVs and GVs

ompete for the limited road capacity.
Capacity of FCSs (feature of an ERN): EVs compete for the limited

harging capacities at FCSs.
Additionally, several decision-making environments considered for

o-operations of traffic-power systems are summarized in Table 1.
𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 decision-making environments describe a situation where

here is a single operator who controls both ERNs and power systems
n a fully integrated manner. Their objectives usually lead to a social
ptimum. 𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 decision-making environments describe a situ-
tion where ERNs and power systems operate independently, but they
an share their operation plans at the beginning of each time step (Zhou
t al., 2021) or at the beginning of the time horizon (Geng et al., 2019;
ossi et al., 2019; Wei et al., 2018). Their own plans are not necessarily
hanged according to the received information. They also can exchange
heir plans for any number of rounds. The decentralized situation in
able 1 assumed that both the ERN operator and the power system
perator share their information until converging (e.g., the changes of
raffic flow pattern and charging price are smaller than a threshold (Wei
t al., 2018)) or meeting the maximum iteration rounds. Refs. Geng
t al. (2019), Wei et al. (2018), Zhou et al. (2021) showed that, under
sufficient information-sharing situation, the solution approximates an
quilibrium between ERNs and power systems. Furthermore, Ref. Rossi
t al. (2019) has proved that the social optimum is a general equilib-
ium if LMP is used in power systems, where the power system operator
s a nonprofit one whose objective is to balance the electricity supply
nd demand under technical security constraints. Since the power
ystem operator is welfare-minded, it can steer a selfish ERN operator

oward the social optimum. More discussions are detailed in Refs. Rossi
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Table 1
Summary of considered factors in relevant literature.

References Decision-
making
environments

Dynamics EV features ERNs features

Charging
time

Charging
demand

Driving
range

Initial
SoC

GVs Capacityof FCSs

Xie et al. (2021) decentralized ✓ (A1) (A2) × × ✓ ✓

Lv et al. (2021) decentralized ✓ (A1) (A3) × × ✓ ×
Yan et al. (2024) decentralized ✓ (A1) ✓ ✓ ✓ ✓ ×
Wei et al. (2021) decentralized ✓ × (A3) × × ✓ ×
Sun et al. (2020) centralized ✓ (A1) (A2) × × × ✓

Zhou et al. (2021) decentralized ✓ × (A3) × × × ✓

Sun et al. (2020) centralized ✓ (A1) (A2) × × × ✓

Lv et al. (2019) centralized ✓ × (A3) × × × ×
Zhang et al. (2020) centralized × ✓ ✓ ✓ ✓ × ×
Wei et al. (2018) decentralized × ✓ (A2) × (A4) ✓ ✓

Wang et al. (2018) centralized × × (A3) ✓ ✓ × ✓

Geng et al. (2019) decentralized × (A1) (A2) × × ✓ ✓

Xie et al. (2020) centralized × (A1) (A2) × × ✓ ✓

Xie et al. (2020) centralized × (A1) (A2) × × ✓ ✓
T
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et al. (2019). Ref. Wang, Fang, and Zio (2022) briefly discussed the
impact of EVs on the independent and interdependent traffic-power sys-
tems from a disruptive event, however, it mainly focused on modeling
reconfiguration strategies from the system’s topological perspective to
optimize the restoration planning for traffic-power systems. Different
from Ref. Wang et al. (2022), this paper concentrates on investigating
the coordinating dynamic traffic-power systems under decentralized
and centralized decision-making environments. Consequently, the main
tasks of this paper are to build the mathematical formulations of the
decision-making environments and propose the corresponding solving
algorithm. To sum up, a systematic analysis of the interaction of
traffic-power systems under different decision-making environments is
missing, as shown in Table 1.

To fill the research gaps mentioned above, this paper proposes
a dynamic traffic-power system model and investigates the coordi-
nation of traffic-power systems under centralized and decentralized
decision-making environments.

The main contributions of the paper are summarized as follows:
(1) We propose a novel dynamic traffic-power system model, which

is able to capture the spatial–temporal traffic flow evolution and charg-
ing demand. Dynamic models can provide more accurate charging
load information compared to static ones. Within the proposed model,
the critical features of EVs and ERNs, summarized in Table 1, are
thoroughly considered. Moreover, the proposed model also considers
the different classes of EVs with different driving ranges, chargers with
different charging powers in an FCS and the charging process of EVs.
These extensions allow the model to be used in various applications
and at different granularities.

(2) This paper systematically investigates the operation of traffic-
power systems under centralized and decentralized decision-making
environments. The corresponding mathematical models under different
decision-making environments are formulated.

(3) An iterative algorithm is proposed to solve the centralized op-
timization problem. We compare the decision-making environments in
terms of the charging congestion level at FCSs, charging price, charging
demand, and integration of renewable energy, among others.

The remainder of the article is structured as follows. Section 2 devel-
ops the traffic-power system model. Section 3 describes decentralized
and centralized decision-making environments. Section 4 illustrates a
numerical example to show the application of the proposed model
and compare the solutions under different decision-making environ-
ments. Finally, Section 5 provides some concluding remarks and future
research directions.
4 
2. Coupled traffic-power system

2.1. Link transmission model based system optimal dynamic traffic assign-
ment problem

In the link transmission model (LTM) (Long & Szeto, 2019; Yper-
man, 2007), a triangular fundamental diagram serves as an approx-
imation to describe the macroscopic features of roads, considering
various factors such as the number of lanes, weather conditions, and
speed limits (Yperman, 2007). This diagram is characterized by three
primary parameters: a jam density (𝑘𝑗𝑎𝑚), a maximum flow (𝑞𝑚𝑎𝑥),
and a fixed-free flow speed (𝑣𝑓 ). The backward shock-wave speed 𝑤
can be calculated using the formula 𝑤 = 𝑞𝑚𝑎𝑥 ⋅ 𝑣𝑓∕(𝑞𝑚𝑎𝑥 − 𝑘𝑗𝑎𝑚 ⋅ 𝑣𝑓 ).
Within the LTM framework, the progression of traffic flow is updated
by computing the cumulative count of vehicles at both the entry and
exit points of each link during specific time intervals. The time frame
𝐻 is partitioned into a finite series of intervals  = 𝑡 = 1, 2,… , 𝑇 .

he determination of 𝑇 employs the formula 𝑇 = 𝐻∕𝛿, where 𝛿
ndicates the duration of each interval. This interval duration must
ither match or be smaller than the minimum travel time of the links,
nsuring that vehicles necessitate at least one unit of time to traverse
link (Yperman, 2007).

