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ABSTRACT

Proving explicit lower bounds on the size of algebraic formulas

is a long-standing open problem in the area of algebraic complex-

ity theory. Recent results in the area (e.g. a lower bound against

constant-depth algebraic formulas due to Limaye, Srinivasan, and

Tavenas (FOCS 2021)) have indicated a way forward for attacking

this question: show that we can convert a general algebraic formula

to a homogeneous algebraic formula with moderate blow-up in size,

and prove strong lower bounds against the latter model.

Here, a homogeneous algebraic formula � for a polynomial % is

a formula in which all subformulas compute homogeneous poly-

nomials. In particular, if % is homogeneous of degree 3 , � does not

contain subformulas that compute polynomials of degree greater

than 3 .

We investigate the feasibility of the above strategy and prove a

number of positive and negative results in this direction.

(1) Lower bounds against weighted homogeneous formu-

las: We show the �rst lower bounds against homogeneous

formulas of any depth in the weighted setting. Here, each

variable has a given weight and the weight of a monomial is

the sum of weights of the variables in it. This result builds

on a lower bound of Hrubeš and Yehudayo� (Computational

Complexity 2011) against homogeneous multilinear formu-

las. This result is strong indication that lower bounds against

homogeneous formulas are within reach.

(2) Improved (quasi-)homogenization for formulas: A sim-

ple folklore argument shows that any formula � for a homo-

geneous polynomial of degree 3 can be homogenized with a

size blow-up of 3$ (log B ) .We show that this can be improved

superpolynomially over �elds of characteristic 0 as long as

3 = B> (1) . Such a result was previously only known when

3 = (log B)1+> (1) (Raz (J. ACM 2013)). Further, we show how

to get rid of the condition on 3 at the expense of getting a
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quasi-homogenization result: this means that subformulas

can compute polynomials of degree up to poly(3) .
(3) Lower bounds for non-commutative homogenization:

A recent result of Dutta, Gesmundo, Ikenmeyer, Jindal and

Lysikov (2022) implies that to homogenize algebraic formulas

of any depth, it su�ces to homogenize non-commutative

algebraic formulas of depth just 3. We are able to show strong

lower bounds for such homogenization, suggesting barriers

for this approach.

(4) NoGirard-Newton identities for positive characteristic:

In characteristic 0, it is known how to homogenize constant-

depth algebraic formulas with a size blow-up of exp($ (
√
3))

using the Girard-Newton identities. Finding analogues of

these identities in positive characteristic would allow us,

paradoxically, to show lower bounds for constant-depth for-

mulas over such �elds. We rule out a strong generalization

of Girard-Newton identities in the setting of positive charac-

teristic, suggesting that a di�erent approach is required.

CCS CONCEPTS

• Theory of computation → Algebraic complexity theory;

Circuit complexity.
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1 INTRODUCTION

Given a multivariate polynomial % (G1, . . . , G=) over some �eld F,

an Algebraic formula for % is just an algebraic expression for %

involving the variables G1, . . . , G= and �eld constants, which are

combined using nested additions and multiplications. The size of

the formula is the number of variables and �eld constants in the ex-

pression. The depth of the formula is the number of times additions

and multiplications are nested within each other. (See Section 2 for

a formal de�nition of the model.)

This paper is motivated by the problem of proving size lower

bounds against algebraic formulas. More formally, we would like

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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to �nd explicit sequences of polynomials % (G1, . . . , G=) of degree
3 = 3 (=) ≤ poly(=) such that any algebraic formula for % has size

=l (1) . Proving such a result would imply a lower bound for the

algebraic complexity class VF. It is worth noting that this is the

algebraic analogue of the Boolean complexity classNC1 and proving

lower bounds against either of these classes is a long-standing open

problem in complexity theory.

Several previous results in the area address these problems, espe-

cially the setting of Mutlilinear formulas [3, 12, 28–32], which are

formulas in which every subformula computes a multilinear poly-

nomial.1 While we have superpolynomial lower bounds against

such formulas [30], it remains an open question [35, Open ques-

tion 14] as to whether these results can be used to obtain lower

bounds against general formulas.

