
HAL Id: hal-04683965
https://hal.science/hal-04683965v1

Submitted on 2 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronous Observers and the Verification of Reactive
Systems

Nicolas Halbwachs, Fabienne Lagnier, Pascal Raymond

To cite this version:
Nicolas Halbwachs, Fabienne Lagnier, Pascal Raymond. Synchronous Observers and the Verification of
Reactive Systems. Third Int. Conf. on Algebraic Methodology and Software Technology, AMAST’93,
Jun 1993, Twente, Netherlands. pp.83-96, �10.1007/978-1-4471-3227-1_8�. �hal-04683965�

https://hal.science/hal-04683965v1
https://hal.archives-ouvertes.fr

Synchronous Observers and
the Verification of Reactive Systems

Nicolas Halbwachs
Verimag Laboratory* and Stanford University^

Fabienne Lagnier, Pascal Raymond
Verimag Laboratory*

Rue Lavoisier, 38330 - Montbonnot St.Martin, France

Introduction

Synchronous programming [20, 14] is a useful approacli to design reactive sys-
tems. A synchronous program is supposed to instantly and deterministically
react to events coming from its environment. The advantages of this approach
have been pointed out elsewhere [20]. Synchronous languages are simple and
clean, they have been given simple and precise formal semantics, they allow
especially elegant programming style. They conciliate concurrency (at least at
the description level) with determinism. They can be compiled into a very effi-
cient sequential code, by means of a specific compiling technique: The control
structure of the object code is a finite,automaton which is synthesized by an
exhaustive simulation of a finite abstraction of the program.

Concerning program verification, it has been argued [8, 16, 29] that the
practical goal, for reactive programs, is generally to verify some simple logical
safety properties: By a s.afety property, we mean, as usual, a property which
expresses that something will never happeii, and by a simple logical property,
we mean a property which depends on logical dependences between events,
rather than on complex relations between numerical values.

For the verification of such properties also, the synchronous approach has
some advantages: Since the parallel composition is synchronous, the desired
properties of a program can be easily and modularly expressed by means of
an observer, i.e., another program which observes the behavior of the first
one and decides whether it is correct. Thus, the same language is used to
vvrite the program and its desired properties. The verification then consists in
checking that the parallel composition of the program and its observer never
causes the observer to complain. This verification can often be performed by
traversing the finite control automaton built by the compiler. This automaton is
generally much smaller than in the asynchronous case, where non-deterniinistic
interleaving of processes is likely to result in state explosion.

Verimag is a joinfe laboratory of CNR.3, Institut National Polytechnique de Grenoble, Universite

J. Fourier and Verilog SA associated with IMAG.
^This work was performed while the first author was on lea.ve in Stanford University, partially supported

by the Department of the Navy, Office of the Chief of Naval Research under Grant N00014-91-J-1901, and

by a grant from the Stanford Office of Technology Licensing. This publication does not necessarily reflect
the position or the policy of the U.3. Government and no official endorsement of this work should be

inferred.

An observer can also be used to express known properties ofthe program en-
vironment. As a reactive system is embedded into an environment with which
it tightly interacts, the environment must be strongly taken into account in
program design and verification. Generally, the critical properties of a reac-
tive system are only required to hold provided the environment also behaves
correctly, that is, under some assumptions about the environment. In [17], we
verified a very simple railways control system, and the most important part
was the description of the realistic behavior of the trains (they obey the sig-
nals, they do not jump from one track to another, etc.). In [16], we used this
ability of.taking the environment into account in the verification, to propose
a modular verification technique: When two processes run in parallel, each of
them is part oft'he other's environment; so any property which is proved about
one of them, can be used as an assumption about the other's environment.

So, our verification approach can be summarized by three simple ideas:
(1) restriction to safety properties; (2) expression of these properties by means
of a synchronous, deterministic observer; (3) taking into account assumptions
about the environment. This paper is asurvey ofour specification and verifica-
tion techniques, in a very general, language independent, framework. Section 1
introduces a siniple model of synchronous input/output machines, which will
be used throughout the paper. In section 2, we show how such a machine can
be designed to check the satisfaction of a safety property, and we discuss the
use ofsuch an observer in program verification. In section 3, we use an observer
to restrict the behavior of a machine. This is the basic way for representing
assumptions about the environment. Applications to modular and inductive
verification are considered. In modular verification, one has to find, by intu-
ition, a property of a subprogram that is strong enough to allow the verification
of the whole program without fully considering the subprogram. In section 4,
we consider the automatic synthesis of such a property, and in section 5, we
investigate the possibility of deducing the subprogram from such a synthesized
specification.