The representation of a roadway network featuring multiple origins
nd destinations is symbolized as 𝐺( ,), where  and  stand for
he collections of nodes and links. The entirety of links and nodes
ithin this network is sorted into three distinct classifications: origins,
estinations, and general nodes or links. Within this network frame-
ork, each origin (destination) node exclusively pairs with an (a) origin

destination) link. Identified by 𝑅 (alternatively 𝑆 ) and 𝑅 (𝑆 ),
hese sets specifically demarcate the nodes linked with origins (destina-
ions) and the links connected to origins (destinations). Links indicated
s origins or destinations are artificially created links, characterized by
length of zero and possessing infinite outflow, inflow, and storage

apacities. Concerning the System Optimal Dynamic Traffic Assignment
SO-DTA) problem, the presumption is that the outflow capacity of all
estination links is zero, indicating the accumulation of all vehicles
pon their arrival.

The limitations on the inflow and outflow of link 𝑎 within in-
erval 𝑡 are governed by the subsequent equations, which is derived
rom Newell (1993a, 1993b):

𝑎(𝑡)−𝑈𝑎(𝑡−1) ≤ min𝑉𝑎(𝑡 − 𝛽𝑎) + 𝐿𝑎 ⋅ 𝑘𝑗𝑎𝑚 − 𝑈𝑎(𝑡 − 1), 𝑓 𝐼
𝑎 (𝑡),∀𝑎 ∈ , 𝑡 ∈ 

(1a)

𝑂
𝑉𝑎(𝑡) − 𝑉𝑎(𝑡 − 1) ≤ min𝑈𝑎(𝑡 − 𝜈𝑎) − 𝑉𝑎(𝑡 − 1), 𝑓𝑎 (𝑡),∀𝑎 ∈ , 𝑡 ∈  (1b)
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In Eq. (1), the left-hand term symbolizes the inflow (outflow) of link 𝑎
uring interval 𝑡, while the right-hand term corresponds to its receiving
sending) capacities. 𝑈𝑎(𝑡) (𝑉𝑎(𝑡)) represents the cumulative count of

vehicles that enter (exit) link 𝑎 by the end of interval 𝑡, respectively.
dditionally, 𝑓 𝐼

𝑎 (𝑡) and 𝑓𝑂
𝑎 (𝑡) denote the inflow capacity at the entry

point and outflow capacity at the exit point of link 𝑎 throughout period
. These capacities are determined by 𝛿 ⋅ 𝑞𝑚𝑎𝑥 at the respective location
nd time. Furthermore, 𝐿𝑎 denotes the length of link 𝑎, 𝜈𝑎 indicates the
ree-flow travel duration on link 𝑎, and 𝛽𝑎 denotes the time taken by

the backward shock wave from the departure to the arrival of link 𝑎.
Their values are calculated as 𝜈𝑎 = 𝐿𝑎∕(𝛿 ⋅ 𝑣𝑓 ) and 𝛽𝑎 = 𝐿𝑎∕(𝛿 ⋅ 𝑤),
respectively.

In the LTM-based SO-DTA problem, the different classes of vehicles
are not distinguished. Thus, we have:

𝑈𝑎(𝑡) =
∑

𝑠∈𝑆

𝑈𝐺𝑠
𝑎(𝑡),∀𝑎 ∈ , 𝑡 ∈  (2a)

𝑎(𝑡) =
∑

𝑠∈𝑆

𝑉 𝐺𝑠
𝑎(𝑡),∀𝑎 ∈ , 𝑡 ∈  (2b)

here 𝑈𝐺𝑠
𝑎(𝑡)(𝑉 𝐺𝑠

𝑎(𝑡)) denotes the cumulative number of gasoline ve-
icles that enter(leave) link 𝑎 to destination 𝑠 by the end of period

𝑡.
Substituting Eq. (2) into the inequalities in Eq. (1), the linear

LTM-based flow constraints are obtained as follows:
∑

𝑠∈𝑆

𝑉 𝐺𝑠
𝑎(𝑡) ≤

∑

𝑠∈𝑆

𝑈𝐺𝑠
𝑎(𝑡 − 𝜈𝑎),∀𝑎 ∈ , 𝑡 ∈  (3)

∑

𝑠∈𝑆

[𝑉 𝐺𝑠
𝑎(𝑡) − 𝑉 𝐺𝑠

𝑎(𝑡 − 1)] ≤ 𝑓𝑂
𝑎 (𝑡),∀𝑎 ∈ , 𝑡 ∈  (4)

∑

𝑠∈𝑆

𝑈𝐺𝑠
𝑎(𝑡) ≤

∑

𝑠∈𝑆

𝑉 𝐺𝑠
𝑎(𝑡 − 𝛽𝑎) + 𝐿𝑎 ⋅ 𝑘𝑗𝑎𝑚,∀𝑎 ∈ , 𝑡 ∈  (5)

∑

𝑠∈𝑆

[𝑈𝐺𝑠
𝑎(𝑡) − 𝑈𝐺𝑠

𝑎(𝑡 − 1)] ≤ 𝑓 𝐼
𝑎 (𝑡),∀𝑎 ∈ , 𝑡 ∈  (6)

The cumulative outflow to destination 𝑠 should be constrained by
the cumulative inflow to the same destination on link 𝑎:

𝑉 𝐺𝑠
𝑎(𝑡) ≤ 𝑈𝐺𝑠

𝑎(𝑡 − 𝜈𝑎),∀𝑎 ∈ , 𝑡 ∈  (7)

The fulfillment of the traffic demand is achieved by ensuring that
the total inflow from the source links equals the cumulative demands.

𝑈𝐺𝑠
𝑎(𝑡) = 𝐷𝐺𝑠

𝑎(𝑡),∀𝑎 ∈ 𝑅,∀𝑠 ∈ 𝑆 , 𝑡 ∈  (8)

where 𝐷𝐺𝑠
𝑎(𝑡) denotes the cumulative travel demand for gasoline-

vehicles originating from link 𝑎 and heading towards destination 𝑠 by
the conclusion of period 𝑡.

Within the LTM model, flow conservation constraints must limit
both the incoming and outgoing traffic flows of a general node in the
following manner:
∑

𝑎∈𝐵(𝑖)
𝑉 𝐺𝑠

𝑎(𝑡) =
∑

𝑎∈𝐴(𝑖)

𝑈𝐺𝑠
𝑎(𝑡),∀𝑖 ∈ ∕{𝑅,𝑆},∀𝑠 ∈ 𝑆 , 𝑡 ∈  (9)

where 𝐴(𝑖) denotes the collection of links with their starting node as
𝑖, while 𝐵(𝑖) signifies the set of links where 𝑖 serves as their terminal
node.