Another class of restricted formulas that has received quite some

attention is the class of Homogeneous formulas, which is the main

focus of this work. Here, we consider polynomials % (G1, . . . , G=)
that are homogeneous of some degree 3 = 3 (=). A formula is

homogeneous if each of its subformulas computes a homogeneous

polynomial. In particular, each subformula computes a polynomial

of degree at most 3 . Relaxing this de�nition, we say that a formula

is quasi-homogeneous if subformulas can compute polynomials of

degree up to poly(3). (Formal de�nition in Section 2 below.)

Lower bounds for homogeneous formulas of bounded depth

have been the focus of many previous results, especially in the last

decade [1, 4, 7, 11, 14–17, 19, 20, 28]. Moreover, in recent work, it

has been shown [1, 19], in the setting of constant depth and �elds

of characteristic 0, that it is possible to prove lower bounds against

unrestricted formulas using lower bounds against homogeneous

formulas.

This suggests the following high-level approach to proving lower

bounds against algebraic formulas.

(1) Homogenization: Show that a general algebraic formula

can be converted to a homogeneous algebraic formula with

a small size blow-up.

(2) Homogeneous lower bounds: Show lower bounds against

homogeneous algebraic formulas. Ideally, these would be

strong enough to imply lower bounds against general al-

gebraic formulas. However, superpolynomial lower bounds

against homogeneous algebraic formulas (without depth re-

strictions) would already be very interesting and are as yet

not known.

Results of both kinds are known in various interesting special

cases.

• A result of Hya�l [9] implies as a special case that any al-

gebraic formula of size B can be homogenized with a size

blow-up of 3$ (log B ) . Unfortunately, this technique does not
distinguish between formulas and more general computa-

tional models such as algebraic circuits. As known tech-

niques do not seem capable of proving lower bounds against

these stronger models, we do not believe that this result will

be useful for the above approach.

• Raz [31] showed how to homogenize algebraic formulas

computing polynomials of small degree. More precisely, the

1In particular, a multilinear formula can only compute a multilinear polynomial.

size blowup in this result is poly(B) ·
(3+log B

3

)
. In particular, if

3 = $ (log B), this is only a polynomial blow-up. This implies

that proving superpolynomial homogeneous formula lower

bounds in this ‘low-degree’ setting implies superpolynomial

lower bounds against general formulas.

For 3 ≥ (log B)Ω (1) , however, this is essentially the same as

the previous result.

• Hrubeš and Yehudayo� [8] showed lower bounds against

algebraic formulas that are homogeneous and also multi-

linear. A notable feature of this result is that it holds for

the Elementary Symmetric polynomials, which are intimately

connected to homogenization. The result only holds for rela-

tively high-degree polynomials (and in particular does not

hold in the low-degree setting of Raz’s result above). Further,

the multilinearity condition means that it is unclear how to

exploit this for general formula lower bounds, as mentioned

above.

This same paper also shows that depth-3 formulas computing

polynomials of degree 3 can be homogenized with a size

blow-up of 3$ (log3 ) . In particular, when 3 = B> (1) , this is
superpolynomially better than the consequence of Hya�l’s

result mentioned above. An earlier result of Shpilka and

Wigderson [34] shows how to quasi-homogenize depth-3

formulas with only polynomial blowup.2 Both these results

are over �elds of characteristic 0.

• The aforementioned result of [19] showed how to homog-

enize constant-depth formulas over �elds of characteristic

0 with a size blow-up of exp($ (
√
3)), which is small in the

low-degree setting. It was also shown how to prove super-

polynomial lower bounds against constant-depth homoge-

neous algebraic formulas over any characteristic, when the

degree is low. This implies a lower bound for constant-depth

(and otherwise unrestricted) algebraic formulas in charac-

teristic 0, but falls short of proving this result in positive

characteristic.

It should be noted that these results of [19] would work just

as well if the �rst step was instead a quasi-homogenization.

• Finally, results of Kayal, Saha and Saptharishi [13] and also

Amireddy, Garg, Kayal, Saha and Thankey [1] show how

to prove lower bounds against homogeneous formulas of

any depth, but with strong syntactic restrictions on the fan-

ins of the gates [13] or the multiplicative structure of the

formula [1]. Like in the multilinear case, it seems unclear

whether this will lead to lower bounds against general for-

mulas.