1 Synchronous 1/0 niachines

We first define an abstract model of synchronous reactive machines. We could
use a synchronous process algebra [27, 28, 1] as a basic formalism. but we
will see that non symmetric communication is essential for the defiiiition of
observer: An observer can see the behavior of the pTogiavciwithout modifying
it, i.e., without additional synchronization. So, we prefer to use a notion of
synchronous machine where inputs and outputs do not play a symmetric role.
In the following model, as in synchronous languages, outputs are non blocking
and synchronously broadcast. Moreover, we will need an explicit notion of
state, which lacks in process algebras.

1.1 Definitions

Let us consider a set 5' of signals, and let Es = 2s be the set of events1 on S.
An 1/0 machine M is a 5-tuple (QM, qOM, IM,OM, ^Af) such that

Events, with the union operation, will play the role of the "mondid of actions" in synchronous process
;ebras.

* QM is a set ofstates containing ^OM, the initial state;
* IM C S, OM C S are the disjoint sets of iiiput and output signals, respec-

tively. '

» SM C QM x EI^, x £'OM x OM is the transition relation. When there
is no ambiguity about the considered relation, we will often note "g —^q'

instead of "(g, i, o, q) G SM"•

Intuitively, in response to a sequence (i'i,t'2,.. .,i'ni • ••) of input events, such
a machine returns a sequence (01,02,.. .,0n,...) of output events, such that
there exists a sequence (go,<?i, • • •;<?n, • • •) of states, with qo = qOM and for all
n > 1, g.n-i ^<ln- The sequence ((?i U oi),(i2 U 02), ...,(?'„ U On),...) will

then be called a trace of the machine.
Ifo- = ((!iUoi),(i2Uo2),...,(?nUOn)) is a finite trace, and {qo,qi,.. • ,qn) is

a corresponding sequence ofstates, we will note qQM—^ln-For any state q, we
will note traces(q) the set {o- qOM—>ll}of traces leading to q. This notation
is extended to sets ofstates: For any X C QM, iraces(X) = U^g^ traces(q).

Let us note 5^. the reaction funciion from QM x -E'/M into 2 CIMX13M, defined
by

6M = A(9> ?)-{(0> g') 1 (9.a> °> g') £5M}

A reactive machine cannot refuse a non-enipty input event, and thus satisfies
the following property: Vg G QM,V»C IM, i -^ 0 ===» ^(^' O T£ ^-

A deterministic machine has at most one possible reaction to a given input
event, and thus satisfies: Vg G QM,V? C IM, ^M(Si ?") $ ^- For a deterministic
machiiie, we will note S^ (respectively S^j) the function giving, for a state q
and an input event i, the output event o (resp. the next state q') such that
(q,i,o, q) belongs to SM-

We will use the usual precondition and postcondition functions, from 2^M to

* post^f(X) is the set ofsuccessors ofstates belonging to X:

posiM^X) = {q' | 3q^X,3i,o, q ^q'}

* prejy-(X) is the set of states having a successor state in X:

prc^(X) = {g | 3g/eX,3i,o,g^'}

pre^f(X) is the set of states having all their successors in X:

prreM(X) = {q | Vi,Vo,Vg/ such tliat g ^g', g' £X]

QM\preM(QM\X)

1.2 Operations on 1/0 machines

Projection: Let M be an 1/0 machine, and O C OM- The projected ma-
chzne M J. O' is (QM^OM, IM, O', 6'), where S' = {(q, i, oHO',q') | (q, i, o, q') €
SM}-

Obviously, if M is reactive (respectively, deterministic), so is AI [O'.

Synchronous product: Let MI and My, be two 1/0 machines, with 0Mi n
OM, = 02- We define their synchronous produci. Mi\\My to be the 1/0 machine
M where

• QM = Qjhfi X QM^ , qOM = (gOMiigOMs)
• IM = (IM, \ OM.) U (JM. \ OM,) , OM = OMi U OM.
• ((9i, 92), i, o, (q[, gg)) €^M <^==> (gi, (»u o) n ZMi,on OMi, gi) €^Mi

and (gz, (i U o) n IM^ , o H OM-, , 32) £^
In other words, a transition of the product involves a transition of each ma-
chine, triggered by the global input signals and the signals emitted by the o'ther
machine.

1.3 Causality

With this very loose definition ofthe synchronous product, it can happen that
the product of two deterministic (respectively reactive) machines is not deter-
ministic (resp. reactive). This is the well-known problem of causality para-
doxes in synchronous languages [6, 26]. For instance, let IM^ = {x,y},lMs =

{x,z],OMi = {z} and OMZ == {y}- Then:

• Assume (see Fig.l.a) that gi g fq[and gi ^-'•g'/ are the oiily transitions

in SMI from state gi, and that ga g)92 all(l 92 ^^ 'g^ are the only tran-

sitions in SM^ from state gz- K the input event {.c} occurs when the product
inachine Mi||Af2 is in the state (gi, 92), two different transitions can take place:

- either MI performs gi]^ >g^ and then the emission of z forces the transi-

tioii 92
'^)?2 m ^2- So the compound transition is (gi, gz) ^^ >(gii/, $2);

- or, conversely, My performs qy ^^ >g^/, forcing the transition gi g'/—)'3'iin

Mi, and the resulting global transition is (qi,q^))^{ '(g^, g^).