The cumulative flows are required to be both non-negative and
non-decreasing:

𝑉 𝐺𝑠
𝑎(𝑡) − 𝑉 𝐺𝑠

𝑎(𝑡 − 1) ≥ 0,∀𝑎 ∈ ,∀𝑠 ∈ 𝑆 , 𝑡 ∈  (10)

𝑈𝐺𝑠
𝑎(𝑡) − 𝑈𝐺𝑠

𝑎(𝑡 − 1) ≥ 0,∀𝑎 ∈ ,∀𝑠 ∈ 𝑆 , 𝑡 ∈  (11)

The subsequent equations enforce that the initial cumulative flows
start from zero:

𝑠 𝑠
𝑈𝐺𝑎(0) = 𝑉 𝐺𝑎(0) = 0,∀𝑎 ∈ ,∀𝑠 ∈ 𝑆 (12)

5 
The objective of the SO-DTA problem based on LTM is to minimize
the collective travel duration for all vehicles, computed as the cumula-
tive time vehicles spend on all links throughout the entire time span.
The LTM-based SO-DTA problem (Long & Szeto, 2019) is formulated as
follows:

min
𝒙∈𝛺

∑

𝑎∈∕𝑆

∑

𝑠∈𝑆

∑

𝑡∈
𝛿[𝑈𝐺𝑠

𝑎(𝑡) − 𝑉 𝐺𝑠
𝑎(𝑡)] (13)

where 𝒙 = {𝑼𝑮,𝑽 𝑮} and 𝛺 = {𝒙| s.t. (3)–(12)}.

2.2. eLTM-based SO-DTA problem

For completeness, the electric link transmission model (Wang et al.,
2022) is illustrated here. Ref. Wang et al. (2022) focused on model-
ing reconfiguration strategies from the system’s topological perspec-
tive to optimize the restoration planning for traffic-power systems.
However, this paper concentrates on investigating the coordinating
dynamic traffic-power systems under decentralized and centralized
decision-making environments.

The existing LTM-based SO-DTA model is not able to describe the
new features related to the EVs, such as the driving range of EVs and
the capacity of FCSs, an eLTM-based SO-DTA model (Wang et al., 2022)
is adopted to minimize the total cost for all vehicles considering the EVs
driving ranges, FCS capacities, charging costs, among others.

The assumptions in this model are:
(1) An EV charges the minimum en-route to ensure the shortest

travel time. The SoC after charging (original SoC plus the charged
electricity) should ensure that the EV can reach the destination or the
next FCS. This assumption is coherent with the objective function of
the proposed model, which is to minimize the total cost. As for the
heterogeneous charging preferences of EV drivers, their consideration
is not within the scope of this paper.

(2) An EV’s energy consumption correlates linearly with the distance
covered, as shown in Refs. Bi, Wang, and Zhang (2018), Dunckley
(2018) based on empirical data analysis.

(3) EV drivers charge their batteries between 20%–80% of SoC,
and the amount of electricity charged in an EV is linearly related to
the charging duration (Kostopoulos, Spyropoulos, & Kaldellis, 2020;
Patnaik, Praneeth, & Williamson, 2018; Wang, Liu, Du, & Kong, 2016;
Yang, Zhang, Ge, & Wang, 2018). This assumption takes into consid-
eration factors such as EV range anxiety, minimizing travel time, and
protecting the Li-ion battery from over-discharge and overcharge.

(4) All EV batteries exhibit an identical energy consumption effi-
ciency, as discussed in Ref. He, Yin, and Lawphongpanich (2014).

(5) The electricity usage of in-vehicle utilities like air conditioning
and lighting is disregarded. When EVs are stationary, there is no
electricity consumption.

In order to track the SoC of EVs, the model accounts for different
energy levels to describe the real-time SoC for each EV. Given a certain
class of EV denoted as 𝑐, the mileage of this class EV is given by
𝐿𝑚𝑎𝑥
𝑐 miles. An Energy Level (EL) is defined as 𝛿 ⋅ 𝑣𝑓 miles. Hence, the

maximum EL for an EV of class 𝑐 is calculated as 𝐸𝑐 = 𝐿𝑚𝑎𝑥
𝑐 ∕(𝛿 ⋅ 𝑣𝑓 ).

If there are 𝐶 EV classes denoted as  = {1, 2,… , 𝐶}, each element
within set  constitutes a set. These sets, denoted as 𝑐 = {1, 2,… , 𝐸𝑐},
represent the various energy levels achievable by EVs in class 𝑐.

In the initial formulation of the eLTM-based model (Wang et al.,
2022), dummy charging links 𝐶 were introduced to indicate the Fast
Charging Stations (FCSs) within the physical ERN. These FCSs are
represented by one or multiple charging links, depicted as arcs sharing
identical origin and destination points. Each charging link symbolizes
chargers of varied charging speeds. The parameter 𝛼𝑡𝑎 denotes the
average charging speed attributed to charging link 𝑎 during period 𝑡. It
quantifies the number of energy levels deliverable by a type 𝑎 charger
within a period 𝛿, reflecting the charging speed in terms of energy levels
supplied per unit time. The lengths of charging links are considered to
be 0. For every charging link 𝑎, 𝑁𝐶 (𝑡) is specified as the actual count
𝑎
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of chargers of type 𝑎 during time period 𝑡. Typically, both the charging
speed 𝛼𝑡𝑎 and the charger count 𝑁𝐶𝑎(𝑡) remain constant.

Given a general link 𝑎, its length is 𝐿𝑎; then, the consumed ELs on
link 𝑎 is calculated by 𝜌𝑎 = 𝐿𝑎∕(𝛿 ⋅ 𝑣𝑓 ). 𝑈𝐸𝑠,𝑒

𝑎,𝑐 (𝑡) (or 𝑉 𝐸𝑠,𝑒
𝑎,𝑐 (𝑡)) represents

the accumulated count of EVs categorized as type 𝑐 with energy level 𝑒,
which either enter (for 𝑈𝐸) or leave (for 𝑉 𝐸) link 𝑎 heading towards
estination 𝑠 during period 𝑡.

Based on the inequalities in Eq. (1), the mixed flow constraints for
Vs and conventional vehicles in the eLTM-based model are derived in
he following manner:

𝑉 𝐸𝑠,𝑒
𝑎,𝑐(𝑡) ≤ 𝑈𝐸𝑠,𝑒+𝜌𝑎

𝑎,𝑐 (𝑡 − 𝜈𝑎),∀𝑎 ∈ ∖{𝐶},

𝑠 ∈ 𝑆 ,∀𝑐 ∈ , 𝑒 ∈ 𝑐 ∩ {𝑒 ≤ 𝐸𝑐 − 𝜌𝑎}, 𝑡 ∈ 
(14a)

𝑉 𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) = 0,∀𝑎 ∈ ∖{𝐶},

𝑠 ∈ 𝑆 ,∀𝑐 ∈ , 𝑒 ∈ 𝑐 ∩ {𝑒 > 𝐸𝑐 − 𝜌𝑎}, 𝑡 ∈ 
(14b)

∑

∈𝑆

[𝑉 𝐺𝑠
𝑎(𝑡) − 𝑉 𝐺𝑠

𝑎(𝑡 − 1)] +
∑

𝑠∈𝑆

∑

𝑐∈

∑

𝑒∈𝑐

[𝑉 𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) − 𝑉 𝐸𝑠,𝑒

𝑎,𝑐(𝑡 − 1)]

≤ 𝑂𝑓𝑎(𝑡),∀𝑎 ∈ ∖{𝐶}, 𝑡 ∈ 
(15)