Depth-reduction. (Quasi-)Homogeneous algebraic formulas are

also easier to analyze for other reasons. For instance, it was shown

recently [5] that quasi-homogeneous formulas computing polyno-

mials of degree 3 could be converted to formulas of depth $ (log3)
with only a polynomial blow-up. This result implies that quasi-

homogenization results for general formulas also imply that we can

convert them to small-depth formulas. Given that it seems easier

2Both the results of [8, 34] only state their results in terms of (quasi-)homogeneous
upper bounds for the Elementary symmetric polynomials. However, this has the more
general consequence noted here.
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to prove lower bounds against formulas of small depths [19], this

is an important step towards proving lower bounds.

The questions we address. In this paper, we investigate the fea-

sibility of the above high-level approach towards formula lower

bounds and prove many positive and negative results regarding

homogeneous algebraic formulas and the process of homogenizing

general algebraic formulas. In particular, we address the following

questions:

(1) Are there techniques for proving lower bounds against ho-

mogeneous algebraic formulas of any depth? Note that this

is not known, even over �elds of characteristic 0. In our opin-

ion, this is the natural next question for algebraic complexity

lower bounds.

(2) Can we convert general formulas to (quasi-)homogeneous

formulas e�ciently even in the high-degree setting (say

3 = BΩ (1) )? While this is true in the low-degree setting [30],

it seems hard to extend recent lower bounds [1, 19] in the

low-degree setting to unbounded-depth formulas [20]. Hav-

ing such a result in the high-degree setting would allow us

to consider high-degree polynomials, which could be an ad-

vantage in proving lower bounds. This is indeed the case in

various situations [3, 18, 20, 30].

(3) Canwe convert constant-depth formulas e�ciently to constant-

depth homogeneous formulas in the low-degree setting over

�elds of positive characteristic? Note that this would immedi-

ately imply a lower bound for constant-depth formulas over

positive characteristic by the result of [19], which would

solve an important open problem.

2 PRELIMINARIES

Basic notation. Throughout, F will denote a �eld. In some of

our results, we will have to assume that F has characteristic 0.

We will mostly work over multivariate polynomial rings such

as F[G1, . . . , G=], but some of our results are related to the non-

commutative polynomial ring F⟨G1, . . . , G=⟩.
Given a polynomial % (G1, . . . , G=), we use [%]3 to denote the

homogeneous component of % of degree 3. Further, we extend this

to a weighted setting, where each variable G8 is associated to some

positive integer weightF8 . The weighted degree of a monomial is

then the sum of the weights of the variables in the monomial (with

appropriate multiplicities) and the weighted degree of a polynomial

% is the maximum degree of a monomial with non-zero coe�cient

in % . Again, we use [%]3 to denote the homogeneous component of

weighted-degree 3 (it will be clear from context what the weights

are).

2.1 Algebraic Models of Computation

Algebraic formulas. We recall the basic model of Algebraic for-

mulas.

An algebraic formula over the multivariate polynomial ring

F[G1, . . . , G=] is a rooted, directed tree with edges directed towards

the root. Leaves are labelled by variables G1, . . . , G= or by the con-

stant 1 and edges by non-zero �eld constants. Internal nodes (i.e., gates)

by + and × and compute linear combinations (based on the edge

weights) or products of their children. We will assume, with loss of

generality, that if a node U has for child a leaf labelled by 1, then

U is a +-gate and that if a +-gate U has only children labelled by 1,

then U is the output of the formula.3 A non-commutative algebraic

formula over the multivariate polynomial ring F⟨G1, . . . , G=⟩ is de-
�ned similarly, with the additional assumption that the children of

any ×-gate are linearly ordered, and the corresponding product is

computed in this order.

Unless explicitly stated, the algebraic formulas we consider have

unbounded fan-in (i.e., a gate can have any number of inputs). The

size of � will denote the number of leaves,4 the depth of � the

longest leaf-to-root path. The product-depth and the sum-depth of

� are de�ned to be the maximum number of product gates and

sum gates encountered on a leaf-to-root path, respectively. If the

product-depth of a formula is Δ, then its depth is betwen Δ and

2Δ + 1.

