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Fabienne Lagnier, Pascal Raymond
Verirnag Laboratory®
Rue Lavoisier, 38330 - Montbonnot St.Martin, France

Introduction

Synchronous programming [20, 14] is a useful approach to design reactive sys-
tems. A synchronous program is supposed to instantly and deterministically
react to events coming from its environment. The advantages of this approach
have been pointed out elsewhere [20]. Synchronous languages are simple and
clean, they have been given simple and precise formal semantics, they allow
especially elegant programming style. They conciliate concurrency (at least at
the description level) with determinism. They can be compiled into a very effi-
cient sequential code, by means of a specific compiling technique: The control
structure of the object code is a finite automaton which is synthesized by an
exhaustive simulation of a finite abstraction of the program.

Concerning program verification, it has been argued [8, 16, 29] that the
practical goal, for reactive programs, is generally to verify some simple logical
safety properties: By a safety property, we mean, as usual, a property which
expresses that something will never happen, and by a simple logical property,
we mean a property which depends on logical dependences between events,
rather than on complex relations between numerical values.

For the verification of such properties also, the synchronous approach has
some advantages: Since the parallel composition is synchronous, the desired
properties of a program can be easily and modularly expressed by means of
an observer, i.e., another program which observes the behavior of the first
one and decides whether it is correct. Thus, the same language is used to
write the program and its desired properties. The verification then consists in
checking that the parallel composition of the program and its observer never
causes the observer to complain. This verification can often be performed by
traversing the finite control automaton built by the compiler. This automaton is
generally much smaller than in the asynchronous case, where non-deterministic
interleaving of processes is likely to result in state explosion.
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An observer can also be used to express known properties of the program en-
vironment. As a reactive system is embedded into an environment with which
it tightly interacts, the environment must be strongly taken into account in
program design and verification. Generally, the critical properties of a reac-
tive system are only required to hold provided the environment also behaves
correctly, that is, under some assumptions about the environment. In [17], we
verified a very simple railways control system, and the most important part
was the description of the realistic behavior of the trains (they obey the sig-
nals, they do not jump from one track to another, etc.). In [16], we used this
ability of taking the environment into account in the verification, to propose
a modular verification technique: When two processes run in parallel, each of
them is part of the other’s environment; so any property which is proved about
one of them, can be used as an assumption about the other’s environment.

So, our verification approach can be summarized by three simple ideas:
(1) restriction to safety properties; (2) expression of these properties by means
of a synchronous, deterministic observer; (3) taking into account assumptions
about the environment. This paper is a survey of our specification and verifica-
‘tion techniques, in a very general, language independent, framework. Section 1
introduces a simple model of synchronous input/output machines, which will
be used throughout the paper. In section 2, we show how such a machine can
be designed to check the satisfaction of a safety property, and we discuss the
use of such an observer in program verification. In section 3, we use an observer
to restrict the behavior of a machine. This is the basic way for representing
assumptions about the environment. Applications to modular and- inductive
verification are considered. In modular verification, one has to find, by intu-
ition, a property of a subprogram that is strong enough to allow the verification
of the whole program without fully considering the subprogram. In section 4,
we consider the automatic synthesis of such a property, and in section 5, we
investigate the possibility of deducing the subprogram from such a synthesized
~ specification. .

1 Synchronous I/O machines

We first define an abstract model of synchronous reactive machines. We could
use a synchronous process algebra [27, 28, 1] as a basic formalism. but we
will see that non symmetric communication is essential for the definition of
observer: An observer can see the behavior of the program without modifying
it, i.e., without additional synchronization. So, we prefer to use a notion of
synchronous machine where inputs and outputs do not play a symmetric role.
In the following model, as in synchronous languages, outputs are non blocking
and synchronously broadcast. Moreover, we will need an explicit notion of
state, which lacks in process algebras.

1.1 Definitions

Let us consider a set S of signals, and let Eg = 25 be the set of events' on S.
An I/0 machine M is a 5-tuple (Qur, ¢0sr, Ine, O, 6ar) such that

1Evenl’.s, with the union operation, will play the role of the “monoid of actions” in synchronous process
algebras.



