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Abstract. This paper tackles the challenging issue of collision avoidance
among multiple dynamical agents, a problem known for its non-convex
nature and computational complexity. Our proposed solution involves
decomposing the space into time-varying Voronoi cells with buffer zones,
exploiting the versatility of B-splines to reconfigure trajectories when
collisions are predicted. This approach is integrated into a Model Pre-
dictive Control (MPC) framework, implemented in a distributed manner
where agents communicate predicted control point sequences defining
the B-spline curves. Through simulation testing across various scenar-
ios, our approach demonstrates significant promise, paving the way for
experimental validation and real-world applications.

Keywords: Multi-agent dynamical systems, Collision avoidance, B-splines
parametrization, Trajectories prediction, Distributed Model Predictive
Control (MPC).

1 Introduction

Motivation and exiting work: Collision avoidance is crucial in scenarios in-
volving multiple agents, such as autonomous vehicles, drones, or robotic systems
navigating shared environments [4]. By incorporating collision avoidance into the
control systems of each agent, it becomes possible to anticipate potential col-
lisions and proactively prevent them. These preventive measures may involve
adjusting velocity or reconfiguring trajectories to avoid imminent collisions [12].
However, collision avoidance poses significant challenges due to its non-convex
nature. Unlike convex optimization problems with clear and efficient solutions,
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non-convex problems lack globally optimal solutions and can be computation-
ally demanding to solve [9]. Furthermore, the presence of multiple agents adds
complexity, requiring coordinated movements to ensure collision-free paths while
still achieving individual objectives [10].

Soft constraints offer a promising approach to address the non-convexity
of optimization problems in collision avoidance scenarios, thereby reducing the
computational burden to a more tractable level [5]. Instead of strictly adhering to
avoidance maneuvers, agents may deviate from their planned trajectories within
predefined bounds, accepting a certain level of collision risk if necessary. By
incorporating penalty terms or cost functions associated with collision risk, the
optimization problem becomes convex or semi-convex, enabling more efficient
solution methods [1].
Contributions: Expanding upon the concept of control point space mapping,
our approach utilizes the inherent properties of B-splines, as discussed in previ-
ous work [2], in conjunction with distributed Model Predictive Control (MPC)
techniques to effectively address collision and constraint handling in multi-agent
systems. B-splines offer a versatile mathematical framework for representing and
manipulating trajectories [6]. By exploiting the control point space mapping, we
can further benefit from the flexibility and adaptability of B-splines to dynam-
ically adjust trajectory configurations in response to potential collision threats.
In parallel, the distributed MPC algorithm enables agents to collaboratively plan
and execute their trajectories while considering both individual objectives and
shared constraints. The goal is to facilitate real-time coordination among agents,
allowing them to efficiently navigate through shared spaces while avoiding col-
lisions and satisfying the imposed constraints. Briefly, in this paper, we propose
the following contributions:
i) Utilizing the convexity and locality properties of B-splines, we introduce a
method for enforcing collision avoidance through a time-varying Voronoi parti-
tioning approach.
ii) We integrate these collision avoidance constraints into a distributed MPC
framework. Within this framework, agents communicate the predicted sequence
of control points, which subsequently dictate their trajectories.
These theoretical contributions are validated across a range of simulated scenar-
ios, laying the groundwork for future experimental investigations.
Notation: Vectors are represented by bold letters. Capital letters in bold rep-
resent matrices. In and 0n are identity and zero matrix with dimension n ˆ n.
||x||Q fi

?
x⊺Qx. Otherwise, if not specified in the subscript, ∥ ‚ ∥ represents

the Euclidean norm. With notation ˆp‚qrk|kts denoting the predicted value of p‚q

at time step k ` kt from information known at time kt, an agent’s prediction
model used inside the MPC problem is x̂i rk ` 1|kts “ Ax̂i rk|kts ` Bûi rk|kts,
where x̂i r0|kts Ð[ xi rkts denotes the vector of measured states.
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2 Preliminaries

Agents dynamics: Although the approach described in the subsequent sec-
tions is applicable to arbitrary dynamics, for the sake of illustration, we will
use the dynamics of a quadcopter. This model entails significant nonlinearities,
which are mitigated through a flatness-based linearization method. Following
discretization, we obtain a decoupled stacking of three double integrators:

xi rk ` 1s “ Axi rks ` Bui rks , (1)

with the matrices A “

„

I3 hI3
03 I3

ȷ

, B “

„

h2I3{2
hI3

ȷ

and the discretization step,

h. The i-th agent has the state, xi rks, defined by the position and velocity,
xi rks “ pp⊺

i rks ,v⊺
i rksqJ P R6, and the input, ui rks “ ai rks P R3, defined

by the acceleration. If the agents are heterogeneous (i.e., they have different
nonlinear dynamics), we can derive their linear models using either feedback
linearization or Taylor approximation [3].