So, in that ca.se, the product oftwo deterministic machines is non deterministic.

• Assume now (Fig. l.b) that gi j'^J—giand gi •q{ are the only transitionsw
in §Mi from state gi, and that SM, is as before. Now, if the input event {x}
occurs in the state (gi, 92)1 the global system has no legal behavior, since:

The restriction fehat parallel machines don't share commonoutput signals Is for simplicity only. It does
not exist in Bsterel [6] and Argos [26].

(b) Absence of reaction

Figure 1: Synchronous product

- if M-i performs gz s.,{ 'Sa' ; *'len <Jhe emission of y forces the transition

{x,y9i j^ ^•9'i in A^i- But now, since ^ is emitted, Mz should not have made

its transition.
-Conversely if Afi performs gi

'l^J
>g'/, since 2: is not emitted, Afg must

Mperform q^]„{ 'qy and the emission of y forbids the transition of Afi.

So, in that case, the product of two reactive machines is not reactive.

An important feature of synchronous languages is that their parallel composi-
tion operator (synchronous product) introduces neitlier non-determinism nor
deadlock. Compile-time consistency checks insure that the compound machine
has a unique, minimal, reaction to each input event (see for instance [14] for
details): Let Mi and My be two deterministic and reactive 1/0 machines, let
S^ , S^ be their respective output functions. When Mi\\My is in the state

(liiV'i) ancl receives an input event i, the output event o must satisfy

• o = 6^qi,(i U o) n JM>) U 5^(g2, (»"U o) n JM,)

i.e., be a fixpoint of the function

\x. 5^(gi, (i U a;) n JM,) U S^(qy, (i Ux)H JM,)

Causality problems come from the fact that this function is not always mono-
tone, and thus, may admit zero or several minimal fixpoints. Compile-time
consistency checks insure the existence and unicity of a least fixpoint, and the
synchronous product is defined by

6°((qi,q2),i) = ^x. 5^(gi, (i U x) H JMJ U 5^(g2, {iUx)H JM,)

^(('?i,92),0= (^(gi,(iU$°((gi,g2),Q)nJMO,

^(g2,(<U5°((gi,g2),0)nJMj)

(where, as usual, ^ix.f denotes the least fixpoint ofthe function Xx.f).

2 Observers of safety properties
In this section, we show how a safety property can be specified by means of a
synchronous observer. Such an observer is an 1/0 machine, taking as inputs
both the input and the output signals of the machine under observation, and
emitting an "alarm" signal as soon as the observed signals do not satisfy the
property.

2.1 Safety properties
A 'trace o- on a set of signals 5 is a finite or infinite sequence of events on S. A
property on 5 is a set of traces on 5. An 1/0 machine M satisfies a property
P if and only if each trace of M belongs to P. A property Pon 5 is a safeiy
properiy if and only if:

a E P •^==> cr G P for any finite prefix o-' of o-

In other words, a safety property is a prefix-closed (as expressed by the "===>"

implication above) and limit-closed (as expressed by the "<==" implication)
language on the vocabulary 2s.

2.2 Observer

Let P be a safety property on S. Let a (read
"alarm") be a signal not in

S. An observer of P is a deterministic and reactive 1/0 machine ftp =

(QsZp,<l0^p,S, {0;}, $np), returning a sequence of empty output events as long
as it receives a sequence ofinput events which belongs to P. More precisely, let
(T be a finite trace on S belonging to P (notice that the empty trace belongs to
any safety property). Let q^ be tlie state that ftp reaches after reading a (if o"
is the empty trace, qg is the initial state of Qp). Theii, for any event e 6 os

^p(^,e)=
{a}

ifo-.e € P
otherwise

Let us assume also that any transition emitting a leads to a distinguished state
Sa.

Now, a machine M satisfies a safety property P if and only ifthe compound
machine M||ftp never returns any event containing a; or, equivalently, never
reaches an erroneous state belonging to QM x {qa}. We will note Q^ the set
QM x (Onp\{ga}) ofnon erroneous states oi M\\^lp.

A practical advantage of this approach, is that the properties are written in
the same language as the programs, and in fact, properties are programs. As
such, they can be executed and tested. An observer can be actually run with
the program, thus detecting any violation ofthe property (run-time checks).

