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The goal of a model‐based reinforcement learning agent is to maximize external returns by understanding
the structure of the environment it explores. However, simple reinforcement learning agents may struggle
with tasks where external rewards are scarce. Taking inspiration from developmental sciences which show
that infants spontaneously explore their environment in the absence of extrinsic rewards, intrinsically mo‐
tivated reinforcement learning investigates how agents can explore their environments with little extrinsic
motivation. In 2012, Lopes and colleagues proposed two new intrinsically motivated models in model‐based
reinforcement learning [1]. Buildingupon twooptimistic‐in‐the‐face‐of‐uncertainty agents, they demonstrate
theoretical convergence properties for one of their agents, and provide three experiments to show that their
models are more versatile than state‐of‐the‐art models. However, due to missing information in their proto‐
col, we only managed to partially reproduce the results of the original article. In our reproduction article, we
show the results obtained for several alternative ways to interpret the text of the original article, and discuss
what this implies in terms of performance of the different agents. For each tested variant, we performed
parameter optimization in order to give the best chances to replicate the figures of the original article.

1 Introduction

In Lopes and colleagues’ article, the authors present two new model‐based reinforce‐
ment learning agents which use learning progress to motivate their exploration. Three
experiments compared the performance of these twonewagentswith three other agents
in a discrete environment and we try to reproduce the results of these experiments in
this reproduction article. Lopes and colleagues did not provide their code and we did
not find any existing code online. Nevertheless, one of the authors (Pierre‐Yves Oudeyer)
kindly responded to our questions via e‐mail to help resolve some of the ambiguities we
encountered when trying to interpret the methods described in the original article. An
outline of our hypotheses can be found in Table 2. In Appendix C, we extend our re‐
sults to other environments with a slight change in the reward function, similarly to the
partial implementation of Bureau and Sebag in 2014 [2].

2 Methods

2.1 Reproduction of the environment
The environment used in Lopes and colleagues’ article is a 5× 5 discrete grid. We num‐
bered the states from 0 to 24, starting from the top‐left corner and counting from left to
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right and from top to bottom. The goal of the agent is to reach and exploit the reward of
1 located in state 14, starting from the initial state 0 (see Figure 1). At each time‐step, the
agent chooses an action between A = 5 actions : up, down, left, right or stay. The task is
episodic with 30 steps per episode and 100 trials in total per agent. At the end of a trial,
the agent is moved back to the initial position 0. When the agent reaches the states 6,
7, 8 or 12, it gets a punishment of −0.1. The environment’s transitions are stochastic:
the actions of the agent have uncertain outcomes, even more so when the agent moves
from the cells 1, 3, 11, 13. For every state, the most probable outcome of any action is
the deterministic case. For example, if the action is right, the agent is most likely to end
up directly to the right of the current cell (given that there is no wall on the right).

START
0
 1 2 3 4

5 6 7 8 9

10 11 12 13 GOAL
14


15 16 17 18 19

20 21 22 23 24

12.7 13.2 14.9 16.4 18.4

13.6 14.3 15.7 17.5 19.3

14.3 14.5 16.2 17.8 19.6

15.2 16.1 17.2 18.1 19.5

13.9 15.1 16.5 17.4 18.3

Figure 1. (Left) Representation of the environment, adapted from the first figure of Lopes et al.
[1]. The green (light) states have uncertain transitions, the grey (dark) states incur a negative
reward. The red arrows indicate the optimal path to the goal state. (Right) Implementation of the
environment in Python, with the state values and optimal policies computed by value iteration.

In the original article, the authors claim that the shortest path is sub‐optimal. However,
all the paths to the goal state with the actions down and right only are the shortest paths.
Excluding all the shortest pathsmeans that the agent has to avoid the states with punish‐
ments or uncertain transitions, as shown by the red arrows of Figure 1‐Left. The agent
should then exploit the reward by staying in the goal state, either with the action right
or the action stay.