∑

𝑠∈𝑆

∑

𝑐∈

∑

𝑒∈𝑐

[𝑈𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) − 𝑉 𝐸𝑠,𝑒

𝑎,𝑐 (𝑡 − 𝛽𝑎)]+

∑

𝑠∈𝑆

[𝑈𝐺𝑠
𝑎(𝑡) − 𝑉 𝐺𝑠

𝑎(𝑡 − 𝛽𝑎)] ≤ 𝐿𝑎𝑘𝑗𝑎𝑚,∀𝑎 ∈ ∖{𝐶}, 𝑡 ∈ 
(16)

∑

𝑠∈𝑆

[𝑈𝐺𝑠
𝑎(𝑡) − 𝑈𝐺𝑠

𝑎(𝑡 − 1)]+

∑

𝑠∈𝑆

∑

𝑐∈

∑

𝑒∈𝑐

[𝑈𝐸𝑠
𝑎(𝑡) − 𝑈𝐸𝑠

𝑎(𝑡 − 1)] ≤ 𝐼𝑓𝑎(𝑡),∀𝑎 ∈ ∖{𝐶}, 𝑡 ∈ 
(17)

Eq. (14a) ensures that the outflow is constrained to be less than or
equal to the inflow, with the deducted ELs occurring after the EVs have
traversed the corresponding links. Eq. (14b) guarantees that the ELs
of EVs remain below their maximum ELs. Eqs. (15) to (17) mirror the
counterparts in Eqs. (4) to (6). Both (15) and (17) constrain the outflow
and inflow to be less than or equal to their respective capacities, while
Eq. (16) guarantees that the count of vehicles on link 𝑎 must not exceed
the maximum capacity of vehicles that can be accommodated on this
link.

Eq. (18) ensures that the traffic demand of EVs should also be
satisfied:

𝑈𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) = 𝐷𝐸𝑠,𝑒

𝑎,𝑐 (𝑡),∀𝑎 ∈ 𝑅,∀𝑠 ∈ 𝑆 ,∀𝑐 ∈ ,∀𝑒 ∈ 𝑐 , 𝑡 ∈  (18)

Similar to Eq. (9), the EV flows also obey the flow conservation law,
formulated as follows:

∑

𝑎∈𝐵(𝑖)
𝑉 𝐸𝑠,𝑒

𝑎,𝑐 (𝑡) =
∑

𝑎∈𝐴(𝑖)

𝑈𝐸𝑠,𝑒
𝑎,𝑐 (𝑡),

∀𝑖 ∈ ∕{𝑅,𝑆},∀𝑠 ∈ 𝑆 ,∀𝑐 ∈ ,∀𝑒 ∈ 𝑐 , 𝑡 ∈ 
(19)

2.2.1. Modeling EV charging process
To model the charging process, intermediate variables 𝑥̂𝑠,𝑒𝑎,𝑠(𝑡) and

𝑥𝑠,𝑒𝑎,𝑠(𝑡) are defined as the number of EVs before and after their ELs have
been updated on charging link 𝑎. The occupancy 𝑥̂𝑠,𝑒𝑎,𝑠(𝑡) on a charging
link is calculated by the occupancy plus new inflow minus outflow
during the previous period, as shown in Eq. (20):

̂𝑠,𝑒𝑎,𝑠(𝑡) = 𝑥𝑠,𝑒𝑎,𝑠(𝑡 − 1) + [𝑈𝐸𝑠,𝑒
𝑎,𝑐 (𝑡 − 1) − 𝑈𝐸𝑠,𝑒

𝑎,𝑐(𝑡 − 2)]−

[𝑉 𝐸𝑠,𝑒
𝑎,𝑐(𝑡 − 1) − 𝑉 𝐸𝑠,𝑒

𝑎,𝑐(𝑡 − 2)],

∀𝑎 ∈ 𝐶 ,∀𝑠 ∈ 𝑆 ,∀𝑐 ∈ ,∀𝑒 ∈ 𝑐 , 𝑡 ∈ 

(20)

Furthermore, the following equations describe the process of updating
the ELs on charging links:

𝑥𝑠,𝐸𝑐
𝑎,𝑐 (𝑡) =

𝛼𝑡𝑎
∑

𝑙=0
𝑥̂𝑠,𝐸𝑐−𝑙
𝑎,𝑐 (𝑡), ∀𝑎 ∈ 𝐶 ,∀𝑠 ∈ 𝑆 ,∀𝑐 ∈ ,∀𝑡 ∈  (21a)

𝑠,𝑒 𝑠,𝑒−𝛼𝑡𝑎 𝑡
𝑥𝑎,𝑐 (𝑡) = 𝑥̂𝑎,𝑐 (𝑡), ∀𝑎 ∈ 𝐶 ,∀𝑠 ∈ 𝑆 ,∀𝑐 ∈ ,∀𝑒 ∈ {𝛼𝑎 ≤ 𝑒 < 𝐸𝑐},∀𝑡 ∈  (21b)

6 
𝑥𝑠,𝑒𝑎,𝑐(𝑡) = 0,∀𝑎 ∈ 𝐶 ,∀𝑠 ∈ 𝑆 ,∀𝑐 ∈ ,∀𝑒 ∈ {𝑒 < 𝛼𝑡𝑎},∀𝑡 ∈  (21c)

Eqs. (21a) and (21c) constrain the upper and lower bounds of the
updated ELs. Eqs. (21b) describe the process of linear increase in ELs.
Eq. (21a) states that if the ELs of EVs before being updated belong
to [𝐸𝑐 − 𝛼𝑡𝑎, 𝐸𝑐 ], their energy levels are approximately updated as the
maximum EL 𝐸𝑐 of EV of class 𝑐 after one period. Eq. (21b) states that if
the ELs of EVs are within [0, 𝐸𝑐−𝛼𝑡𝑎) before being updated, they increase
𝛼𝑡𝑎 ELs after one period. The updated ELs are within [𝛼𝑡𝑎 ≤ 𝑒 < 𝐸𝑐 ).
Eq. (21c) ensures that no EVs’ ELs are less than 𝛼𝑡𝑎 level after being
charged for one period. Therefore, if the updated ELs are smaller than
𝛼𝑡𝑎, they are forced to be 0. Note that the number of EVs on charging
links are conserved before and after the ELs of the EVs are updated,
i.e., ∑𝑒 𝑥̂

𝑠,𝑒
𝑎,𝑐 (𝑡) =

∑

𝑒 𝑥
𝑠,𝑒
𝑎,𝑐 (𝑡).