B-splines: Certainly, B-splines possess several advantageous properties that
make them appealing for trajectory generation and optimization: i) continu-
ity and locality ensure smooth curve generation and rapid reconfiguration [11];
ii) the convexity and endpoint interpolation play significant roles in constraint
validation.

A family of B-spline basis functions tBi,pptqu with i P t0, . . . Nu characterized
by cardinality N , order p and knot-vector τ “ tτ1, . . . , τmu weighted by control
points tPiu gives the curve

zptq “

N
ÿ

i“0

PiBi,pptq “ PBpptq, @t P rτ1, τms. (2)

In equation (2), the column vector Bpptq and control matrix P come from stack-
ing the B-spline basis functions Biptq vertically and the control points Pi as
columns, respectively.

Given the dynamics described by (1), where zptq P R3ˆ1 represents the ref-
erence position to be tracked by the position component of the state, denoted
as Cxirks “

“

I3 03

‰

xirks.
Without delving into the specifics (refer to [8] for comprehensive details), it

is noteworthy that the derivatives of (2) can be represented as B-spline curves
of reduced order (specifically, order p´ r for the r-th order derivative of zprqptq),
weighted by new control points linearly dependent on the original ones. For
instance, we can express:

zp2qptq “ Pp2qBp´2ptq, (3)

where Pp2q :“ PM2 and M2 is a matrix suitably computed (see [7]).



4 C.K. Dinh et al.

Fig. 1: Buffered Voronoi Cell partition-
ing in 3D with rmin the safety gap.

Cell partitioning: Partitioning of
the environment by Voronoi is the
foundation of several control tech-
niques and path finding algorithms in
robotics. In order to create a map to
generate a trajectory for non-collision,
it is often utilized to establish a zone
that is near to an agent and sepa-
rating from other agents. One funda-
mental baseline constraint that guar-
antees maintaining a minimum safety
gap rmin between any two agents pi, jq

is ||pi ´ pj ||2 ě rmin. In the forma-
tion of Voronoi diagram for a multi-
agent system consisting of Na agents,
the Voronoi cell of the i-th agent is
commonly defined using the distance metric:

Vi “ tp P R3 |∥ p ´ pi ∥ď∥ p ´ pj ∥,@j ‰ iu. (4)

To integrate the safety gap rmin, the notion of Buffered Voronoi cell is thus
recalled as in [13][5]

Definition 1. Let Na be number of agents. An i-th agent at position pi P R3

can be associated with a Buffered Voronoi Cell(BVC) V̄i with a safety distance
rmin defined as follow

V̄i “

#

p P R3 |

ˆ

p ´
pi ` pj

2

˙J

ppj ´ piq `
rmin

2
||pj ´ pi|| ď 0,@j ‰ i

+

.

(5)
Additionally, a sizing matrix Θ can be employed to generalize the distance so
that the safety region of an agent can be viewed as an ellipsoid : ξi “ tx ` pi |

xJΘ´2x ď r2minu

V̄i “

"

p P R3 |
ppi ´ pjqJΘ´2pp ´ piq

||dij ||
ě

rmin ´ ||dij ||

2
,@j ‰ i

*

, (6)

where dij “ Θ´1ppj ´ piq

This BVC is thus equivalent to a combination of linear constraints as mentioned
in our prior work [2]:

V̄i “
␣

p P R3 | Aijp ď bij ,@j ‰ i
(

, (7)

where Aij “ ´ppi ´ pjqJ and bij “ Aijpi ´ 1
2 prmin ´ ||pi ´ pj ||q||pi ´ pj ||.
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3 Spline-based distributed MPC

Optimization problem: This section refers back to the distributed control
framework based on B-spline from our previous work [2], in which all agents re-
solve the trajectory planning problem in parallel following the receding horizon
strategy. The collision constraint is then integrated with the reduced formulation
for B-spline. Let consider the agent i-th where the optimization over Np steps
on the horizon is built up by summing certain cost functions which are subject
to the constraints of the system.