Notice that this approach cannot be used with only an asynchronoys compo-
sition, or at least, that it cannot be applied modularly. For instance, consider
the following property:

"ihe signal b is emitted ai leasi once beiween every

two successive emissions of the signal a ". If this property is checked by an
asynchronous observer, since the observer is not guaranteed to catch all the
signals, it can miss any occurrence of b. So, even' if the property is satisfied,
the observer can emit an alarm. To check such a property of an asynchronous
program, one must add some synchronization code all along the transitions of
the observed program, since otherwise, the asynchronous product does not en-
sure that all the transitions will be observed. When verifying a program, such
modifications are of course harmful, since one cannot be sure that the verified
program behaves the same once the additional code is removed. This contra-
dicts G. Beny's "WYPIWYE"

principle ("what you prove is what you execute")
which fully applies in the synchronous case. .

2.3 Application to prograni verification

The verification that a machine M. satisfies a safety property P now amounts to
proving that the machine Af' = M||ftp never returns any event containing a.
So, any safety property has been translated into an invariant. More precisely,
one has to prove that the set Reach(M) of M reachable states is included in
the set Q^ ofnon erroneous states ofM'. Reach{M.') is classically defined as
a least fixpoint:

Reach{M') = ^X.{gOM'} U pos^,(Z)

Let us list the advantages ofthis expression ofthe verification probleni, accord-
ing to various verification methods:

Siate enumeration: For finite state systems, state enumeration techniques
(enumerative model-checking) have been widely experimented [31, 11]. In gen-
eral, these techniques involve the construction of the whole state graph of the
program, and its memorization for the analysis of trace properties. Now, since
the problem has been reduced to the analysis ofa state property (an invanant),
the state graph needs only to be traversed. Particularly efficient techniques are
available (e.g., [18]) for such a traversal.

Reduction techniques: The drawback of state enumeration techniques is the
explosion of the number ofstates, as the size of the program increases . Other
approaches [7] consist in building a reduced state graph, according to some
observation criteria. Now, in our approach, the machine of interest is not
really M ftp, but rather (M||Qp) [a, since we are only interested in the
presence of the signal a. This is an obvious observation criterion. So, in
contrast with classic model-checking, the property is taken into account in the
state graph generation. Assume the property is s&tisfied, then the minimalstate
graph of (M||0p).|.o' has only one state (it is the "always silent" automaton).
Algorithms for generating a minimal state graph have been proposed [5, 25].
When applied to our simple verification problem, these algorithms amount
to proving that the initial state belongs to the greatest invariant Invar(Qjs)
included in Q^, i.e., the greatest part ofQ^ from which tlie transition relation

No6ice that the state explosion is more important in an a-synchronous system, because of 6he non
deterministic infeerleaving of asynchronou.s transitions.

does not permit to go out. This greatest invariant is wellknown to be a greatest
fixpoint:

Inmr(Q^} = ^X.QJIH preM^(X)

Approximaie analysis: When infinite state systems are considered, approxi-
mate methods (and, in particular, abstraci interpretaiion techniques [9, 10])
can be applied to compute approximations of the set AeacA((Af||Op) J. a). If
an upper approximation of this set is included in Q^, this proves that the erro-
neous states cannot be reached (see [13] for an application ofsuch a method).
If a lower approximation intersects the complement of Q^, an error is detected.

In the remainder of the paper, we will essentially consider finite state ma-
chines, so all the considered fixpoints will be (theoretically) computable. In the
following section, we will see that property observers can also be used to take
into account known properties of the program environment.

3 Taking the environment into account

The main feature of reactive systems is that they tightly interact with their
environment. As a consequence, the properties of the environment must be
carefully taken into account in the design and verification of such a system.
A reactive system is not intended to work in aii arbiirary environment. In
general, system specifications contain a lot of informations about the behavior
ofthe environment, which are the hypotheses under which the design must take
place. These known properties about the environment can involve not only the
inputs ofthe system, but also its outputs, since the environment responds to the
system. So, in general, among the set of traces of an 1/0 machine, only some
ofthem are "realistic", i.e., satisfy the assumptions about the environment. In
this section, we show how the behavior of an 1/0 machine can be restricted
by a safety property, in order to take such assumptions into account in the
verification process.

3.1 Behavior restriction

Given a safety property A (assumption) of the environment of M, our goal
is to define a restricted machine Af' having exactly the same behaviors as M
composed with any environment satisfying A: the set of traces of M must be
the intersection with A of the set oftraces of M.