* (Jas is a set of states containing ¢0ys, the initial state;

¢ Ing C S, Oy C S are the disjoint sets of input and output signals, respec-
tively. -

e by C Qum x Ery, X Ep,, X Qur is the transition relation. When ﬁhere
is no ambiguity about the considered relation, we will often note “q %q' ”

instead of “(q,%,0,q') € ép” . .

Intuitively, in response to a sequence (iy,iy,...,4,,.:.) of input events, such
a machine returns a sequence (01,02,...,0y,...) of output events, such that
there exists a sequence (o, 1, - -, qn, - - ) of states, with ¢o = q0ps and for all

n>1, guo1 %’Leqn. The sequence ((i1 U 01), (is U 03), ..., (in U 0,),...) will
then be called a trace of the machine. : ,

Ifo = ((1U01),(i2U03), ..., (i, Uoy,)) is a finite trace, and (go, q1,. .., qn) is"
a corresponding sequence of states, we will note g0z —¢q,. For any state ¢, we

will note traces(q) the set {o | g0 ——q} of traces leading to ¢. This notation

is extended to sets of states: For any X C Qur, traces(X) = U ¢ x traces(q).

Let us note &5, the reaction function from Qu x Er,, into 2Eon>@m  defined
by ‘ ‘

8 = Ma, ) {(0,¢) [ (g,%,0,¢) € bu}

A reaclive machine cannot refuse a non-empty input event, and thus satisfies
the following property: Yq € Qup, Vi C Ing, 1 # 0 = 83,(q, %) # 0.

A deterministic machine has at most one possible reaction to a given input
event, and thus satisfies: Vg € Qar,Vi C Inr, |634(g,7)] < 1. For a deterministic

machine, we will note 6, (respectively 61%) the function giving, for a state ¢
and an input event 7, the output event o (resp. the next state ¢’) such that
(g,%,0,¢") belongs to .

We will use the usual precondition and postcondition functions, from 29 to
29Mm: For any X C Qur,

¢ posty(X) is the set of successors of states belonging to X:
| posty (X) = {¢' | 3¢ € X, 3i,0, ¢ -o¢'}
o prea(X) is the set of states having a successor state in X:

prey(X) = {¢ | 3¢ € X,3i,0, ¢ é—*ql}

o pregr(X) is the set of states having all their successors in X:

prey(X) = {q | Vi,Vo,V¢ such that ¢ i—»q’, ¢ € X}
Qum \ prep (Qur \ X)




1.2 Operations on I/O machines

Projection: Let M be an 1/O machine, and O’ C Opr. The p?,“ojécted ma-
chine M | O"is (Qur, 90, Ing, 0, 8"), where & = {(q,i,0n0",¢') | (¢,¢,0,¢') €
S} '

Obviously, if M is reactive (respectively, deterministic), so is M | O’.

Synchronous product: Let My and M, be two I/O machines, with O, N
Onr, = 0%. We define their synchronous product M;||M3 to be the I/O machine
M where

o Qum = Qum, X Qu,, ¢0nm = (¢0nr,,40n1,)
o Ing = (In, \ Om,) U(Ing, \ Ongy), Onr = Oy, U O,

. ((QI;Q2)’Z:0 (QDQZ)) € 6M <= (Q1)(ZUO) mIMl)OnOMl)Q]_) € 6M1
and (Q2)(ZUO) n IJVIzaOHOMwQZ) € um,

In other words, a transition of the product involves a transition of each ma-
chine, triggered by the global input signals and the signals emitted by the other
machine. .

1.3 Causality

With this very loose definition of the synchronous product, it can happen that
the product of two deterministic (respectively reactive) machines is not deter-
ministic (resp. reactive). This is the well-known problem of causality para-
dozes in synchronous languages [6, 26]. For instance, let Iy, = {z,y}, Iy, =
{z,z},0m, = {z} and Opr, = {y}. Then:

o Assume (see Fig.1.a) that ¢; -{—“—:—lg—}-—»ql and ¢ %%””11 are the only transitions
in 57, from state g1, and that gq iﬁj.qu and ¢ %—u}é’ are the only tran-

sitions in 8ps, from state go. If the input event {z} occurs when the product
machine M || My is in the state (1, g2), two different transitions can take place:

{=}

- either. M performs ¢; T—}—>q1 and then the emission of z forces the transi-
tion ¢» —x——}+q2 in Mg So the compound transition is (ql,qz) {x} YL (g, db);

- or, conversely, M, performs q2 %—%—)q% forcing the transition ¢; iﬂl}-ﬁg n

M;, and the resulting global transition is (ql, qg) } is(ql, 4Y).