Transition probabilities — According to the original article, the transition probabilities for
a given (state, action) couple are sampled from a Dirichlet distribution with parameter
α = 0.1 for the uncertain states and α = 1 for the other cells. However, it seems as
though the authors may have swapped these two values. In a Dirichlet distribution, the
bigger the α, the closer the probabilities. Thus, a Dirichlet distribution with α = 1
provides transition probabilities that are closer on average than the one with α = 0.1,
meaning that the result of the action of the agent is more uncertain. This change of
parameters matches the choice made by Bureau and Sebag [2] in their reproduction of
the environment in which they swapped α values.
Pierre‐Yves Oudeyer indicated by e‐mail that the agents can only land on states that are
one cell away from their current state (one cell up, down, left, right or the cell they are
in). For example, starting from state 20 (bottom‐left corner), the agent can only reach
state 15, 20 or 21. Accordingly, we computed the transition probabilities for a state in
three steps. First, we determined all the states which could be reached from this state.
Second, we sampled a Dirichlet distribution of 0.1 or 1 on these states for each action.
Finally, we swapped two probabilities to guarantee that the deterministic state would
be the most probable outcome.
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Optimal path statistics — The original article claims that shorter paths are sub‐optimal and
that the agent needs to avoid cells with a negative reward or uncertain transitions. Nev‐
ertheless, with a discounting factor γ = 0.95, only 1.7% of 5000 randomly generated en‐
vironments displayed the optimal path, indicated by red arrows in Figure 1. In their par‐
tial reproduction of the environment, Bureau & Sebag [2] used a negative reward of −1
instead of −0.1. With this negative reward, 24.7% of the 5000 environments tested dis‐
played the optimal path. We provide simulations in these environments in Appendix C.
The heat‐map in Figure 1 shows the environment with negative rewards of −0.1.

2.2 Measures of performance
Since all the agents are model‐based, one way to compute their level of exploration is to
estimate their capacity to understand the transitions and rewards of the environment.
To do so, Lopes and colleagues calculate the optimal policy π∗

T̂
in the estimated envi‐

ronment and compare it to the optimal policy in the true environment π∗
T using value

iteration. Every 50 steps, we computed VT,R(sI ;π
∗
T̂
) − VT,R(sI ;π

∗
T ), where VT,R is the

value obtained after value iteration, where T,R represent transitions and rewards re‐
spectively and sI = 0 the initial state. In our simulations, since the role of the sampled
rewards is not indicated in the article, we used VT,R(sI ;π

∗
T̂ ,R̂

)− VT,R(sI ;π
∗
T,R).

A limitation of this measure is that a random agent’s performance would converge ulti‐
mately to the best performance, despite the fact that it takes random actions. To resolve
this, we also computed a similarmeasure of performance every 50 time steps, but on the
agent policy (instead of the optimal policy): VT,R(sI ;πA)−VT,R(sI ;π

∗
T,R)where πA is the

policy of the agent. We present the results with this measure in Appendix B. This helps
us appraise the agents’ performance through the lens of a set of different measures.

2.3 Reproduction of the agents
The five agents outlined in the article aremodel‐based: their goal is to learn the rewards
and the transitions for every (state, action) couple. An important insight that Pierre‐Yves
Oudeyer provided to us via e‐mail is that the agents know the states before exploring
their environment. For every agent, we set uninformative reward and transitions at
start. The rewards are set to 0 and the transitions are uniform over all the states (the
probability to reach any state is 1

25 ).
When an agent reaches a new state, it gets the reward associated with this state. How‐
ever, the reward computed by the agent depends on the state they are in and the action
they take R̂ : S × A → R. R̂(s, a) is the average reward of the agent when it takes the
action a in s. To estimate the transition probabilities, most of the agents use a sampling
approach. Let n(s, a) be the number of times the agent chose action a in state s and
n(s, a, s′) the number of times it reached the state s′ by taking the action a in state s.
The transition model T̂ (s, a) estimated by the agent is

T̂ (s, a, s′) =
n̂(s, a, s′)

n̂(s, a)
. (1)

The Bayesian Exploration Bonus (BEB) agent uses a different approach (see Equation 4).

Exploiting the model — At each step and for every visited (state, action) couple, the agents
compute the Q‐values through value iteration. The Q‐values are changed only for visited
(state, action) so that optimistic initializations are efficient. If the Q‐values changed
by less than 10−3 between two iterations, the agents consider that the value iteration
algorithm converged. Let RV I be the value of the reward used in the value iteration
algorithm. For all (s, a), the Q‐values are
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Q(s, a) = RV I(s, a) + γ
∑

T̂ (s,a,s′)>0

T̂ (s, a, s′)max
a′

Q(s′, a′). (2)

Model-based ϵ-greedy — The ϵ‐greedy agent takes a random action with the probability ϵ or
chooses the action associatedwith themaximal Q‐valuewith the probability 1−ϵ. Lopes
and colleagues indicate that the initial Q‐values of ϵ‐greedy are optimistic. As 1 is the
maximal reward of the environment and γ < 1, we set the initial Q‐values to 1

1−γ = 20

for γ = 0.95. For ϵ‐greedy, the reward in the value iteration algorithmRV I(s, a) is equal
to R̂(s, a).

R-max — R‐max is optimistic in the face of rewarduncertainty and splits the (state, action)
couples between knownandunknown [3]. For each (state, action) couple (s, a), there is a
fixednumber of passagesm(s, a)beforewhich the state is unknownand the reward used
in value iteration is the maximal reward of the environment Rmax = 1. After m(s, a),
the value of the reward in the value iteration process is the sampled reward R̂(s, a).