Restriction: Let M be an 1/0 machine, and OA be an observer of a safety
property A on the set 5 = JM U OM of input/output signals of M. Let
M' = Af ^A- We define the restriction M/^IA to be the 1/0 machine
(QMI,qOMI,lM,OM,6'),whew S'= {(q,i,o,q') ^SM' \ a ^ o}

Obviously, the resfricted machine M/^A is generally not reactive, even ifAf
is reactive: The restriction takes into account a property of the environment,
and thus, refuses some unrealistic inputs. However, it can happen that in
some states of the restricted machine, all the inpui events a.re refused. So,
the restricted machine deadlocks, a highly undesirable situation in reactive

systems. One can consider this as an error in the expression of the assumption
A. However, we adopt another point of view: When restricting a machine M
with an assumption A, the user intends to consider all the infiniie traces of
M that satisfy A. So, the machine must not enter any path in M/Q.A which
inevitably leads to a deadlock state. We define now another restriction, called
non-blocking resiriction, which has the intended behavior:

Non-blocking restriction: Let M be an 1/0 machine, and QA be an ob-
server of a safety property A on the set S = IM U OM of input/output signals
of M. Let M' = M||^A- Let us call sinkA the set of states of M' leading
inevitably to the violation of A:

sinkA = lJ.X.preM,((QM x {qa}} U X)

Then, if qOM' ^- sinkA, we define M/^ OA to be the 1/0 machine
(QM' \ sinkA,qOM',lM,OM,6"),wheie

8" = SM' n ((QM' \ sinkA) x ^^ x Eo^ x (QM' \ 5^^^))

{(.1, i, o, q') €SM' | q,q' ^ sinkA and a ^ o)

One can notice that, if M is deterministic, M^Q.A = M/^traces(Q^,\sinkA)-
So, the' property A has been strengthened into the other property
A/ = traces{QM' \ sinkA) which cannot block the machine M: Any finite trace
satisfying A leads to state of M which ha.s at least one outgoing transition
preserving A .

3.2 Application

As before, a direct use ofthis way ofexpressing assumptions by an observer, is
to execute fche observer with the program, thus checking at run-time that the
assumptions are satisfied. The restriction can also be used for program testing,
to use only testcases corresponding to realistic scenarios. We consider now the
use of restrictioii in the verification process:

Verification under assumptions: Given an 1/0 machine M, a safety as-
sumption A about its environment, and a safety property P, one can prove that
M satisfies P provided the environment satisfies A, by

l.proving tliat (M/ 0,^) has some behaviors, i.e., that the initial state of
M||OA does not belong to sinkA- Othervvise, the assumption and the pro-
gram are contradictory.

2. verifying that the machine ((M^^A)!!^?) i {a} emits.only empty events
(Of course, here, a is the alarm signal of Op).

Modular verification: Any sub-process of a compound system sees the re-
mainder of the system a.s a part of its own environment. The ability to take
the environment into account allows modular verification: Having proved a
property about a sub-process, one can use this property in the verification of
the remainder ofthe system. More precisely, let M\,My, be two machines, and
let P be a safety property we want to prove about Afi Mz. Assume another

safety property P' has been proven about M^ alone. Then if M\/ Slpi satisfies
P, so does MI Mg. This amounts to considering Mg as the environment of
Mi. Of course, assumptions about the global environment can also be taken
into accouat. With a little additional hypothesis (see [2] and the "decompo-

sition theorem" of [23]), which amounts to the absence of causality problems,
one can even use a seemingly circular reasoning, which consists first in proving
a property Py of My under the assumption that MI satisfies Pi, and then in
proving that Mi satisfies Pi assuming Ma satisfies P^.

Inductive proofs: Moreover, the modular verification technique can be ex-
tended to the inductive verification of regular networks of processes [34, 16].
Assume one waats to prove a safety property P of the machine

M||M||...||M

for any n > 1. This can be done by finding a property P such that (1) M
satisfies P', (2) (M^p') satisfies P', and (3) P' implies P. (1) proves that P'
holds for n = 1, (2) proves that, if P holds for n, then it holds for n + 1. So,
P' holds for any n, and from (3), so does P. Point (3) can be established by
proving that the machine ^(J, 0)f ^lp' satisfies P, where

X{I, O) = ({q}, q, I, O, {q} x EI x EQX {q})

is the "chaos" machine which completely non deterministically returns any
event of £'0 whatever be its input event from EI. Of course, as for modular
verification, a crucial problem is the choice ofthe property P . It is considered
in the next section.

4 Specification synthesis

Let us come back to modularverification: Given two machines Afi and My, and
a safety property P on 5 = JMI U 0Mi U -^Ms U OMI^ one must find a property
P on 5"2 = -TMZ u OM^ such that

1. Mz satisfies P , aiid
2. Mi/^lp' satisfies P

Moreover, the proof of each of the above points is expected to be easier than
the global proofthat Mi\\My satisfies P.

This section deals with the synthesis of such a property P , satisfying the
point (2) above by construction, when all the involved machines are finite state.