So, in that case, the product of two deterministic machines is non deterministic.
o Assume now (Fig. 1.b) that ¢, i?—%laql and ¢1 {—‘;i—»q'l’ are the only transitions

in 6, from state g1, and that &, is as before. Now, if the input event {z}
occurs in the state (g1, ¢2), the global system has no legal behavior, since:

27T he restriction that parallel machines don’t share common output signals is for simplicity only. It does
not exist in Esterel {6] and Argos [26].



{z,9} n {z} {z.2} & (=} {}(ql’qz){}
r,y xr x,z x T x
/l/m {z}ﬂ 1" H /X/‘a {y}\ " - 1 41} {y}\/‘ 1"
q1 41 42 q2 (¢7,45) (41, ¢4

(a) Non determinism

q1

q2
{=z,y} {=} {=,2} {x}
/\4 a\‘ ” ,‘/0 {9}5‘ i

7 qf 5 a5

(b) Absence of reaction

Figure 1: Synchronous product

{z}

- if My performs g9 qu , then the emission of y forces the transition
q1 %%L»q’l in M. But‘now, since z is emitted, My should not have made
its transition.

- Conversely if M; performs ¢; i%}»»q’l’, since z is not emitted, My must
perform ¢ %ﬁ—»q’z’ and the emission of y forbids the transition of M.

So, in that case, the product of two reactive machines is not reactive.

An important feature of synchronous languages is that their parallel composi-
tion operator (synchronous product) introduces neither non-determinism nor
deadlock. Compile-time consistency checks insure that the compound machine
has a wnigue, minimal, reaction to each input event (see for instance [14] for
details): Let My and My be two deterministic and reactive 1/O machines, let
62,1, 51?,[2 be their respective output functions. When M;||M3 is in the state
(g1, g2) and receives an input event ¢, the output event o must satisfy k

0= 6](3[1(911, (tUo)NlIy,) U 61?42(@, (FU0) N Ing,)
i.e., be a fixpoint of the function ;
Az. 65 (g1, (1Uz) N Iar,) U 657, (g2, GU )N Ing,)

Causality problems come from the fact that this function is not always mono-
tone, and thus, may admit zero or several minimal fixpoints. Compile-time
consistency checks insure the existence and unicity of a least fixpoint, and the
synchronous product is defined by

(50(((11, q2),%) = px. 61?,11(q1, (fUz)NIy,) U 61%2((12, (TUz)N )

8%(q1,92),) = ( 65 (01, GU8((g1,42),9)) N Ia,)
5M2(%(iU5O((q1»92)»i))ﬂIMz) )




(where, as usual, pz.f denotes the least fixpoint of the function Az.f).

2 Observers of safety properties

In this section, we show how a safety property can be specified by means of a
synchronous observer. Such an observer is an 1/O inachine, taking as inputs
both the input and the output signals of the machine under observation, and
emitting an “alarm” signal as soon as the observed signals do not satisfy the

property.

2.1 Safety properties

A trace o on a set of signals S is a finite or infinite sequence of events on S. A
property on S is a set of traces on S. An I/O machine M satisfies a property
P if and only if each trace of M belongs to P. A property P on S is a safety
property if and only if:

o0 € P <= o' € P for any finite prefix ¢/ of ¢

In other words, a safety property is a prefix-closed (as expressed by the “="
implication above) and limit-closed (as expressed by the “<=" implication)
language on the vocabulary 2°.

2.2 Observer

Let P be a safety property on S. Let « (read “alarm”) be a signal not in
S. An observer of P is a deterministic and reactive 1/O machine Qp =
(Qar, 0., S, {a}, bn,), returning a sequence of empty output events as long
as it receives a sequence of input events which belongs to P. More precisely, let
o be a finite trace on S belonging to P (notice that the empty trace belongs to
any safety property). Let g, be the state that Qp reaches after reading o (if &
is the empty trace, ¢, is the initial state of Qp). Then, for any event e € 2%,

o [0 ifoe € P
5Qp(q0’e) “{ {a} otherwise

Let us assume also that any transition emitting « leads to a distinguished state
Qo

Now, a machine M satisfies a safety property P if and only if the compound
machine M||Q2p never returns any event containing «; or, equivalently, never
reaches an erroncous state belonging to Qar x {qo}. We will note Q¥ the set
Qum X (Qar\{ga}) of non erroneous states of M||2p.