RV I(s, a) =

{
Rmax if n(s, a) < m(s, a).

R̂(s, a) if n(s, a) ≥ m(s, a),
(3)

Since R‐max splits the (state, action) couples between known and unknown, we could
update the Q‐values only for known couples, when a new couple is added to the known
list. In addition, the agent could stop updating the reward and transition tables of a
known state. Such a method would speed up the computation time in a stationary envi‐
ronment [4]. However, Lopes and colleagues also measure the capacity of the agents to
adapt to non‐stationary environments, and using this inference process would be detri‐
mental to R‐max performance in such a case. This is one of the reasons why we chose
the same inference process for all the agents, with R̂, T̂ and Q being updated at each
step.

Lopes and colleagues indicate that the number of passages m(s, a) is informative and
depends on the transition noise of (s, a). The simplest way to provide an informative
number of minimal passagesm(s, a) to the model is to choose two values ofm, depend‐
ing on the Dirichlet distribution used for the transition uncertainty. A more informa‐
tive approach would be to use a function to calibrate the counts more precisely for each
(s, a), for example with a function of the entropy of the transitions. However, the arti‐
cle presents no such function and we did not find conclusive results with this method.
Thus we used the first method, with two values of m depending on the state stochas‐
ticity. All but the four uncertain states have the same m with mu being the minimal
number of passages for the uncertain states, where the subscript u stands for uncertain.
The agents may need more passages to acquire a goodmodel of uncertain states and we
found that in general, mu would be greater m, although we explored all possibilities in
the parameter fitting presented in Appendix A. We set the initial Q‐values of R‐max to
1

1−γ .

Bayesian Exploration Bonus (BEB) — Bayesian Exploration Bonus (BEB) is a Bayesian agent
optimistic in the face of reward uncertainty [5]. The transitions are represented by a
Dirichlet distribution b = {α(s, a, s′)} which accounts for the uncertainty on the transi‐
tions. At every step, the transition model is

T̂ (s, a, s′|b) = α(s, a, s′)∑
s′ α(s, a, s

′)
. (4)

This Dirichlet prior facilitates the update of the Bayesian distribution at each new obser‐
vation. When the agent takes the action a in state s and reaches state s′, the distribution
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is updated according to α(s, a, s′)← α(s, a, s′) + 1. In practice, the evolution of the esti‐
mated transitions is close to the previous sampling models where α plays a similar role
to that of n, while bringing uncertainty to the transitions.
Rather than classifying (s, a) between known and unknown couples like R‐max does,
BEB uses an exploration bonus which decreases linearly with the number of passages
n(s, a)

RV I(s, a) = R̂(s, a) +
β

1 +
∑

s′ α(s, a, s
′)
, (5)

where β is a parameter of exploration (the higher the β, the more the agent explores). If
wenoteα0(s, a) the sumof the initial priors on the transitions for (s, a), the denominator
of Equation 5 becomes 1 + α0(s, a) + n(s, a). Lopes and colleagues indicate that the
prior of BEB is informative. However, Kolter and Ng [5] only used the transitions of
the environment as an informative prior. As the transitions estimated by the agents are
sampled from the priors, this wouldmean that BEB could have a very goodmodel of the
transitions of the environment from the start and not learnmuch (see subsection 3.2 for
an example).
To provide informative but small prior knowledge to the BEB agent, we chose to provide
it the real transitions of the environment but with a fixed prior coefficient of 2. This is
consistent with the values between 1 and 5 found in Kolter and Ng [5]. In addition, we
set all the prior α(s, a, s′) to an arbitrary small positive value of 10−5 so that Dirichlet
distributions are still defined in non‐stationary experiments. We set the initial Q‐values
of BEB to the upper bound 1+β

1−γ .
Like R‐max, BEB can use known and unknown (state, action) couples [5]. After a given
number of passages m(s, a), the agent can stop updating the transition and reward ta‐
bles. Not updating the transitions and rewards after a given number of passages would
improve the computational cost of the simulations but would be detrimental for BEB
in non‐stationary tasks. As for R‐max, we chose to update the transition, reward and
q‐values tables at every time step.