First, we need some additional definitions: Let <r == (ei, 63, ...,£„,...)be a
trace on 5'. We define the projection of <r on a set 5'' of signals to be the trace
o-i.5" = (ei n S", e2 n 6",.. .,en n5",...). The projection on 5" of a set T of
traces is TJ. 5" = {<rJ. 5 cr €T}. IfT is a set of finite traces on S, we note
C(T) the set of traces on 5 which do not have any prefix in T. Obviously, C(T]
is a safety property.

The intuitive method to find P' is.the following: Replace My by the "chaos"

machine ^(^3, OMs)- K A^i ||x(^M2i OMa) satisfies P, the machine My does not

influence the satisfaction of P (i.e. we can take P' = irue) and we are done.
Otherwise, Mi||^(JAf ,0^2) can reach some erroneous states, and the role of
Ma is to forbid the traces leading to those states. But, for doing so, My, can
only restrict its own signals (P' cannot involve signals that Afg cannot see).

More precisely: If AeacA(Mi||Op) does not intersect QM^ x {qa}, let P' =
irue. Otherwise let Tgrr = traces(QMi x {<?a}) be the set of erroneous traces.
The following proposition states that C(TerrlSy) is a necessary and sufficient

property that My must satisfy so that Mi Mg satisfies P:

Proposiiion: Let P' = C^rrlS^. Then Mg |= P' <===i> Mi||A^2 |= P.

Proof: Let cr[n] denote the nth prefix of a trace <r.

(==^): IfMz |= -P', then every trace o- ofMl||M2 satisfies o-J.5'2 €C(Ten4S'2).
So, Vn, (a[S2)[n] iT^\SI, and since (a\S-i){n} = (<r[n] i52), Vn, (7[n] ^ Terr.
This means that o- €P.

(<==): Assume My does not satisfy P , and let o- be a trace of Mg not belonging
to P'. Then, there exists n such that o-[n] G (Terri-S'g), and there exists a trace
o"/ £ferr such that cr[n] = (<T/[n])l(5'2). So, the finite trace CT'[n] is compatible
with both MI and Mz and leads to the violation of P. D

Remark: P' = C(Ten. [S^) is stronger than P" = C(Terr) i. S'2. A trace a of
MZ can be the common projection of two traces o- and o- of MilJMa, with
o-' €C(Terr) and o- ^ C(Terr). In that case, o- belongs to P" (as the projection
of o-') and not to P'.

Stronger specifications: However, the necessary and sufRcient property
P' == C(Terr J. S'a) is sometimes too complicated to be interesting: As a matter
of fact, an observer of P' can be as complicated as Mi||ftp. In that ca.se the

proof that Mg satisfies P' is not easier than the proof that Mi| Mg satisfies
P, so nothing is gained with modular proof. Now, any stronger property than
P' can be tried. Such a stronger property P" will still ensure that .M-i/^ftp"
safisfies P, but, since it is no longer a necessary property, one cannot conclude
that Mi Mz does not satisfy P if Ma does not satisfy P .

The basic technique to build such a stronger property P" is the following:
Let us note the function \T. C(T [5a) by "avoid". Thus, P' = avoid(Terr).
Then, for any set T oftraces containing Terr (i.e., for any upper approximation
ofTen.), avoid(T) is stronger than P .

5 Module synthesis

Iii the preceding sectioii, we have outlined a method to find a property P such
that, for any machine My, satisfying P', Mi Mg satisfies P. P has been only
deduced from M\ and P, so, it could be built even before My, is designed. So, the
next questioii is: can Mg be synthesized from P , considered as a specification?
In the finite state case, this is theoretically possible: The specification must be
strengthened to become executable. P has been constructed so as to concern
only the input/output signals of Mg. Now, an additional constraint is that
Ms must preserve P by controlling only its output signals. In each reachable
state, and whatever be tlie received input event (possibly satisfying an input
assumption), Mg must be able to perform a transition preserving P'.

Executability: A property P on a set ofsignals 5' = JUO is executable v/ith
respect to (1,0), ifand only iffor any finite trace (T €P, for any input event
i G EI, there exists an output event o ££'0such that a-.(i U o) 6 P. For any
safety property P, there exists a weakest executable safety property, implying
P. It will be noted £(P).

Relative precondition: Let P be a safety property on J U O and Qp be an
observer of P. For any X C Qfip, we define

P^W = {q | Vi C J, 3o C O, 8^(q, »• U o) £Z}

In other wbrds, pre^ (X) is the set of states which can lead into X (in one
step) whatever be the input eDent received in these states.