A practical advantage of this approach, is that the properties are written in
the same language as the programs, and in fact, properties are programs. As
such, they can be executed and tested. An observer can be actually run with
the program, thus detecting any violation of the property (run-time checks).

Notice that this approach cannot be used with only an asynchronous compo-
sition, or at least, that it cannot be applied modularly. For instance, consider
the following property: “the signal b is emitied at least once between every



two successive emissions of the signal a ”. If this property is checked by an
- asynchronous observer, since the observer is not guaranteed to catch all the
signals, it can miss any occurrence of b. So, even if the property is satisfied, -
the observer can emit an alarm. To check such a property of an asynchronous
program, one must add some synchronization code all along the transitions of
the observed program, since otherwise, the asynchronous product does not en-
sure that all the transitions will be observed. When verifying a program, such
modifications are of course harmful, since one cannot be sure that the verified
program behaves the same once the additional code is removed. This contra-
dicts G. Berry’s “wyPIWYE” principle (“what you prove is what you ezecute”)
which fully applies in the synchronous case.

2.3 Application to program verification

The verification that a machine M satisfies a safety property P now amounts to
proving that the machine M’ = M||Qp never returns any event containing c.
So, any safety property has been translated into an inveriani. More precisely,
one has to prove that the set Reach(M') of M’ reachable states is included in
the set @¥ of non erroneous states of M’. Reach(M') is classically defined as
a least fixpoint:

Reach(M') = puX .{q0n} U posty; (X)

Let us list the advantages of this expression of the verification problem, accord-
ing to various verification methods:

State enumeration: For finite state systems, state enumeration techniques
(enumerative model-checking) have been widely experimented [31, 11]. In gen-
eral, these techniques involve the construction of the whole state graph of the
program, and its memorization for the analysis of frace properties. Now, since
the problem has been reduced to the analysis of a state property (an invariant),
the state graph needs only to be traversed. Particularly efficient techniques are
available (e.g., [18]) for such a traversal.

Reduction technigues: The drawback of state enumeration techniques is the
explosion of the number of states, as the size of the program increases®. Other
approaches [7] consist in building a reduced state graph, according to some
observation criteria. Now, in our approach, the machine of interest is not
really M||Qp, but rather (M||Q2p) | «, since we are only interested in the
presence of the signal . This is an obvious observation criterion. So, in
contrast with classic model-checking, the property is taken into account in the
state graph generation. Assume the property is satisfied, then the minimal state
graph of (M||Qp) | o has only one state (it is the “always silent” automaton).
Algorithms for generating a minimal state graph have been proposed [5, 25].
When applied to our simple verification problem, these algorithms amount
to proving that the initial state belongs to the greatest invariant Invar(Q¥)
included in Qy, i.e., the greatest part of Q¥ from which the transition relation

3Notice that the state explosion is more important in an asynchronous system, because of the non
deterministic interleaving of asynchronous transitions.




does not permit to go out. This greatest invariant is wellknown to be a greatest
fixpoint:
Invar(Q¥) = vX.Q¥ n pTearnp (X)

Approzimate analysis: When infinite state systems are considered, approxi-
mate methods (and, in particular, abstract interpretation techniques [9, 10])
can be applied to compute approximations of the set Reach((M||Qp) | @). If
an upper approximation of this set is included in Q¥ this proves that the erro-
neous states cannot be reached (see [13] for an application of such a method).
If a lower approximation intersects the complement of Q¥ | an error is detected.

In the remainder of the paper, we will essentially consider finite state ma-
chines, so all the considered fixpoints will be (theoretically) computable. In the
following section, we will see that property observers can also be used to take
into account known properties of the program environment.