Tracking error cost: We want to minimize the deviation from the desired
trajectory or target over the prediction horizon. This is defined using a quadratic
cost following:

Li
tracking “

Np´1
ÿ

s“0

}p̂irs|ks ´ pf
i }Qrss ` }p̂irNp|ks ´ pf

i }Qp , (8)

where pf
i denotes the reference tracking position for the agent, p̂irs|ks P R3 is the

predicted position at s time steps given the information at k instant. Qrss and
Qp ľ 0 are matrices representing the weight at each step of the trajectory. The
final term in the cost functions helps adding stability at the terminal position in
the tracking problem. With parameterization of position using the B-spline as
mentioned in [2]

p̂irs|ks “ PiBpptsq , (9)

where ts “ sh and h is the sampling time of the MPC problem. The cost function
(8) can be reformulated using the B-spline as following:

Li
tracking “ Li

trackingpPiq “
1

2
Pi

JHQ Pi ´ fJ
QPi , (10)

which is in quadratic form with control points Pi serving as decision variables.
Energy cost: To minimize the control energy spent along the trajectory, the
cost defined by summation of squared input sequences is presented as

Li
energy “

Np´1
ÿ

s“0

}ûirs|ks}R , (11)

whereR ą 0 denotes the weighted matrix for control action which is acceleration.
Similarly, the conversion of (11) above using the derivative formulas for with
control points of trajectory

ûirs|ks “ P
p2q

i Bp´2ptsq , (12)

which leads to a quadratic function for the energy:

Li
energy “ Li

energypPiq “
1

2
Pi

JHR Pi ´ fJ
RPi , (13)
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System dynamics constraints: For multi-agent navigation in a congested
environment, the agents are restricted to certain operating conditions which are
usually related to the dynamical limits of the agents. These constraints can
also benefit from the B-spline parameterization which leads to linear inequality
constraints.

Ai
dynPi ď bi

dyn, (14)

where Ai
dyn and bi

dyn come from a compact form of the following constraints:
umin ď ûirs|ks ď umax, vmin ď v̂irs|ks ď vmax, pmin ď p̂irs|ks ď pmax.
Collision avoidance constraints: Recall the locality property of B-spline
curves. For any sub-interval rτs, τs`1q, the curve is bounded to lie inside the
convex hull generated by the sequence tPi,s´d`1, . . . , Pi,su of d “ p` 1 consecu-
tive control points, i.e.,

p̂iptq P Ri,s, @t P rτs, τs`1q. (15)

For convenience, we have denoted Ri,s as the convex region spanned by the
sequence tPi,s´d`1, . . . , Pi,su.

A sufficient collision test from the viewpoint of the i-th agent is

Ds s.t. pRi,s ‘ ξiq X pRj,s ‘ ξjq ‰ H, @j ‰ i. (16)

where ξi “ tx ` pi | xJΘ´2x ď r2minu is the ellipsoid representing the safety
region of the agent with scaling matrix Θ. Making use of (15), we have that

Ri,s Ď
č

tPrτs,τs`1q

V̄iptq (17)

provides a sufficient avoidance condition. It is not easy to impose directly these
conditions for real-time implementation due to very high conservativeness of this
convex hull. Hence, it is necessary in our work to exploit the positivity properties
of B-splines and give extra feasibility by introducing slack variables as in [2],
which can be denoted as ϵi “ rϵi,1, ϵi,2, . . . , ϵi,NasJ P RNa . Hence, the following
collision avoidance constraints consider the control polygon over sub-interval as
showed in Fig. 2:

||Θ´1pPi,l´m ´ p̂jrℓ ` 1|k ´ 1sq|| ě rmin ` ϵi,j , @j ‰ i,m “ 0, . . . , d (18)

where ℓ is the closest anticipating step, at which agent detects potential collision
with condition: ||p̂irℓ ` 1|ks ´ p̂jrℓ ` 2|k ´ 1sq|| ă rmin.
The relaxation term ϵi,j determines violation level to the distance between the
two agents pi, jq.