Learning progress — Lopes and colleagues built two newmodels based on R‐max and BEB.
Their models use learning progress instead of a count‐based approach to explore to‐
wards the reduction of transition uncertainty. Their models evaluate how much they
know about the transitions with a leave one out cross‐validation. Let Ds,a be all the
states reached by taking action a in s, with |Ds,a| = n(s, a), the leave one out cross
validation CV (s, a) is

CV (Ds,a, s, a) = −
1

|Ds,a|
∑

s′∈Ds,a

ln T̂−s′(s, a, s′), (6)

with T̂−s′(s, a, s′) being the transitionmodel obtained fromDs,a, minus one occurrence
of s′. With a sampling approach, if the agent has been to state s′ only once, the transition
model which excludes this one time gives a zero probability to reach the state s′ and the
cross validation diverges. Thus, we chose to set a small prior of 10−2 to compute the
learning progress, so that theminimal transition probability used in the cross‐validation
is always strictly positive.
Rather than directly considering the value of the cross‐validation, the learning progress
is defined as the variation between two cross‐validations. With this method, learning
progressmodels do not remainmotivated by transitions with a strong but expected tran‐
sition entropy. The value of the learning progress ζ(s, a) is the difference between two
cross‐validations k = 10 passages apart, summed with a variance parameter to add sta‐
bility and bring theoretical properties presented in the original article.ζ(s, a) = CV (D−k

s,a , s, a)− CV (Ds,a, s, a) + α
√

v(s, a),

v(s, a) =
1

|Ds,a|
∑

s′∈Ds,a
[CV (Ds,a) + ln T̂−s′(s, a, s′)]2,

(7)
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where α adjusts the importance of the variance.
The cross‐validation on the arrival states can be higher than the cross‐validation com‐
puted k = 10 steps before, for example if the agent has found a new arrival state within
the ten new occurrences. In such cases and with a low value of α, the learning progress
can be negative, although it has to be strictly positive in Equation 9. There could be sev‐
eral ways the authors might have dealt with this issue. The simplest method would be
to put a small positive minimal threshold for the learning progress, so that it remains
strictly positive. Another idea would be to use absolute values for the differences be‐
tween the two cross validations, as it may allow for the detection of task changes. A
positive and high difference between cross‐validations illustrates that the agent is learn‐
ing from the new experiences and thus needs more passages to refine its model (as was
mentioned by Lopes and colleagues). On the contrary, when the difference between the
cross‐validations is negative and high in absolute value, this indicates that the model of
the agent has significantlyworsened and that theremight have been a task change. With
the use of absolute values, the agent would remainmotivated to sample new transitions,
whereas this case would be neglected otherwise.
Though we would have preferred using absolute value, we instead chose to use a small
minimal threshold for the learning progress so as not to modify the equations from the
original article. We set the minimal value of the learning progress to 10−3.

The authors do not indicate the initial value of the learning progress before k = 10
passages in a (state, action) couple. We chose to set a high initial learning progress
value, so that the agents are motivated to explore the unknown (state, action) couples
before focusing on the ones whose learning progress is maximal. Since, we did not find
a theoretical upper bound of the learning progress and we did not know if using one
would be useful, we chose to set the initial learning progress value to an arbitrary high
value. In practice and with our sets of parameters, we found out that 10 was (almost)
never reached and set it as the initial learning progress value.

The learning progress ζ used in ζ‐R‐max and ζ‐EB replaces the count n in R‐max and
BEB, with β andm having similar roles as before. Changing the R‐max agent to the ζ‐R‐
max agent is rather straightforward by modifying the reward function used in the value
iteration. However, we found no fully satisfyingway to implement the learning progress
version of BEB. A first approach would be to use priors. With small uniform priors, and
the transition probabilities sampled from a Dirichlet distribution, the probabilities may
be small enough to be considered computationally equivalent to 0, which would make
the cross‐validation diverge. On the other hand, a strong uninformative prior could slow
down the learning process because false prior informationwouldweigh in the transition
probability computation. Thus, the approach that we chose was to use a non‐Bayesian
agent. The name ζ‐EB used in the original article instead of ζ‐BEB,may indicate that the
agent is not Bayesian, although we found no explicit proof in the original article. The
version of ζ‐EB we chose is close to ζ‐R‐max but with a different reward function:

For ζ‐R‐max, RV I(s, a) =

{
R̂(s, a) if ζ(s, a) < m,

Rmax if ζ(s, a) ≥ m.
(8)

For ζ‐EB, RV I(s, a) = R̂(s, a) +
β

1 +
1√

ζ(s, a)

. (9)

Parameter fitting — Some parameter values are missing from the original article, includ‐
ing the discount factor γ. By comparing the starting value policy errors in the figures
from the article, around−12 for each figure, and our simulations, we found that the dis‐
counting factor may be γ = 0.95. The specific parameters we needed to infer for each
agent were
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• ϵ for ϵ‐greedy,

• Rmax,m, andmu for R‐max,

• β and the prior coefficient for BEB,

• Rmax, α,m, k and the prior for learning progress for ζ‐R‐max,

• α, β, k and the prior for learning progress for ζ‐EB.

Out of all these parameters, we only found the values k = 10 andRmax = 1 in Lopes and
colleagues’ article. We set the value of the prior coefficient for the agent BEB to 2 and
the uniform prior of learning progress to 10−2. We found all the other parameters by
grid search parameter fitting. We provide heat‐maps of performance depending on pa‐
rameter couples for all the models in Appendix A. The corresponding one dimensional
graphs are provided online.