"3 Taking the environment into account

The main feature of reactive systems is that they tightly interact with their
environment. As a consequence, the properties of the environment must be
carefully taken into account in the design and verification of such a systemn.
A reactive system is not intended to work in an erbitrary environment. In
general, system specifications contain a lot of informations about the behavior
of the environment, which are the hypotheses under which the design must take
place. These known properties about the environment can involve not only the
inputs of the system, but also its outputs, since the environment responds to the
system. So, in general, among the set of traces of an 1/O machine, only some
of them are “realistic”, i.e., satisfy the assumptions about the environment. In
this section, we show how the behavior of an I/O machine can be restricted
by a safety property, in order to take such assumptions into account in the
verification process. -

3.1 Behavior restriction

Given a safety property A (assumption) of the environment of M, our goal
is to define a restricted machine M’ having exactly the same behaviors as M
composed with any environment satisfying A: the set of traces of M’ must be
the intersection with A of the set of traces of M.

Restriction: Let M be an I/O machine, and Q4 be an observer of a safety
property A on the set S = Iy U Oy of input/output signals of M. Let
M' = M||Q4. We define the restriction M/Q4 to be the I/O machine
(QZ\/I’)qOM’: IM: OM; 61)) where §' = {(Q) i) 0, q,) € 6M’ ] [ ¢ O}

Obviously, the restricted machine M/ 4 is generally not reactive, even if M
is reactive: The restriction takes into account a property of the environment,
and thus, refuses some unrealistic inputs. However, it can happen that in
some states of the restricted machine, all the input events are refused. So,
the restricted machine deadlocks, a highly undesirable situation in reactive



systems. One can consider this as an error in the expression of the assumption
A. However, we adopt another point of view: When restricting a machine M
with an assumption A, the user intends to consider all the infinite traces of
M that satisfy A. So, the machine must not enter any path in M/Q4 which
inevitably leads to a deadlock state. We define now another restriction, called
non-blocking restriction, which has the intended behavior:

Non-blocking restriction: Let M be an 1/O machine, and €4 be an ob-
server of a safety property A on the set S = Ips U Op of input/output signals
of M. Let M' = M||Q24. Let us call sinky the set of states of M’ leading
inevitably to the violation of A:

sinka = pX.prey ((Q@m % {ga}) U X)

Then, if qOpp ge‘ sinka, we define M/ Q4 to be the I/O machine
(Qnrr \ sinka,q0nrr, Inr, Onr, 6"), where

8" = 5M' N ((QMIV\ sinkA) X E]M X EOM X (QM’ \ SinkA))
= {(Q)Zy 0, q/) € 6M’ 1 q, q/ € SinkA and o ¢ O}

One can notice that, if M is deterministic, M/ Qa = M/Qiraces(Q,,i\sinka)-
So, the property A has been strengthened into the other property
A" = traces(Qum- \ sink4) which cannot block the machine M: Any finite trace
satisfying A’ leads to state of M which has at least one outgoing transition
preserving A’. /

3.2 Application

As before, a direct use of this way of expressing assumptions by an observer, is
to execute the observer with the program, thus checking at run-time that the
assumptions are satisfied. The restriction can also be used for program testing,
to use only testcases corresponding to realistic scenarios. We consider now the
use of restriction in the verification process:

Verification under assumptions: Given an I/O machine M, a safety as-
sumption A about its environment, and a safety property P, one can prove that
M satisfies P provided the environment satisfies A, by

1. proving that (M/ Q4) has some behaviors, i.e., that the initial state of
M||S24 does not belong to sink 4. Otherwise, the assumption and the pro-
-gram are contradictory.

2. verifying that the machine ((M/,Q4)||Q2p) | {a} emits only empty events
(Of course, here, « is the alarm signal of Qp).

Modular verification: Any sub-process of a compound system sees the re-
mainder of the system as a part of its own environment. The ability to take
the environment into account allows modular verification: Having proved a
property about a sub-process, one can use this property in the verification of
the remainder of the system. More precisely, let My, My be two machines, and
let P be a safety property we want to prove about Mq||M,. Assume another




safety property P’ has been proven about Mj alone. Then if M/ Qp/ satisfies
P, so does M1||M;. This amounts to considering M> as the environment of
M;. Of course, assumptions about the global environment can also be taken
into account. With a little additional hypothesis (see [2] and the “decompo-
sition theorem” of [23]), which amounts to the absence of causality problems,
one can even use a seemingly circular reasoning, which consists first in proving
a property Py of My under the assumption that M, satisfies Py, and then in
proving that A satisfies Py assuming M, satisfies Ps.