Furthermore, the outflow aggregated on EL along charging link 𝑎,
does not exceed its occupancy, as expressed in Eq. (22):

𝑉 𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) − 𝑉 𝐸𝑠,𝑒

𝑎,𝑐 (𝑡 − 1) ≤ 𝑥𝑠,𝑒𝑎,𝑐(𝑡),∀𝑎 ∈ 𝐶 ,∀𝑠 ∈ 𝑆 ,∀𝑐 ∈ ,∀𝑒 ∈ 𝑐 ,∀𝑡 ∈ 

(22)

Eq. (23) limits the number of EVs on charging link 𝑎 to its maximum
number of chargers:
∑

𝑠∈𝑆

∑

𝑐∈

∑

𝑒∈𝑐

[𝑈𝐸𝑠,𝑒
𝑎,𝑐(𝑡) − 𝑉 𝐸𝑠,𝑒

𝑎,𝑐 (𝑡)] ≤ 𝑁𝐶𝑎(𝑡),∀𝑎 ∈ 𝐶 ,∀𝑡 ∈  (23)

Moreover, Eqs. (24)–(25) ensure that the cumulative EV flows are
nonnegative and nondecreasing:

𝑉 𝐸𝑠,𝑒
𝑎,𝑐(𝑡) − 𝑉 𝐸𝑠,𝑒

𝑎,𝑐 (𝑡 − 1) ≥ 0,∀𝑎 ∈ ,∀𝑠 ∈ 𝑆 ,∀𝑐 ∈ ,∀𝑒 ∈ 𝑐 , 𝑡 ∈  (24)

𝑈𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) − 𝑈𝐸𝑠,𝑒

𝑎,𝑐 (𝑡 − 1) ≥ 0,∀𝑎 ∈ ,∀𝑠 ∈ 𝑆 ,∀𝑐 ∈ ,∀𝑒 ∈ 𝑐 , 𝑡 ∈  (25)

Similarly, the occupancies on charging links is nonnegative, as de-
scribed in Eq. (26):

𝑥𝑠,𝑒𝑎,𝑐 (𝑡) ≥ 0, 𝑥̂𝑠,𝑒𝑎,𝑐(𝑡) ≥ 0,∀𝑎 ∈ 𝐶 ,∀𝑠 ∈ 𝑆 ,∀𝑐 ∈ ,∀𝑒 ∈ 𝑐 , 𝑡 ∈  (26)

The occupancies on charging links and the cumulative EV flows are
initialized to be 0, as formulated in Eq. (27):

𝑈𝐸𝑠,𝑒
𝑎,𝑐 (0) = 𝑉 𝐸𝑠,𝑒

𝑎,𝑐 (0) = 0,∀𝑎 ∈ ,∀𝑠 ∈ 𝑆 ,∀𝑐 ∈ ,∀𝑒 ∈ 𝑐 (27)

As for the LTM-based SO-DTA problem, the objective of the eLTM-
based SO-DTA problem is to minimize the total travel time, including
the charging time of EVs. The problem is formulated as:

min
𝒚∈𝛹𝑇

∑

𝑠∈𝑆

∑

𝑡∈

∑

𝑎∈∕{𝐶 ,𝑆}
𝛿[𝑈𝐺𝑠

𝑎(𝑡) − 𝑉 𝐺𝑠
𝑎(𝑡)]

+
∑

𝑠∈𝑆

∑

𝑡∈

∑

𝑎∈∕𝑆

∑

𝑐∈

∑

𝑒∈𝑐

𝛿[𝑈𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) − 𝑉 𝐸𝑠,𝑒

𝑎,𝑐 (𝑡)]
(28)

where 𝒚 = {𝑼𝑮,𝑽 𝑮,𝑼𝑬,𝑽 𝑬} and 𝛹𝑇 = {𝒚| s.t. (7)–(12) and (14)–(27)}
It should be noted that for all 𝑎 in constraints (7)–(12) its domain does
not include 𝐶 . It means conventional vehicles never go into charging
links.

2.3. Power distribution network (PDN) model

We consider a radial PDN 𝑃 (𝑁 ,𝐿), where 𝑁 and 𝐿 represent
the sets of buses and distribution branches, respectively. In a radial
network, each bus is attached to a unique predecessor bus and the
number of buses equals that of branches, which excludes a slack bus.
The slack bus is indexed as 0. The successor set of bus 𝑗 is denoted as
𝛤 (𝑗) = {∀𝑘 ∶ (𝑗, 𝑘) ∈ 𝐿}. The power system model in Ref. Wei et al.
(2018) is employed in this paper. We additionally add constraint (29)
to limit the generator ramp between two successive periods:

−𝑝𝑟𝑎𝑚𝑝 ≤ 𝑝𝑔(𝑡) − 𝑝𝑔(𝑡 − 1) ≤ 𝑝𝑟𝑎𝑚𝑝,∀𝑗 ∈  ,∀𝑡 ∈ 
𝑗 𝑗 𝑗 𝑗 𝑁 (29)
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where 𝑝𝑔𝑗 is the active power generation in period 𝑡 and 𝑝𝑟𝑎𝑚𝑝𝑗 is the
ramp limits of generators at bus 𝑗.

The EV charging load in Ref. Wei et al. (2018) is calculated by the
static traffic flow passing charging stations and the energy demand of
each EV is assumed to be fixed. In our paper, the charging load during
each period is calculated by the number of EVs stopping in charging
links. The energy demand of each EV is consistent with the assumption
(1) in Section 2.2. Thus, the EV charging load in Eq. (28) in Ref. Wei
et al. (2018) is replaced by the following equation:

𝑝𝑑𝑐𝑗 (𝑡) =
∑

𝑎∈𝑀(𝑗)

∑

𝑠∈𝑆

∑

𝑐∈

∑

𝑒∈𝑐

𝑝𝑒𝑣𝑎 [𝑈𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) − 𝑉 𝐸𝑠,𝑒

𝑎,𝑐 (𝑡)] (30)

where 𝑀(𝑗) is a mapping from bus set 𝑁 to charging links set 𝐶 ,
which specifies the connection between buses in a power system and
charging links in a road network. 𝑁(𝑎) is a reverse mapping of 𝑀(𝑗),
which maps charging links set to the bus set. The LMP at each bus is
denoted as 𝜆𝑡𝑗 . The charging price at charging link 𝑎 can be obtained
by 𝜆𝑡𝑁(𝑎).

To clearly describe the PDN model here, we detail the objective
function used. The objective of the PDN operator is to minimize the
total energy production costs. The optimal power flow problem is
defined as P1:
min
𝒛∈𝛹𝑃

∑

𝑡∈

∑

𝑗∈𝑁

[𝑎𝑗 (𝑝
𝑔
𝑗 (𝑡))

2 + 𝑏𝑗𝑝
𝑔
𝑗 (𝑡)] +

∑

𝑡∈

∑

𝑘∈𝛤 (0)
𝜇(𝑡)𝑃0𝑘(𝑡) (31)

𝛹𝑃 = {𝒛| s.t. (29)–(30), and (24) − (34) in Ref . Wei et al. (2018)} (32)

where 𝒛 = {𝒑𝑔 ,𝑷 }; 𝑎𝑗 and 𝑏𝑗 are the production cost coefficients at bus
𝑗; 𝑃0𝑘 is the active power flow from main grid to bus 𝑘. The first term is
the production cost of the local generators and the second term is the
cost of purchasing electricity from the main grid. 𝜇(𝑡) is the contract
energy price during period 𝑡 with the main grid.