3 Reproduction of the experiments

We used the same set of values for all the reproduction figures, with γ = 0.95. We found
the values of the parameters through parameter fitting on the stationary environment
of the first experiment.

Agent Parameters
ϵ‐greedy ϵ = 0.3

R‐max Rmax = 1,m = 8,mu = 12

ζ‐R‐max Rmax = 1,m = 2, k = 10, α = 0.3, prior = 0.01

BEB β = 7, coeff prior = 2

ζ‐EB β = 3, k = 10, α = 0.1, prior = 0.01

Table 1. Values of the parameters we used in our simulations.

3.1 Experiment 1. Stationary environment
The graphs show the mean performance and the standard error of the mean over 20 tri‐
als in the environment of Figure 1. In the original article, the goal of this experiment is
to demonstrate that ζ‐R‐max and ζ‐EB converge almost as fast as R‐max and BEB respec‐
tively, although they do not have prior information on the environment transitions.
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Figure 2. Reproduction of the first experiment of the article. (Left) Picture from the original article
[1], reused with the agreement of one of the co‐authors, Pierre‐Yves Oudeyer. (Right) Picture we
generated using the parameters indicated in Table 1.
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In our simulations and as in the original article, ζ‐R‐max converges after R‐max. Never‐
theless, the agents converge much faster in our simulations than in the original article.
In addition, the shape of the policy value error function, the convergence time and the
convergence value of ϵ‐greedy, BEB and ζ‐EB are comparable. One other main differ‐
ence is that the model‐based ϵ‐greedy agent converges to the optimal policy.

3.2 Experiment 2. The role of priors
Wrong prior experiment — In the second experiment of the original article, the priors of BEB
and R‐max are wrongly specified. The goal of this experiment is to show that ζ‐R‐max
and ζ‐EB do not need prior information, as opposed to R‐max and BEB whose perfor‐
mance depends on good informative priors. The wrong priors are sampled randomly
from a uniform distribution between the lowest value and highest value of the previous
priors. The passage counts for R‐max are taken randomly between m and mu and the
value of the prior of BEB for every triplet (old state,action, new state) is taken randomly
between 10−5 and the biggest transition probability prior from the first experiment.
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Figure 3. Reproduction of the second experiment of the article, original (left) vs simulated (right).
The picture from the original article [1] was reused with the agreement of one of the co‐authors,
Pierre‐Yves Oudeyer. In our simulations, the performance of BEB drops with wrong priors,
whereas R‐max performs better than in the original article.

This second experiment is partially reproduced as the performance of BEB drops in the
wrong prior condition. Nevertheless, the performance of R‐max drops less than in the
simulations from the original article. This may be because the prior information given
to R‐max is not informative enough and that the minimal number of passages are sam‐
pled between two values that are close,m = 8 andmu = 12.

Another difference between our reproduction figure and the one from the original ar‐
ticle is that our version of BEB does not reach a plateau within the 3000 trials. This
may result from the fact that BEB updates the state and transition tables throughout the
whole experiment in our implementation, whereas Lopes and colleaguesmay have used
a version of BEB which stops updating its model of a (state, action) couple after a given
number of passages, thus converging faster but to a sub‐optimal policy.

Uniform prior experiment — Lopes and colleagues’ took informative priors for both BEB and
R‐max, arguing that R‐max would take more time to converge and BEB might not con‐
verge. However, using strong priors could worsen the performance of the agents, espe‐
cially in non‐stationary tasks or if they are wrongly specified. In addition, Kolter and
Ng [5] showed that BEB can perform well with small uninformative priors. As a conse‐
quence, we conducted simulations with uniform priors for R‐max and BEB. In Figure 4‐
Left, we plot R‐max with a value of m = 10 for all (state, action) couples and BEB with
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a small uniform prior of 10−3. R‐max and BEB quickly converge to the optimal policy,
demonstrating that using an informative prior might not be relevant in this task, when
measuring the policy value error.

BEB oracle — In addition, giving strong informative priors to Bayesian agents could be
similar to giving them the very transitions of the environment. In Figure 4‐Right, we
show the performance of BEB with informative prior corresponding to the transitions
of the environment, but with different prior coefficients. With high prior coefficients,
BEB can become an oracle (i.e., an omniscient agent very rapidly reaching optimal per‐
formance).
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Figure 4. (Left) Performance of the agents without informative prior. The performance of BEB and
R‐max is close to the one shown Figure 2, demonstrating that the agents may not need informa‐
tive priors. (Right) Influence of the priors on the performance of the BEB agent. With a strong
informative prior, BEB can be an oracle.