ϵi,j “

"

ă 0 if j P N ℓ
i

“ 0 otherwise

To mitigate the violation, we introduce an augmented cost correspondingly

Lrpϵiq “

Na
ÿ

j“1

η ∥ ϵi,j ∥2 . (19)
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Equivalently, (18) can be reformulated using BVC as referring in (7)

Al
ijPi,l´m `

||dℓ
ij ||

2
ϵi,j ď blij ,@j ‰ i (20)

where Al
ij “ ´pΘ´2pp̂irℓ|ks ´ p̂jrℓ ` 1|k ´ 1sqqJ,

blij “ Al
ijp̂irℓ|ks ´

prmin´||dℓ
ij ||q||dℓ

ij ||

2 and dℓ
ij “ Θ´1pp̂jrℓ ` 1|k ´ 1s ´ p̂irℓ|ksq.

Furthermore, (20) is compactly rewritten as:

Al
iPi,l´m ` Dl

iϵi ď bli, @j ‰ i,m “ 0, . . . , d (21)

where Dl
i “ 1

2diag
`“

||dℓ
i1||, ||dℓ

i2||, . . . , ||dℓ
iNa

||
‰˘

.

Fig. 2: Generating trajectory for an agent with convexity of Bspline

Gathering all the aforementioned constraints and cost functions, we obtain a
standard quadratic programming problem with control points as decision vari-
ables as follow:

Minimize: LipPi, ϵiq “ Li
tracking ` Li

energy ` Lrpϵiq (22)

Subject to: p14q, p21q (23)

4 Simulation scenarios and performance analysis

This section presents some useful simulation scenarios for testing the distributed
planning algorithm proposed above. For the implementation of the optimal con-
trol problems (OCP) in (22), we use Matlab language with the open-source
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nonlinear optimization tool CasADi to resolve the quadratic programming. Let
us consider a system of aerial robots performing target tracking mission in a
bounded environment with dimension pmin “ r´1.8,´1.8, 0.0sJ and pmax “

r1.8, 1.8, 2.0sJ. The robots adhere to a safety gap rmin “ 0.3m with sizing
matrix is designated to identity Θ “ I3 for simplicity. We assess the pro-
posed distributed algorithm’s performance in two scenarios: a four-agent sce-
nario and an eight-agent scenario. This enables us to evaluate the algorithm’s
performance at different environmental densities. The values for weighted ma-
trices are chosen by tuning the cost function as defined in (8) and (11): Qs “

diagpr100, 100, 100sq, @s P t1, 2, . . . , Npu, R “ diagpr50, 50, 200sq and η “ 100
The parameters of the B-spline formulation is detailed in Table 1.

Table 1: Parameters for B-spline trajectory

Sampling time
h(s)

Degree of
B-spline p

No. control
points N ` 1

Prediction
horizon Np

0.2 3 6 15

Case 1: Square corner swapping for 4 robots (normal density)
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Fig. 3: Four robots exchanging position online. The diamond symbols represent
the targets being tracked by agents of the corresponding color.
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Case 2: 8 robots exchanging positions (high density)
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Fig. 4: Eight drones tracking the target position online.

In the above simulations, the circular regions depict safety zones with of
agents with radius rmin. The results in two cases are summarized in Table 2.
As anticipated, the algorithm enables safe navigation for a multi-robot system
within a confined space, achieving a termination time of less than 20 seconds.
However, as the number of agents increases, the minimum inter-agent distance
decreases, potentially reducing the feasibility of the problem. Therefore, the in-
troduction of soft constraints proves highly beneficial in enhancing the problem’s
feasibility.

Table 2: Simulation results for two scenarios

4 agents 8 agents

Termination time(s) 7.0 10.8

Minimum inter-agent
distance(m)

0.45923 0.28724

Average QP solving
time(ms)

13.875 18.354
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5 Conclusion

This paper explores the concept of parameterizing distributed Model Predictive
Control for multi-agent systems using B-spline curves to generate collision-free
trajectories in complex environments. The properties of B-splines, along with re-
laxation techniques and Voronoi partition enable real-time execution, as demon-
strated through several simulations provided. Future work will involve deploying
these concepts in real systems for validation.
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