Algebraic Branching Programs and Circuits. An algebraic circuit

is a generalization of an algebraic formula where the underlying

graph is allowed to be a directed acyclic graph. An algebraic branch-

ing program (ABP) is a special case of an algebraic circuit where

each multiplication gate has at most one input of syntactic degree

greater than 1.5

Comparison between the models. Standard results in the literature

show that formulas can be converted to equivalent ABPs with

polynomial blow-up in size and a similar result for ABPs holds

vis-a-vis algebraic circuits. Finally, it was shown by Hya�l [9] that a

circuit can be converted to a formula via a quasipolynomial blow-up.

More formally,

Theorem 2.1 (Hyafil [9]). Let % be a polynomial of degree 3

computed by a circuit of size B . Then, % is also computed by a formula

of size B$ (log3 ) . In particular, this also holds for polynomials % that

have an ABP of size B .

Homogeneity. Each gate in an algebraic formula/circuit/ABP has

a syntactic degree de�ned in a natural way. Leaves labelled by the

constant 1 have syntactic degree 0, leaves labelled with a variable

have syntactic degree 1 (or the weight of the variable if we are in

the weighted setting), ×-gates have a syntactic degree that is the
sum of the syntactic degrees of their children, and +-gates have a
syntactic degree that is equal to the largest of the syntactic degrees

of their children. The syntactic degree of a formula is de�ned as

the syntactic degree of its output. Notice that in a formula the

syntactic degree of any gate is bounded by the syntactic degree of

the formula.

A formula/circuit/ABP is homogeneous if each gate in the formula

computes a homogeneous polynomial. Equivalently, in terms of

syntactic degrees, this means that all the children of a sum gate have

the same syntactic degree. In particular, this implies that the output

gate computes a polynomial whose degree equals its syntactic de-

gree. Weakening this criterion, we say that a formula/circuit/ABP

3This ensures that a formula can compute polynomials with a constant term but forbids
using many arithmetic operations just to compute constants.
4This is within a constant factor of the number of gates, as long as each gate has fan-in
at least 2 each (which is without loss of generality).
5ABPs are typically de�ned using graphs in a slightly di�erent way (see, e.g. De�nition
3.1 in [35]). However, this de�nition via “skew” circuits is equivalent up to polynomial
blowups [24].
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is quasi-homogeneous if the syntactic degree of the output gate is at

most a polynomial function of the degree of the output polynomial.

These de�nitions extend naturally to the weighted setting. How-

ever, to emphasize the di�erence, wewill call such formulas/circuits/ABPs

weighted homogeneous or weighted quasi-homogeneous.

It is well-known that circuits and ABPs can be homogenized with

a small blow-up in the following sense.

Lemma 2.2 (Folklore). If a (weighted or unweighted) homoge-

neous polynomial % of degree 3 is computed by an algebraic circuit

(resp. ABP) of size B , then it is also computed by a (weighted or un-

weighted) homogeneous algebraic circuit (resp. ABP) of size B ·poly(3) .
Using the above lemma and Theorem 2.1 above, we have the

following folklore corollary in the unweighted setting.

Corollary 2.3 (Folklore). Any formula � of size B computing a

(unweighted) homogeneous polynomial % of degree 3 can be homoge-

nized in size 3$ (log B ) .

3 SUMMARY OF OUR RESULTS

Our results can be divided into two kinds. The �rst kind of re-

sults are positive results for the high-level proof approach towards

lower bounds against algebraic formulas that was mentioned in the

introduction. Here, we show non-trivial simulations of general alge-

braic formulas by homogeneous algebraic formulas, implying that

a strong enough lower bound against the latter, more specialized,

model implies a lower bound against the former model. We also

show new lower bounds against variants of homogeneous algebraic

formulas, indicating that lower bounds against the homogeneous

model are within reach.

The second kind of results show negative results from the point

of view of homogenization. Here, we obtain new lower bounds on

the power of homogeneous algebraic formulas in simulating simple

polynomials that have small inhomogeneous formulas of depth 3.

In other settings, we show that new ideas are required to prove the

kinds of homogenization results we would like.

3.1 Lower bounds against weighted
homogeneous formulas

We show superpolynomial lower bounds against weighted homo-

geneous formulas of any depth.