3. Decision environments

In this section, two decision-making environments are considered
for operating the traffic-power systems, which may arise when different
beneficiaries coordinate the interdependent infrastructures. Analyzing
different decision-making environments allows us to compare their
operational and socially beneficial difference. The value of sharing
information also can be studied.

3.1. Decentralized decision environments

In current practice, individual infrastructure systems such as ERNs
and PDNs often determine their operation in an independent, decentral-
ized manner. In this decision-making environment, the ERN operator
minimizes the system operation cost. We adopt a system optimum
model where the objective is to minimize the total travel cost through
dynamic traffic assignment. The total travel cost includes the driving
time cost of both EVs and GVs, the charging time cost of EVs and the
charging cost of EVs. This optimal traffic flow problem P2 is formulated
as follows:

min
𝒚∈𝛹𝑇

∑

𝑠∈𝑆

∑

𝑡∈

∑

𝑎∈∕{𝐶 ,𝑆}
𝜙𝛿[𝑈𝐺𝑠

𝑎(𝑡) − 𝑉 𝐺𝑠
𝑎(𝑡)]

+
∑

𝑠∈𝑆

∑

𝑡∈

∑

𝑎∈∕𝑆

∑

𝑐∈

∑

𝑒∈𝑐

𝜙𝛿[𝑈𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) − 𝑉 𝐸𝑠,𝑒

𝑎,𝑐 (𝑡)]+

∑

𝑠∈𝑆

∑

𝑡∈

∑

𝑐∈

∑

𝑒∈𝑐

∑

𝑎∈𝐶

𝜆𝑡𝑁(𝑎)𝑝
𝑒𝑣
𝑎 𝛿[𝑈𝐸𝑠,𝑒

𝑎,𝑐 (𝑡) − 𝑉 𝐸𝑠,𝑒
𝑎,𝑐 (𝑡)]

(33)

subject to constraints (7)–(12) and (14)–(27), where 𝜙 is the time value.
Considering the interaction between the ERN and the PN, whether

information is exchanged or not between the two systems beforehand
becomes important which usually makes operators’ plans different. In
our case, if the dynamic charging prices in FCS are known beforehand

by the ERN operator, it will greatly influence the traffic assignment 𝛺
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solution. Accordingly, the changed charging load distribution further
makes the electricity production variation. To study the influence of
information sharing, two benchmarks are studied in this paper: sys-
tem operations make decisions with no information sharing and with
information sharing.

3.1.1. No information-sharing situation
In this situation, the ERN operator does not know the real-time

electricity price 𝜆𝑡𝑁(𝑎) beforehand, so we assume that an estimated fixed
charging price is used for the operator. For the PDN, it is assumed
that the operator only knows the real-time charging demand and the
demand in the future time periods is unknown. Thus, P1 is solved
for each independent period for a total of 𝑇 times. The main process
is shown in Fig. 1(a). At the beginning, the estimated charging price
(LMP) for the ERN operator is used to solve P1. Then, in each period,
the PDN operator receives the real-time charging demand from each
FCS. Based on the real-time power demand, the operator solves P2 to
obtain the optimal power flow pattern 𝒛 and the corresponding actual
LMP in each period. Note that this price does not change the traffic
assignment solutions. In the end, the actual charging cost for the ERN
operator can be calculated by the actual LMP.

3.1.2. Information-sharing situation
In this situation, the ERN operator and the PDN operator actively

share (partial information about) their operation plans with each other,
but do not necessarily fully coordinate or cooperate with each other.
This situation assumes that the two operators exchange their expected
plans at the beginning of the time horizon. Specifically, an ERN op-
erator sends the expected charging demands information to the PDN
operator. Based on the received information, the PDN operator calcu-
lates the expected electricity prices and communicates them to the ERN
operator who updates its plan accordingly. This information-sharing
behavior can be continued for any number of rounds and the number
of rounds can be understood as time available for the operators to
exchange information. The interplay process is shown in Fig. 1(b).

3.2. Centralized decision environments

The centralized decision-making environment assumes that there
is a centralized operator that coordinates both the ERNs and the
PDNs to minimize the total cost of the two systems. It means that
ERNs and PDNs fully integrate with each other, although this may
lead to sacrificing their own benefits from an independent system’s
perspective. This situation may be ideal, but the results can serve as
a benchmark to understand and analyze the best possible coordination
between ERNs and PDNs. This environment can be expressed as the
following optimization problem:

min
𝒘∈{𝛹𝑇 ×𝛹𝑃 }

∑

𝑠∈𝑆

∑

𝑡∈

∑

𝑎∈∕{𝐶 ,𝑆}
𝜙𝛿[𝑈𝐺𝑠

𝑎(𝑡) − 𝑉 𝐺𝑠
𝑎(𝑡)]

+
∑

𝑠∈𝑆

∑

𝑡∈

∑

𝑎∈∕𝑆

∑

𝑐∈

∑

𝑒∈𝑐

𝜙𝛿[𝑈𝐸𝑠,𝑒
𝑎,𝑐 (𝑡) − 𝑉 𝐸𝑠,𝑒

𝑎,𝑐 (𝑡)]+

∑

𝑠∈𝑆

∑

𝑡∈

∑

𝑐∈

∑

𝑒∈𝑐

∑

𝑎∈𝐶

𝜆𝑡𝑁(𝑎)𝑝
𝑒𝑣
𝑎 𝛿[𝑈𝐸𝑠,𝑒

𝑎,𝑐 (𝑡) − 𝑉 𝐸𝑠,𝑒
𝑎,𝑐 (𝑡)]

+
∑

𝑡∈

∑

𝑗∈𝑁

[𝑎𝑗 (𝑝
𝑔
𝑗 (𝑡))

2 + 𝑏𝑗𝑝
𝑔
𝑗 (𝑡)] +

∑

𝑡∈

∑

𝑘∈𝛤 (0)
𝜇(𝑡)𝑃0𝑘(𝑡)

(34)

subject to constraints (7)–(12), (14)–(27) and (32), where 𝒘 =
{𝒚, 𝒛,𝝀,𝒑𝑑𝑐}. It should be noted that charging load 𝑝𝑑𝑐𝑗 are input
parameters in P1, whereas they are decision variables here.