3.3 Experiment 3. Non-stationarity
Task change — The third experiment of the article introduces a task change. At step 900,
the transitions for one state on the optimal path of the environment are swapped. For
example, the transition probabilities of up can become the ones for left and vice versa. In
our code, we guaranteed that the permutation of the five actions had no fixed point (no
action keeps the same transition vector). For this experiment, we randomly generated
20 non‐stationary environments and ran the simulations 5 times in each environment.
Since we ran the experiment on more trials than in the original article, the standard
errors of the mean in our simulations seem smaller than in the original plot.
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Figure 5. Third experiment of the original article (left) compared to our simulations (right). The
picture from the original article [1] was reusedwith the agreement of one of the co‐authors, Pierre‐
Yves Oudeyer. The policy value error drops more in the original experiment than in our simula‐
tions and learning progress agents do not perform better than the other agents.

Following indications from the article, wedidnotmanage to reproduce the sharpdrop in
policy value error when a single state is changed (Figure 5). In addition, all agents adapt
to the task change well, even if ζ‐EB performs slightly worse. The drop in performance
of the figure from the original article seems surprising as a simple change on the optimal
path made the agent perform as if it just discovered the environment and did not know
most of its structure.

Stronger task change — A possible interpretation of the original figure is that the authors
may have operated a more important task change, for example by changing the transi‐
tions on not just one but several states. As a consequence, we present a new version of
the third experiment with a stronger task change in Figure 6. In this new version, all
the transitions for all the states in the optimal path are swapped without fixed points.
The figure shows that imposing transition changes on all the states of the optimal path
leads to a better replication of the sharp drop in performance observed in the original
article (Figure 5‐Left).
Another pointwewould like to highlight is the importance of the horizon. In the original
article, some agents may have not converged after the task change. In Figure 6, we show
two horizons of 3000 steps and 6000 steps. With this new horizon, we leave more time
for the agents to converge, and at step 6000, ϵ‐greedy outperforms all the agents.
In Figure 6‐Right and as in the original article, ζ‐R‐max converges to a better policy than
R‐max. Nevertheless, we found opposite results for BEB and ζ‐EB.
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Figure 6. Stronger task change with a time horizon of 3000 steps (left) and 6000 steps (right). BEB
and ζ‐R‐max outperform ζ‐EB and R‐max respectively. At step 6000, the agent with the best opti‐
mal policy is ϵ‐greedy.

4 Discussion

Overall, the full reproduction of Lopes and colleagues’ article was difficult to attain due
to missing information in the original article. We nevertheless managed to generate
results that approximately confirm the main conclusions of the article after making a
series of modifications. Some general indications are missing from the article, such as
the value of γ, the priors of BEB andR‐max or an explicitmethod to implement the learn‐
ing progress. Wemade a list of the non‐exhaustive problems that were encountered and
the hypotheses we made in Table 2.
With the optimal policy value error, the graphs we generated seem too far from the
graphs shown in the article. In the stationary experiment, the agents from our simu‐
lations converge faster and the ϵ‐greedy converges to the optimal policy. In the non‐
stationary experiment, we did not manage to simultaneously reproduce the sharp drop
in general performance and the agents’ individual performances. Even if we repro‐
duced this drop with another task change (i.e., changing the transition probabilities on
all states of the optimal path rather than on a single state), BEB outperforms ζ‐EB, and ϵ‐
greedy has a good performance. Nevertheless, we found the same qualitative results for
the wrong prior experiment with BEB not converging to the optimal policy, and using
a more informative prior for R‐max could lead to similar results. However, we demon‐
strated that both models explore well without informative priors, which nuances some
of the conclusions of the original article.
Thus, we believe that the authors may instead have used the real policy of the agent
(see Appendix B). Since the agent policy is updated at every time‐step and until conver‐
gence, it is similar to computing the optimal policy but with RV I instead of R̂ and with
a penalty for ϵ‐greedy, the only model without a greedy choice on the Q‐values. With
the agent policy, the convergences of R‐max, ζ‐R‐max and ϵ‐greedy are fairly well re‐
produced (Appendix B). As in the original article, ϵ‐greedy cannot converge to the best
policy because ϵ introduces randomness in the decision making. At start, R‐max and
ζ‐R‐max have a poor performance because of the value of Rmax, and the performance
of the two agents increases abruptly when they start using R̂.
The main difference between our reproduction and the original article is the perfor‐
mance of ζ‐EB, which performsworse in our simulation than in the original article. This
might have been because we drew incorrect hypotheses or implementations from the
descriptions written in the original article, such as assuming that ζ‐EB is not Bayesian.
We would need further indications from the authors to come up with an efficient ζ‐EB.
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Problem encountered Attempted solution Result
No code available Contacted the authors No code was provided

What states can the agent
reach from a given state?