The polynomial for which we prove the lower bound is quite

simple to de�ne, and understanding its complexity plays an im-

portant role in other results in the paper. It is the polynomial

�:,ℓ,3 (I1, . . . , I: ) de�ned as follows. Let I1, . . . , I: be a weighted

collection of variables, where I8 has weight 8 . For :, ℓ ≤ 3 , de�ne

�:,ℓ,3 (I1, . . . , I: ) =


(
:∑

8=1

I8

)ℓ 3
.

Theorem 3.1 (Lower bounds against weighted homoge-

neous formulas). The following holds over any �eld. Let 3 be a

growing parameter. There exist : = Θ(3/log3) and ℓ = Θ(log3)
such that any weighted homogeneous formula � computing �:,ℓ,3

has size 3Ω (log log3 ) .

This gives the �rst explicit lower bound result in this variant

of the model of homogeneous formulas and gives indication that

lower bounds against homogeneous formulas are within reach. On

the other hand, we notice that �:,ℓ,3 can be computed by interpo-

lation by an inhomogeneous depth-3 formula of size $ (:2ℓ2). This
indicates that the suggested approach to prove lower bounds for

generic models via homogenization is not su�cient for weighted

formulas and that something more is required.

3.2 Improved bounds for
(quasi-)homogenization in characteristic 0

The next question we consider is to understand the blow-up re-

quired for homogenization and quasi-homogenization of formulas.

Let � be a formula computing a homogeneous polynomial % of

degree 3 . The folklore result Corollary 2.3 above shows that � can

be computed by a homogeneous formula of size 3$ (log B ) . Unfor-
tunately, as noted in the introduction, this does not distinguish

between the case that � is a formula and the case that � is an alge-

braic circuit (for which lower bounds are probably much harder).

Improvements over this are known in the setting where the degree

is logarithmic [31] and depth-3 formulas [8, 34] in characteristic 0,

as described in the introduction.

We show that the folklore homogenization result can be super-

polynomially improved for all 3 = B> (1) in characteristic 0. Further-

more, we can remove any condition on 3 at the expense of turning

the homogenization result to a quasi-homogenization. The main

technical theorem is as follows, and the following corollary gives

the improved homogenization result.

Theorem 3.2 ((�asi-)Homogenization of algebraic formu-

las). The following holds over �elds of characteristic 0. Let B, 3,Δ be

parameters. Assume that � is an algebraic formula of size B and depth

Δ computing a homogeneous polynomial % of degree 3 . Then % is also

computed by a homogeneous formula � ′ of size B · 3$ (Δ+log3 ) . Fur-
ther, for any �xed Y > 0, % is also computed by a quasi-homogeneous

formula � ′′ of syntactic degree at most 31+Y and size B · 3$ (Δ) .

The above result considerably generalizes and strengthens re-

sults of Shpilka and Wigderson [34] and Hrubeš and Yehudayo� [8]

whose results yield similar quasi-homogenization (with syntactic

degree $ (32)) and homogenization results for depth-3 formulas.

Corollary 3.3 (Superpolynomially better homogenization

and qasi-homogenization). The following holds over �elds of

characteristic 0. Let B, 3 be parameters. Assume that � is an (arbitrary,

possibly inhomogeneous) algebraic formula of size B computing a ho-

mogeneous polynomial % of degree 3 . If 3 = B> (1) , % is also computed

by a homogeneous formula � ′ of size 3> (log B ) . Further, irrespective of
3 and for any �xed Y > 0, % is also computed by a quasi-homogeneous

formula � ′′ of syntactic degree at most 31+Y and size 3> (log B ) .

We note that the above results are exponentially better in terms

of the allowable degree parameter than Raz’s result [31] though

they incur a superpolynomial blow-up in the size.

A consequence of this result is the following interesting impli-

cation: if a polynomial % of degree 3 = poly(=) in = variables has

no quasi-homogeneous formula of size => (log=) , then % also does

not have any formula of size poly(=). Lower bounds of this quan-
titative form are known in the multilinear setting [3, 29, 30]. We
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now know that obtaining such bounds in the quasi-homogeneous

setting would result in general formula lower bounds.

As noted in the introduction, quasi-homogenization also has

consequences for depth-reduction. Indeed putting the above corol-

lary together with the depth-reduction of [5] we get the following

result. This improves the size bound of 3$ (log B ) which follows from
Hya�l’s theorem above.