Inductive proofs: Moreover, the modular verification technique can be ex-

. tended to the inductive verification of regular networks of processes [34, 16].

Assume one wants to prove a safety property P of the machine

M|M||...||M
[ L A
n times

for any n > 1. This can be done by finding a property P’ such that (1) M
satisfles P’, (2) (M/ Qp/) satisfies P, and (3) P’ implies P. (1) proves that P’
holds for n = 1, (2) proves that, if P’ holds for n, then it holds for n + 1. So,
P’ holds for any n, and from (3), so does P. Point (3) can be established by
proving that the machine x(I,0)/ Qp: satisfies P, where ‘

X(I9O) = ({Q}:QJI»O: {q} x Ep x Eg x {q})

is the “chaos” machine which completely non deterministically returns any
event of Fp whatever be its input event from Ej. Of course, as for modular
verification, a crucial problem is the choice of the property P’. It is considered
in the next section.

4 Specification synthesis |

Let us come back to modular verification: Given two machines M; and M>, and
a safety property P on .S = Ipr, UOp, U Ipr, U Opy,, one must find a property
P’ on Sy = Ipr, U Opy, such that

1. M, satisfies P/, and
2. My Qpr satisfies P

Moreover, the proof of each of the above points is expected to be easier than
the global proof that M;||M; satisfies P.

This section deals with the synthesis of such a property P’, satisfying the
point (2) above by construction, when all the involved machines are finite state. -

First, we need some additional definitions: Let o = (e1,e3,...,€,,...) be a
trace on S. We define the projection of o on a set S’ of signals to be the trace
olS =(e1nNS,ean&, ..., en NS, ..). The projection on S’ of a set T of
traces 18 T'| S = {c|S | o €T}. If T'is a set of finite traces on S, we note
C(T) the set of traces on .S which do not have any prefix in T'. Obviously, C(T")
. 18 a safety property.

The intuitive method to find P’ is the following: Replace M3 by the “chaos”
machine x(Ipr,, Opr,). I My||x(Inr,, Opr,) satisfies P, the machine My does not



influence the satisfaction of P (i.e. we can take P’ = true) and we are done.
Otherwise, M1||x(Ipr,,Om,) can reach some erroneous states, and the role of
My is to forbid the traces leading to those states. But, for doing so, Ma can
only restrict its own signals (P’ cannot involve signals that My cannot see).

More precisely: If Reach(M;]|2p) does not intersect Qar, x {ga}, let P’ =
true. Otherwise let Tepr = traces(Qar, X {qa}) be the set of erroneous traces.
The following proposition states that C(Terr | S2) is a necessary and sufficient
property that M, must satisfy so that M;||M> satisfies P:

Proposition: Let P! = C(Tere | S2). Then My | P <= M1|]]\4[2 = P.

Proof: Let o[n] denote the nth prefix of a trace o.

(=): If My = P’, then every trace o of M1}|M2 satisfies 0 | Sy € C(Terr | S2)-
So, Vn, (0| S2)[n] & Terr | Sa, and since (o | S2)[n] = (0[n] | S2), Vn,o(n] & Ter-
ThlS means that o € P.

(<==): Assume M, does not satisfy P’, and let o be a trace of Mg not belongmg
to P'. Then, there exists n such that cf[ ] € (Tere | S2), and there exists a trace
o' € Ten such that o[n] = (¢'[n]) | (S2). So, the finite trace o’[n] is compatible
with both M; and M, and leads to the violation of P. O

Remark: P' = C(Tyy | S2) is stronger than P = C(Terr) 1 S5, A trace o of
M2 can be the common projection of two traces o/ and o' of M;||M,, with
o' € C(Terr) and 0" & C(Tery). In that case, o belongs to P (as the projection
of ¢') and not to P’.

Stronger specifications: However, the necessary and sufficient property
P’ = C(Tere | S2) is sometimes too complicated to be interesting: As a matter
of fact, an observer of P’ can be as complicated as M;||Qp. In that case the
proof that Ms satisfies P’ is not easier than the proof that M;||M, satisfies
P, so nothing is gained with modular proof. Now, any stronger property than
P’ can be tried. Such a stronger property P” will still ensure that .M/ Qpn
satisfies P, but, since it is no longer a necessary property, one cannot conclude
that. M;]|Ms does not satisfy P if My does not satisfy P .