Contacted the authors The agents can only access
the states next to them

The cross validation diverges
if the agents do not know the

states

Contacted the authors The agents know the states
from the start

The authors may have
swapped α = 0.1 and α = 1

Checked the values in [2] and
provided a theoretical

explanation

We swapped back the two
values

No indication for the
learning progress before

k = 10

Used an arbitrary high value
for the learning progress

before k = 10

The learning progress is not
computed before k = 10

The learning progress can be
negative

Set a minimal value of 10−3 The learning progress is
strictly positive

With a strong informative
prior, BEB is an oracle

We gave BEB the transitions
of the environment with a

small coefficient

BEB still learns the
environment structure

Why did the authors use
informative priors?

We tried to use
uninformative priors for BEB

and R‐max

The agents attain good
policies even with

uninformative priors
When should the agents
compute the Q‐values?

At every time‐step and until
the convergence of the value

iteration algorithm

All agents exploit the
environment in the same way

Initial optimistic Q‐values
are useless if we update the

Q‐values at each step

We updated the Q‐values of
the visited states only

The initial optimistic
Q‐values of 1

1−γ
and 1+β

1−γ
are

efficient
Are there one or twenty

environments?
We used one environment
with a punishment of −0.1

and ten for −1

We cannot conclude on what
environments they used but
covered both hypotheses

Initial values of policy value
errors are different between

the experiments

Unexplained if they used one
environment

They might have used
different environments for

each experiment
We do not know what

informative prior to use for
R‐max

We took two values
depending on whether the
state is uncertain or not

Our prior may be less
informative than the one
they used in the article

The performance of ϵ‐greedy
is high compared to the one

of the article

We used another measure of
performance which depends

on the agent policy

ϵ‐greedy performs worse
with this measure

The value of γ is missing We chose γ with the initial
policy value errors

We used γ = 0.95

Many parameter values are
missing from the article

We provided our parameter
fitting in Appendix A

The agents are optimized

The task change description
might be wrong

We provided figures with a
stronger task change

This task change reproduces
the drop in performance

Cross validations diverge
with sampling methods

We used a small learning
progress prior

Cross validations do not
diverge anymore

We do not know whether
ζ‐EB is Bayesian or not

We infered that ζ‐EB is not
Bayesian

ζ‐EB implementation might
be wrong

Table 2. What hypotheses did we make?
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5 Conclusions

We did not manage to fully reproduce the results presented by Lopes and colleagues.
However, by replicating some of their results and providing our code, we hope that oth‐
erswill be able to implement the learning progress agents inmore diverse environments
and compare them to other intrinsically motivated reinforcement learning agents.
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A Parameter fitting for the two measures

We led a grid‐search parameter fitting for the two measures presented in subsection 2.2
(optimal and agent policy) for the environment with a punishment of −0.1. The data is
available on Github.
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Figure 7. Parameter fitting for all the agents in Lopes and colleagues’ environment. The left column
corresponds to the optimal policy and the right one to the agent policy. We look at the average
value the last 500 steps on 20 trials for each couple or singleton of parameters. From top to bottom:
R‐max, ζ‐R‐max, ζ‐EB, BEB and ϵ‐greedy. The color‐scale is the same for all the agents.

Then, when needed, we focused on the red areas of Figure 7 to improve the precision of
the parameter fitting (see Figure 8).
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Figure 8. More precise parameter fitting for R‐max (top) and ζ‐R‐max (bottom) using the optimal
policy value error (left column) and the agent policy value error (right column).

In the parameter fitting of Figure 7, we see that ζ‐EB is difficult to optimize and that
there is no good parameter couple which optimizes the performance of the agent on the
two measures (the optimal policy and the agent policy). In Figure 9, we tried to elicit
a range of parameters for which the ζ‐EB model performs well on the real agent policy
metric.
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Figure 9. Parameter fitting for the ζ‐EB agent, with the optimal (left) or real (right) policy value
error. We did not find any parameter couple which made ζ‐EB converge to the best policy in both
cases.

In Figure 10, we also provide heat‐maps when the prior coefficient of BEB is not already
set.
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Figure 10. Parameter fitting for BEB with the optimal (left) or agent policy value error (right).
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B Performance of the agents with the agent policy

The optimal policy measures the capacity of the agent to sample the environment it
explores, without taking into account the actual agent policy. In our reproduction, ϵ‐
greedy performs much better than in Lopes and colleagues’ article, although it some‐
times takes random actions (see Figures 2, 3 and 5). To solve this discrepancy with the
original results, we looked for a more canonical measure based on the agent policy pre‐
sented subsection 2.2. In Figure 11, we present the performance of the agents on this
new measure, either with the parameters used thus far, or with the best parameters on
this new measure, found in Appendix A and available in Table 3. We used the same
environments and number of trials as before.
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Figure 11. In both columns, the agents are evaluated based on their policy (and not on the best
policy they can have with the models they learnt). The left column shows the performance of
the agents with the parameters that were optimized on the optimal policy, whereas the right col‐
umn shows the models with the parameters optimized on the agent policy. From top to bottom:
Stationary experiment, wrong prior, uninformative prior, small task change, bigger task change.