This problem can be interpreted as a fixed-point mapping 𝛺(𝝀) ∶←←→
(𝒚, 𝒛,𝒑𝑑𝑐 , 𝝀̂) that identifies the optimal traffic-power flow pattern (𝒚, 𝒛),
the charging demand 𝒑𝑑𝑐 , and the corresponding locational marginal
prices (LMPs) 𝝀̂ under any given vector of LMPs 𝝀. With a traffic-
ower flow pattern (𝒚, 𝒛), LMPs 𝝀̂ are first retrieved from the mapping

̂
(⋅); then 𝝀 are fed into the centralized traffic-power systems, and the
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Fig. 1. Procedures of decentralized decision-making environments. CD: Charging demand of EVs; LMP: locational marginal price.
mapping 𝛺(⋅) yields again an optimal traffic flow pattern (𝒚, 𝒛), the
charging demand 𝒑𝑑𝑐 and LMPs 𝝀. This process constitutes a natural
self-mapping mechanism and may converge to a fixed-point solution.
This self-mapping problem is formulated as follows:

𝒘 = 𝛺(𝒘)

where 𝒘 = {𝒚, 𝒛,𝝀,𝒑𝑑𝑐} ∈ {𝛹𝑇 × 𝛹𝑃 }.
To analyze the solution existence of the proposed model, Brouwer’s

fixed-point theorem is used. It states that a solution exists to the fixed-
point problem 𝒘 = 𝛺(𝒘) if the mapping 𝛺(⋅) is continuous, and the
set 𝒘 is convex as well as compact. Because all variables are bounded
and all constraints are convex in the optimal power flow problem P1
and the optimal traffic flow problem P2, {𝛹𝑇 × 𝛹𝑃 } is convex and
compact. Ref. Xie et al. (2021) proved that P1 for the PDN, mapping
from traffic-power flow pattern {𝒚, 𝒛,𝒑𝑑𝑐} to the optimal power flow
solution and LMPs {𝒛,𝝀} is continuous. For the ERNs, since P2 is
linear (Wang, Li, & Deng, 2024; Zhao, Li, & Deng, 2024), the mapping
from traffic-power flow pattern {𝒚, 𝒛,𝝀} to the optimal traffic flow
solution and charging demand {𝒚,𝒑𝑑𝑐} is continuous. Therefore, the
composite mapping function 𝛺(⋅) is, also, continuous.

Since variables 𝜆𝑡𝑁(𝑎) can be only obtained after the optimal power
flow 𝒛 has been known, the proposed model cannot be solved directly
by a common commercial solver. To solve the proposed self-mapping
fixed-point problem, it is possible to construct an iterative algorithm
with the following structure:

𝒘𝝌+𝟏 = 𝛺(𝒘𝝌 )

The main procedures of the algorithm are listed in Algorithm 1. Con-
tinuity and monotonicity of the mapping operator of 𝛺(⋅) is required
to ensure the convergence of such an iterative algorithm (Cegielski,
2012; Deng, Deng, & Yang, 2024). However, since the optimal traffic
flow problem P2 in 𝛺(⋅) has intersection delays that are not necessarily
monotonically increasing as a function of traffic flow (Yperman, 2007),
the convergence of 𝒘𝝌 is not analytically ensured. Instead, convergence
can be shown empirically via case studies.

4. Numerical examples and results

4.1. Case study and system configuration

The similar structures of the ERN (with modified road lengths) and
the radial PDN (with added renewable generators) in Ref. Wei et al.
8 
Algorithm 1: An iterative algorithm
1 Initialization: Choose a convergence tolerance 𝜖 > 0 and the

maximum iteration number 𝐼𝑚𝑎𝑥. Let LMP vector 𝝀 = 0,
objective value 𝜃 = 0, 𝑖 = 0 ;

2 Solve problem (34) with fixed LMP 𝝀; Get the objective value
𝜃∗ and retrieve 𝝀∗ from optimal power flow ;

3 if |𝜃 − 𝜃∗| < 𝜖 for 𝑁 consecutive times then
4 terminate and return the solution of problem (34);
5 else if 𝑖 = 𝐼𝑚𝑎𝑥 then
6 terminate, report that the algorithm fails to converge and

return the solution of problem (34);
7 else 𝑖 = 𝑖 + 1, 𝜃 = 𝜃∗,𝝀 = 𝝀∗, go to Line 2;

(2018) are used to illustrate the proposed methods. The data used in
the examples is briefly summarized in Appendix. More detailed data
and parameters are available in Supplementary Material (Supplemen-
tary material, 2024). We consider 4 renewable distributed generators
(DGs) and 4 conventional generators connected to 4 renewable FCS
(charging link label: 65, 67, 70, 72) and 4 conventional FCS (66, 68,
69, 71), respectively. In this example, we consider similar assumptions
to Ref. Zhang et al. (2020): (1) the DGs’ outputs are assumed to be
controllable which means the renewable power can be curtailed; (2)
the available generation capacities of DGs are assumed to be given
by proper forecasting methods, which provide the upper limits of
the actual generation. The generation costs of both conventional and
renewable DGs are detailed in Ref. Zhang et al. (2020).

4.2. Implementation note and results

The experiments were conducted on a computer equipped with an
Intel Core i7-8700 3.2 GHz CPU and 32 GB of RAM. All problem-solving
tasks were executed using the commercial software IBM ILOG CPLEX
(version 12.6).

Theoretically, information could be exchanged for any number of
rounds between system operators; however, it is reasonable to assume
that they only exchange information once due to practical limitations,
particularly concerning time.

Algorithm 1 is employed to compute the problem (34). To show
the empirical convergence of the proposed algorithm, we analyzed 4
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Table 2
Summary of the main results under different decision-making environments.

Decision environments Cost ($) Generation and purchase (MWh)

Actual
charging
cost

Actual
traffic
cost

Power
cost

Actual
total
cost

Electricity
purchase

Conven-
tional
DG

Renewable
DG (%)

Decentralized No I.S. 2556.78 11 770.78 3924.15 15 694.93 0.46 25.71 227.99(89.70%)

I.S. 245.21 9463.21 3924.15 13 387.36 0.46 25.71 228.01(89.71%)

Centralized 183.74 9821.34 3065.80 12 887.15 0.078 20.35 232.96(91.94%)
Fig. 2. Convergence performance of the proposed algorithm.

Fig. 3. Total charging demand and average LMP in FCSs.

scenarios. The spatial–temporal charging demand is the most important
factor that impacts the interplays between the traffic-power systems,
since it influences the locational marginal prices of power systems and
the charging cost of traffic systems. Therefore, two EV penetration
levels (33% and 100%) and two charging station sizes are studied.
The former is directly related to the total charging demand, and the
latter could provide more flexible charging choices for EV drivers from
spatial and temporal distribution perspectives. The tolerance 𝜖 is set
s 0.1% of the objective function and the maximum iteration number
𝑚𝑎𝑥 = 20. Fig. 2 shows that the proposed algorithm can converge
ithin 6 iterations in all studied scenarios.