Executable strengthening: Let Exe = vX. pre^ (X) \ {qa}- Then Exe
does not contain the erroneous state qoi, and

Vg €-E'a'e, Vt C J, 3o C O, such that ^p(g, i U o) G £'a;e

Moreover, Exe is the largest set of states satisfying this property. As a con-
sequence, a restriction of Q.p which detects any trace going out of Exe is an
observer off(P). Another consequence is that)((O,I)/^£(P) is the most gen-
eral reactive machine satisfying P. Notice that Exe can be empty, which means
that P is not realizable in the sense of [3]: There is no machine on (Z, O) pre-
serving P against any environment.

Conclusion

Many ideas that have been presented are specializations and simplifications of
previous works. For instance:

* The specification of properties by means of a synchionous observer is very
close to the approach of COSPAN [24], which takes also into account live-
ness, both in the program and the properties.

* Several verification approaches take into account the environment, e.g., [21]
[2] [22], and some ofthem propose modular methods. The "don't care sets"
considered in hardware design and verification [4, 12] are also a way of
expressing assumptions about the environment.

• The synthesis problems considered in Sections 4 and 5 have been dealt with
in several papers —both in control theory [32, 33, 19], and in computer
science [30, 3] —and often extended to cope with liveness properties.

Our simplifications consist in considering safety properiies of synchronous sys-
tems. They are suggested by the application field we have in mind: The syn-
chronous model has been shown to be very convenient for the design ofreactive
systems. In general, most liveness properties are introduced for one of the
following reasons:

* To abstract a real-time constraint: For instance, one replace a deadline
property by the requirement that something "eventually occurs". Now,

in reactive systems, such real-time constraints may not be abstracted, in
general: the constraint an alarm musi be sent within 2 milliseconds after
ihe detect'ion of a dangerous siiuaiion" may not be replaced by "the alarm
must eventually occur"!

* To restrict the asynchronous semantics: In asynchronous models, con-
currency is modelled by non-deterministic interleaving, and this non-
determinism must be restricted by fairness constraints. Obviously, this
problem does not exist in the synchronous model. In asynchronous systems,
compositionality is also achieved by allowing arbitrary (but fair) "stutter-

ing" ofprocesses. The synchronous model is obviously compositional thanks
to zero-time, simultaneous, reactions.

Now, these simplifications are certainly fruitful, from a practical point of view.
They increase the performances of the automatic tools: For instance, for fi-
nite state methods, the synchronous model drastically reduces the size.of the
considered state graphs; safety properties can be checked by a graph traver-
sal, without storing any path. To specify a safety property by means of an
observer, one doesn't need to use —and to learn - any other language than
the program.ming language used to write the program. All these ideas are un-
der implementation in the Lustre- Saga software development system [15], and
actual industrial experimentations are going on.

References

[1] D. Austry and G. Boudol. Algebre de processus et synchronisation. TCS, 30, April 1984.

[2] M. Abdi andL. Lainport. Composingspecifications. In J.W. de Bakker, W.-P. de Roever,
and G. Rozemberg, editors, REX Workshop on Stepwise Refinement of Distribv.ted Sys-
tems, Models, Formalisms, Correc.tness. LNCS 430, Springer Veriag, May 1989.

[3] M. Abadi, L. Laniport, and P. Wolper. Realizable and uiirealizable specifications of
reactive systeins. In G. Ausiello, M. Dezani-CiancagUiu, and S. Ronchi Della Rocca,
editors, 16-th ICALP, pages l-17. LNCS 372, Springer Verlag, July 1989.

[4] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, R. RudeU, A. Sangiovanni-
Vincentelli, and A. Wang. Multilevel logic minirmzation using implicit don't cares. IEEE
Transactions on CAD/ICAS, CAD-7(6):723-739, Jime 1988.

[5] A. Bouajjani, J. C. Fernandez, N. Halbvvachs, P. Raymond, and C. Ratel. Miniinal state

graph generation, Science of Computer Programming, 18:247-269, 1992.

[6] G. Berry and G. Gonthier. The Esfcerel synchronous progranurdng language: Design,
seniantics, iinpleinentation. •9cie»ice Of Compu'ter Programming, 19(2):87-152, 1992.

[7] G. Boudol, V. Roy, R. de Simone, and D. Vergamini. Process calcuU, froin theory
to practice: Verification tools. In Iniernationa,l Workshop on Auiomatic Verification
Methods for Finite State Systems, Grenoble. LNCS 407, Springer Veriag, 1990.

[8] F. 'Boussinot and R. de Siinone. The Esterel language. Proceedings of tke IEEE,
79(9):1293-1304, September 1991.

[9] P. Cousot andR. Cousot. Abstract interpretation: a unified lattice inodel for static anal-
ysis of programs by construction or approxiination of fixpoints. bl 4th ACM Symposinm
on Principles of Programming La.ngv.ages, January 1977.