Corollary 3.4 (Superpolynomially better depth-reduction).

The following holds over �elds of characteristic 0. Let B, 3 be param-

eters. If a homogeneous polynomial % of degree 3 is computed by

an (arbitrary, possibly inhomogeneous) algebraic formula � of size

B , then it is also computed by a homogeneous algebraic formula � of

size 3> (log B ) and depth $ (log3) .

3.3 Homogenization in the non-commutative
setting

We also consider the power of formula homogenization in the non-

commutative setting where variables are not allowed to commute

with each other. Non-commutative polynomials can be thought of

as polynomials where the underlying variables take values in a non-

commutative algebra (such as square matrices of some dimension

over the �eld F). There are two motivations for considering this

question.

The principal motivation goes back to homogenizing commuta-

tive formulas. A recent result of Dutta, Gesmundo, Ikenmeyer, Jindal

and Lysikov [2] shows the existence of a ‘complete’ polynomial

%=,3 (G1, . . . , G=) for homogeneous algebraic formula computation

in the following sense: if %=,3 (which is a homogeneous polyno-

mial of degree 3 ≤ =) has a homogeneous formula of size poly(=),
then any formula can be homogenized with polynomial blow-up.

While we do not want to recall the de�nition of %=,3 here, it is

worth noting that this polynomial is closely related to computing a

simple polynomial in matrix variables. In particular, consider the

Elementary symmetric polynomial E3= in non-commuting variables

G1, . . . , G= de�ned by

E3= (G1, . . . , G=) =
∑

1≤81<82<· · ·<83 ≤=
G81G82 · · · G83 . (1)

It is simple to show that if E3= has a non-commutative homogeneous

formula of size poly(=), then so does %=,3 . Further, it is a standard

fact that E3= has a depth-3 non-commutative inhomogeneous for-

mula of polynomial size. So, the question of homogenizing general

algebraic formulas reduces to this clean question of homogenizing

depth-3 non-commutative formulas.

The second motivation comes from two results of Limaye, Srini-

vasan and Tavenas [19, 36]. The latter result shows a strong separa-

tion between Algebraic Branching Programs (ABPs) and homoge-

neous algebraic formulas of small-depths in the non-commutative

setting, making progress towards an old question of Nisan [27].

On the other hand, we also have separations between ABPs and

inhomogeneous constant-depth formulas, but we then have to go

through the commutative setting of [19], resulting in weaker bounds.

If we could homogenize non-commutative formulas e�ciently, then

we could avoid this argument and lift the stronger results of [36]

to the inhomogeneous case.

We show the following strong no-go results for non-commutative

homogenization.

Theorem 3.5 (Lower bounds for non-commutative homoge-

nization). The following holds over any �eld. Let =,3,Δ be parame-

ters.

If 3 ≤ =0.99, the above polynomial E3= , which has an inhomoge-

neous non-commutative algebraic formula of product-depth 1 (and

depth 3), is such that any homogeneous non-commutative algebraic

formula of product-depth Δ computing E3= must have size=Ω (31/Δ/2Δ ) .
Further, if 3 ≤ =1−2/log log= , any homogeneous non-commutative

algebraic formula (irrespective of depth) for E3= has size (log=)Ω (log3 ) .
It gives the lower bound =Ω (log log=) as soon as 3 = =Ω (1) .

3.4 Girard-Newton identities in positive
characteristic

Finally, we investigate possible analogues of Theorem 3.2 in the

commutative setting over �elds of positive characteristic.

One of the main ingredients of Theorem 3.2 (and its precedents

in the works of Shpilka and Wigderson [34] and Hrubeš and Yehu-

dayo� [8]) is the family of Girard-Newton Identities that allow us to

express the Elementary symmetric polynomials of degree at most 3

in terms of Power Sum symmetric polynomials of degree at most 3

in �elds of characteristic 0. Here, the Elementary symmetric polyno-

mial is the polynomial E3= as de�ned in (1) (except that the variables

now commute), and the Power sum symmetric polynomial P3= is

the sum of the 3th powers of all the variables G1, . . . , G= . Note that

the Power sum symmetric polynomials P3= have support 1, in the

sense that each monomial depends on at most 1 variable. To be

more formal, we introduce some notation.