Table 2 compares the results under the two decision-making envi-
onments. As it shows, we have the highest actual total cost $15694.93
hen ERNs and PDNs operate independently. The total cost is 27.73%
nd 17.24% higher under the no information sharing (I.S.) situation,
ompared to full integration or sharing information, respectively. This
9 
Table 3
Total charging demand in renewable and conventional FCSs (MWh)

Environments RenewableFCS (%) ConventionalFCS Total

Decentralized No I.S. 7.175 (41.47%) 10.125 17.3

I.S. 7.8(45.09%) 9.5 17.3

Centralized 8.85(50.80%) 8.57 17.42

is because under the no information sharing situation, the ERN operator
only knows the fixed electricity price and has no information on the
difference among FCSs and periods, which results in only travel time
minimization being considered. This leads to the highest charging cost
and power expenditure. When an ERN operator exchanges information
once with a PDN operator before traffic assignment, a significant reduc-
tion in the actual charging cost of up to 90.41% can be achieved. This
is because one round of information-sharing between the two operators
can provide valuable information on the electricity price difference
among FCSs and periods, although the information may not be exactly
right. Such information can guide the ERN operator to minimize the
travel time cost and charging cost. Under a fully integrated centralized
environment, the actual charging cost and power cost could decrease
by up to 92.81% and 21.87%, respectively. Moreover, Fig. 3 shows that
the FCSs with lower charging prices are generally assigned with more
charging demand, and this correlation is clearer under a centralized
situation than the information-sharing situation. However, some excep-
tions can be observed, for instance, while the electricity price in FCS
#68 is not the cheapest, it still maintains the most charging demand.
This is because there is a trade-off between the saved charging cost and
the extra time caused by detouring to the FCS with a cheaper charging
price. Only when the charging price is cheap enough, EVs would detour
to this particular FCS.

In addition, Table 2 shows that the centralized decision-making
environment has the highest renewable energy adoption. This can be
explained by two reasons: first, a part of charging demand is shifted
from conventional FCSs to renewable FCSs as shown in Table 3. The
charging demand in renewable FCSs increases from 41.47% to 45.09%
if the decision environment changes from decentralized to centralized.
More specifically, except FCS #68, the charging demands in the other
three conventional FCSs (#66, #69 and #71) are shifted to renewable
FCSs (#65, #67, #70 and #72) in varying degrees when the decision-
making environments are centralized and information-sharing is on,
as shown in Fig. 3. The second reason is that under the centralized
decision-making environment, the system operator could properly as-
sign the charging time and locations of EVs so as to alleviate the
charging congestion in FCSs in peak hours and flatten the power
demand curve. Note that the generation capacities of renewable DGs
are limited in each period. Consequently, in peak hours, the expensive
conventional energy could be replaced by cheap renewable energy.
This can be verified by Figs. 4 and 5. For example, the congestion
in charging links 65, 67 and 68 is significantly alleviated when two
systems operate jointly, as shown in Fig. 4. As a result, the total
power demand from the 3rd to the 9th time step is clipped to from
the 13th to 26th time step, as shown in Fig. 5. In summary, the

operator optimizes the charging demand in temporal and spatial aspects
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Fig. 4. Congestion level of FCS under different decision-making environments.
to promote renewable energy integration and, thus, the total cost is
minimized.

5. Conclusion

This paper proposed a traffic-power system model to investigate the
operational solution differences when the electric road network (ERN)
10 
and the power distribution network (PDN) operate independently and
jointly. The model considered constraints from both ERNs and PDNs,
such as road capacity, traffic flow capacity and ramp limit of gener-
ators. Within this model, an electric link transmission model (eLTM)
was presented to solve the system optimal dynamic traffic assignment
problem. A novel formulation was proposed to accommodate critical
physical features of electric vehicles (EVs) and fast charging stations
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Fig. 5. The time distribution of the total power demand for the studied PDN.

(FCSs), such as, EV classes with different driving ranges, the initial
state of charge (SoC) of EVs, the capacity of FCSs have been considered.
Moreover, the charging process of EVs was explicitly modeled within
the eLTM. The objective of a PDN operator was to minimize the power
cost including power generation cost and purchase from the main grid.
A numerical example including renewable and conventional generators
was studied to illustrate the proposed models. The different decision-
making environments were compared to investigate the corresponding
operation and social benefits. From the results, we could observe
that the charging cost was the highest under no information-sharing
situation, since the ERN operator did not know the information on
the electricity price difference among FCSs and periods. Even limitedly
sharing information or operating jointly between ERNs and PDNs could
significantly reduce the charging cost. The increased renewable energy
adoption and the flattened power demand curve assisted in lowering
charging cost, power cost and congestion level in FCSs, under a cen-
tralized situation. Both electricity price differences among FCSs and
detouring time influenced the charging demand distribution.

This work can be extended in several directions: (1) It is interesting
to investigate the proposed eLTM to solve the user equilibrium dynamic
traffic assignment (UE-DTA) problem considering critical features of
ERNs and FCSs. Although, Refs. Lv et al. (2019), Sun et al. (2020), Zhou
et al. (2021) claimed that they have solved UE-DTA considering EVs,
they oversimplified the critical features of ERNs and FCSs, as shown
in Table 1. Therefore, how to solve this problem is still challenging.
(2) The proposed models can be easily extended to investigate how the
failure spreads between the interdependent traffic-power systems. (3) It
is also interesting to investigate how to coordinate the charging demand
so as to maximize renewable energy adoption considering the security
constraints and the weather conditions.
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Table A.4
Connections between
charging links and Buses.

Charging link Bus

65 1
66 2
67 4
68 3
69 6
70 5
71 8
72 7

Table A.5
Parameters of the studied traffic-
power system.

Parameters Values

𝑣𝑓 (m/h) 50
𝑘𝑗𝑎𝑚(veh/m) 214
𝛿 (min) 6
𝑞𝑚𝑎𝑥 (veh/h/lane) 2160
𝑝𝑒𝑣𝑎 (kW) 50
𝜂 (kMh/mile) 0.25
𝜙 ($/h) 10
𝐶 1
𝐸𝑐 20
𝐵𝑐 (kWh) 26
𝑁𝐶𝑎(𝑡) 15
𝛼𝑡
𝑎 (ELs/𝛿) 4

Table A.6
Parameters of the studied electrified road network.

Road Type-1 Type-2 Type-3 Type-4 Charging

𝜈𝑎 2 2 4 6 0
𝛽𝑎 2 2 4 6 0
𝜌𝑎 2 2 4 6 0

Table A.7
O-D pairs and their trip rates (in P.U.)

O-D pair Conventional
vehicles

EV O-D pair Conventional
vehicles

EV

21–28 30 15 22–28 30 15
21–26 60 30 22–26 50 25
21–24 40 20 22–24 40 20
21–25 40 20 22–25 50 25
23–27 50 15 23–26 40 20
23–25 40 20
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Appendix. Data description

A modified electrified road network (Wei et al., 2018) and a power
distribution network are used to illustrate the proposed methods.
Figs. A.6 and A.7 show the modified road network and power network.
As shown in Fig. A.6, there is one type of charger in each FCS. The
green mark on charging links and generators represents the correspond-
ing FCSs and generators powered by renewable energy. The detailed
connections between charging links and buses are listed in Table A.4.
The parameters used in this paper are listed in Tables A.5 and A.6. For
simplicity, we assume there is one type of EV and its battery capacity
is 25 KWh and its maximum energy level is 20. Total traffic demand is
listed in Table A.7. More detailed data on the studied road network and
power network are available in Supplementary Material (Supplementary
material, 2024).
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Fig. A.6. The studied electrified road network (Wei et al., 2018).
Fig. A.7. The studied Power distribution network (Wei et al., 2018).
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