[10] P. Cousot and R. Cousot. Abstracfc interpretation and applicafcion fco logic programs.
Research Report LIX/RR/92/08, Ecole Polytechnique, March 1992. (to appear in the
Journal of Logic Programniing, special issue on Abstract Interpretation).

[11] B. M. Clarke, E.A. Einerson, and A. P. Sistla. Autoinatic verification of fuiite-state
concurrent systems using temporallogic specifications. ACM TOPLAS, 8(2), 1986.

[12] M. Dainiani and G. DeMicheli. Don't care set specifications in combinational and syn-
chronous logic circiuts. Technical Report CSL-TR-92-531, Computer Systems Labora-
tory, Stanford University, 1992.

[13] N. Halbwachs. Delay analysis in synchronous programs. In. Fifth Int. Workskop on
Compv,ter Aided Verificaiion, Elounda. (Crete), July 1993.

[14] N. Halbwachs. Synchronous programming of reactive systems. Kluwer Acadeinic Pub.,
1993.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow pro-
gramminglanguage Lustre. Proceedings of the IEEE,79(9):1305-13W,SeptembeTl991.

[16] N. Halbwachs, F. Lagnier, and C. Ratel. An experience in proving regular networks of

processes by modular inodel checking. Acta. Informatica, 29(6/7), 1992.

[17] N. Halbwachs, F. Lagnier, and C. Ratel. Prograirmiing and verifying real-tiine systems by
ineans of the synchi'onous data-flow programnung language Lustre. IEEE Transacticins
on Softwa.re Engineering, Special Issue on the Specification and AnaSysis of Real-Time
Systems, September 1992.

[18] G. J. Holzmann. AutomatedprotocolvalidationinArgos : Assertion proving and scatter
searching. IEEE Trans. on Softwa.re Ingineering, SE-13(6) :683-696, June 1987.

[19] G. Hoffinann and H. Wong-Toi. Symbolic synthesis of supervisory controUers. In Amer-
ican Conirol Conference, Ckicago, June 1992.

[20] Anotherlook at real-time progranuning. Special Section of the Proceedings of ihe IEEE,
79(9) :1293-1304, September 1991.

[21] B. Josko. MCTL - An extension of CTL for modular verification of concurrent systems. In
Worksho'p on Temporal Logic in Specification, Manchester. LNCS 398, Springer Veriag,
1987.

[22] M. B. Josephs. Receptive process theory. Acta Inform.a.tica., 29, February 1992.

[23] R. P. Kurshan and L. Lamport. Verification of a multiplier: 64 bits and beyond. In Fifih
Int. Workshop on Compv.ier Aided Verification, Elonnda, (Crete), Jiily 1993.

[24] R. P. Kurshan. Analysis of discrete event coordination. In J.W. de Bakker, W.-P.
de Roever, and G. Rozemberg, editors, REX Workshop on Stepwise Refinement of Dis-
triiv,ied Systems, Modeis, Formalisms, Correctness. LNCS 430, Springer Verlag, May
1989.

[25] D. Lee and M. Yanakakis. Online ininimization of transition systems. In 24th ACM
Sym-p. on the Theory of Compuiing, STOC'9S, Va.ncov.ver, B.C., 1992.

[26] F. Maramnchi. Operational and coinpositional seniantics of synchronous automaton
compositions. In CONCUR'92, Stony Brook. LNCS 630, Springer Verlag, August 1992.

[27] R. Mihier. On relating synchi'ony and asynchrony. Technical Report CSR-75-80, Coin-

puter Science Dept., EdiinburghUiuv., 1981.

[28] R. Milner. Calculi for synchrony and asynchrony. TCS, 25(3), July 1983.

[29] A. PnueU. Hovv vital is Uveness? Verifying timing properties of reactive and hybrid
systems. In CONCUR'9S, Stony Brook. LNCS 630, Springer Verlag, August 1992.

[30] A. PnueU and R. Rosner. On the synthesis of a reactive modiile. In l6th Conference on
Principles of Progra.mming La-nguages. ACM, 1989.

[31] J. P. QueiUe and J. Sifalds. Specification and verification of concurrent systems in Cesar.
In Internaiional Symposiwm on Programming. LNCS 137, Springer Verlag, April 1982.

[32] P. J. Ramadge and W. M. Wonhain. Supervisory control of a class of discrete event

processes. SIAM J. Control a.nd Opiimiza.iion, 25(1), January 1987.

[33] P. J. Raiaadge and W. M. Wonham. The control of discrete event systems. Proceedings
of the IEEE, 77(1), January 1989.

[34] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network
invariants. In. Internationa.l Workshop on Auioma.iic Verification Methods for Finite
Sta.ie Systems, Grenoile. LNCS 407, Springer Verlag, 1989.