The basic technique to build such a stronger property P is the following:
Let us note the function AT. C(T | S3) by “avoid”. Thus, P’ = avoid(Ter).
Then, for any set 7" of traces containing Tur, (i.e., for any upper approximation
of Tery), avoid(T') is stronger than P’.

5 Module synthesis

In the preceding section, we have outlined a method to find a property P’ such
that, for any machine M, satisfying P’, M:||M, satisfies P. P’ has been only
deduced from M; and P, so, it could be built even before M5 is designed. So, the
next question is: can My be synthesized from P’, considered as a specification?
In the finite state case, this is theoretically possible: The specification must be
strengthened to become ezecutable. P’ has been constructed so as to concern
only the input/output signals of M3. Now, an additional constraint is that
My must preserve P’ by controlling only its output signals. In each reachable
state, and whatever be the received input event (possibly satisfying an input
-assumption), Ma must be able to perform a transition preserving P’.




Executability: A property P on a set of signals S = TUOQ is ezecutable with
respect to (I, 0), if and only if for any finite trace ¢ € P, for any input event
i € Ep, there exists an output event o € Eo such that .(iU o) € P. For any
safety property P, there exists a weakest executable safety property, implying
P. It will be noted £(P).

Relative precondition: Let P be a safety property on TUO and Qp be an
observer of P. For any X C Qq,, we define

pref;P(X) ={¢|ViCI,30C O,c‘igp(q,iUO) € X}

In other words, pre (X) is the set of states which can lead into X (in one
step) whatever be the input event received in these states.

Executable strengthening: Let Eze = vX.prel, (X)\ {qa}. Then Eze
does not contain the erroneous state g4, and

Vg € Eze, Vi C I, 30 C O, such that 68P(q,iu 0) € Ege

Moreover, Eze is the largest-set of states satisfying this property. As a con-
sequence, a restriction of Qp which detects any trace going out of Eze is an
observer of £(P). Another consequence is that x(O, I)/Qg(p) is the most gen-
eral reactive machine satisfying P. Notice that Eze can be empty, which means
that P is not realizable in the sense of [3]: There is no machine on (I, O) pre-
serving P against any environment.

Conclusion

Many ideas that have been presented are specializations and simplifications of
previous works. For instance:

¢+ The specification of properties by means of a synchronous observer is very
close to the approach of COSPAN [24], which takes also into account live-
ness, both in the program and the properties.

¢ Several verification approaches take into account the environment, é.g., [21]
[2] [22], and some of them propose modular methods. The “don’t care sets”
considered in hardware design and verification [4, 12] are also a way of
expressing assumptions about the environment.

» The synthesis problems considered in Sections 4 and 5 have been dealt with
in several papers — both in control theory [32, 33, 19], and in computer
science [30, 3] — and often extended to cope with liveness properties.

Our simplifications consist in considering safety properties of synchronous sys-
tems. They are suggested by the application field we have in mind: The syn-
chronous model has been shown to be very convenient for the design of reactive
systems. In general, most liveness properties are introduced for one of the
following reasons:

¢+ To abstract a real-time constraint: For instance, one replace a deadline
property by the requirement that something “eventually occurs”. Now,



in reactive systems, such real-time constraints may not be abstracted, in
general: the constraint “an elarm must be sent within 2 milliseconds after
the detection of a dangerous situation” may not be replaced by “the alarm
must eventually occur”! :

To restrict the asynchronous semantics: In asynchronous models, con-
currency is modelled by non-deterministic interleaving, and this non-
determinism must be restricted by fairness constraints. Obviously, this
problem does not exist in the synchronous model. In asynchronous systems,
compositionality is also achieved by allowing arbitrary (but fair) “stutter-
ing” of processes. The synchronous model is obviously compositional thanks
to zero-time, simultaneous, reactions. '

°

Now, these simplifications are certainly fruitful, from a practical point of view.
They increase the performances of the automatic tools: For instance, for fi-
nite state methods, the synchronous model drastically reduces the size .of the
considered state graphs; safety properties can be checked by a graph traver-
sal, without storing any path. To specify a safety property by means of an
observer, one doesn’t need to use — and to learn — any other language than
the programming language used to write the program. All these ideas are un-
der implementation in the Lustre- Saga software development system [15], and
actual industrial experimentations are going on.
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