Overall, we show that BEB, ζ‐EB and ϵ‐greedy policies may be sub‐optimal in practice,
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although they have great performance in the optimal policy value error condition. More
particularly, ϵ‐greedy cannot converge to the optimal policy most of the time due to the
significant value of ϵ. Besides, the exploration bonusmodels suffer from the high impact
of the exploration bonus in their decision‐making. As shown in Figure 11, the agent
policies often fail to converge to the very best policy in the environment.

In the right column of Figure 11, R‐max and ζ‐R‐max have most of the qualitative prop‐
erties observed in the original article. They show poor performance at start and con‐
verge to a close to optimal policy. With a more informative prior, R‐max performance
could further drop in the wrong prior experiment. Likewise, ϵ‐greedy performance is
reproduced in Figure 11‐Right. In all the tasks, it cannot converge to the optimal policy
because of the random actions.

However, BEB and ζ‐EB results are not reproducedwell. ζ‐EB has theworst performance
out of all the agents, which could be because of wrong hypotheses on the agent, for
example considering that it is not Bayesian. We observed that the agent explores fre‐
quently but does not manage to converge to a good policy. This has been described as
a bias towards exploration in Bureau and Sebag [2]. For BEB and ζ‐EB, we observe a
strong initial rise in performance that we do not observe for the agents of the article
which could be because of the use of high initial Q‐values (we chose the upper theoreti‐
cal bound of 1+β

1−γ ). Nevertheless, such initial Q‐values are necessary with the inference
process that we chose, with the Q‐values of a (state,action) couple not being updated
before the first passage. Updating the Q‐values from the start would allow for use of any
initial Q‐values. However, the optimistic initialization of ϵ‐greedy would be impossible,
although described in Lopes and colleagues’ article.

To obtain more similar results to those obtained by Lopes and colleagues, one could try
to change the inference process of the different agents. For example, R‐max and ζ‐R‐
max could use the known/unknown paradigm, and stop updating their models when
the states are known. BEB and ζ‐EB could also use the same paradigm with the intro‐
duction of a new parameter comparable to m and stop updating the model when the
states are known or unknown. To guarantee that ϵ‐greedy is optimistic at start, the pre‐
vious inference process seems to be a good solution. However, these choices are not
described in the original article of Lopes and colleagues.

Agent Parameters changed Previous values
ϵ‐greedy ϵ = 0.01 ϵ = 0.3

R‐max No change No change
ζ‐R‐max No change No change
BEB β = 3 β = 7

ζ‐EB β = 1 β = 3

Table 3. Change in the parameters to optimize the agent policy from the ones used for the optimal
policy

C Performance of the agents on new environments

It was not clear whether the authors generated one environment and evaluated each
model twenty times in this environment, or if they generated twenty environments and
evaluated each model once per environment. To broaden the extent of our results, we
generated 10 environments and evaluated each agent 10 times in each environment.
However, generating 10 environments out of 2% of valid environments could result in
using similar environments and not provide additional results to the ones we showed so
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far. To generate more diverse environments, we use punishments of−1 instead of−0.1,
as in Bureau and Sebag [2]. In Figure 12, we show the parameter fitting in these new
environments, for the optimal policy and the agent policy described in subsection 2.2.
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Figure 12. Parameter fitting on the new environments.

Theparameter fitting for the optimal policy seems rather similar to the one ofAppendixA.
Thus and for simplicity, we use the values of Table 1. However, all the models seem to
performworse on the agent policymeasure as compared to their performance in the pre‐
vious environment (see Figure 7). More particularly, the learning progress agents have
a worse performance and stability as compared to the non‐learning progress agents.
In Figure 13, we show the performance of the five agents on four of the experiments
studied so far: in a stationary environment, with wrong priors, with the task change of
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the original article and with the stronger task change we presented in Figure 6. There
are 100 different environments for non‐stationary tasks (10 environments with 10 task
changes on each of them) and each agent is simulated a hundred times on each task.
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Figure 13. Reproduction of the fourmain experiments with the new environments and the optimal
policy measure. There are 100 simulations for each agent on each task. (Upper row) Stationary
environments, with informative priors (left) or wrong ones (right). (Lower row) Non‐stationary
environments, with a small task change (left) or a stronger task change (right).

Figure 13 illustrates the main qualitative results that we described so far: ϵ‐greedy has a
very good performance on the optimal policy measure, and ζ‐EB performs worse than
in the original article.
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