De�nition 3.6 (Support of a polynomial). The support-size of a

polynomial& ∈ F[F1, . . . ,F<] is the maximum number of distinct

variables in a single monomial.

Observe that if the support-size of & (F1, . . . ,F<) is at most A

then& has a depth-2 formula of size at most (<3)A , where3 denotes

the degree of & . This implies, in particular, that the Power sum

symmetric polynomials trivially have small formulas of depth 2.

This last fact is what makes the Girard-Newton identities useful.

For example, since

E3= = &3 (P1=, . . . , P3=) (2)

for some polynomial &3 , this immediately implies that E3= has a

depth-4 homogeneous formula of size exponential in 3 but poly-

nomial in =. In particular, for slowly growing 3 , this allows us to

homogenize depth-3 formulas without blowing up size or depth

signi�cantly.

In positive characteristic, it is easy to see that there is no identity

as in (2).6 However, we could hope for weaker analogues, expressing

the Elementary symmetric polynomials in terms of symmetric poly-

nomials of ‘small’ support, i.e. polynomials where each monomial

involves at most A = $ (1) variables, implying that the polynomial

has a depth-2 formula of size $ ((=3)A ) = poly(=) .

6This follows, for example, from the fact that the Power sum symmetric polynomials
are algebraically dependent in positive characteristic, while the Elementary symmetric
polynomials remain algebraically independent.
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We rule out even such weak analogues of Girard-Newton identi-

ties in small positive characteristic.

Theorem 3.7 (No Girard-Newton Identities in positive

characteristic). Fix a constant prime ? > 0. For any 3 that is

a power of ? and = ≥ 3 , there is no polynomial&3 (F1, . . . ,F<) such
that the Elementary symmetric polynomial E3= can be expressed as

E3= = &3 (%1, . . . , %<)
where %1, . . . , %< are symmetric polynomials of support-size < 3.

Organization. We start with a proof overview of all the four

results described above in the next section. However, due to space

constraints, we only include the proofs of the �rst and fourth results,

and point the reader to the full version for all the proofs [6].

4 PROOF OVERVIEW

4.1 Lower bound against weighted
homogeneous formulas

Here we describe the proof ideas behind Theorem 3.1, which shows

a superpolynomial lower bound against weighted homogeneous

formulas computing the weighted homogeneous polynomial�:,ℓ,3 .

Most lower bounds for strong models of algebraic computation

use linear algebraic methods based on rank techniques going back

to the work of Nisan [27] and Nisan andWigderson [28]. In contrast,

our proof is surprisingly simple. We use a covering argument, which

shows a lower bound for computing any polynomial containing

all monomials of weighted degree 3 , which in particular implies a

lower bound for computing �:,ℓ,3 .

More precisely, we show that any weighted homogeneous for-

mula of small size can be written as a sum of a few terms, each of

which is a product of many polynomials. Such ‘product lemmas’

o�er a standard route to proving lower bounds in many di�erent set-

tings [8, 28, 30, 35]. In our setting, we show that each product term

can only compute a small fraction of all monomials of weighted

degree 3 . This implies the lower bound.

Such arguments are usually only useful in the monotone set-

ting.7 Note that our lower bounds do not assume monotonicity

of any form, but we are nonetheless able to use this argument

here, which we think is strong indication that homogeneous for-

mula lower bounds are within reach. Our proof is inspired by a

result of Hrubeš and Yehudayo� [8] who also use a covering ar-

gument to prove a lower bound against homogeneous multilinear

formulas. Multilinearity is a strong condition and we know how

to prove lower bounds even against inhomogeneous multilinear

formulas [30]. Here, we remove the multilinearity condition at the

expense of considering the weighted setting.

4.2 (Quasi-)Homogenization in characteristic 0

We now turn to the proof of Theorem 3.2 which holds over �elds

F of characteristic 0. As mentioned above, this result strengthens

and generalizes the results of [8, 34] who prove similar results for

depth-3 formulas.

7In the setting of monotone algebraic computation, the underlying �eld is R and
all the coe�cients of the polynomials that are computed by the gates of the for-
mula/ABP/circuit are non-negative. This implies that there can be no cancellations in
the underlying computation, making the models quite weak [10, 37].

Quick sketch of the depth-3 case. As they are stated, these re-

sults yield quasi-homogeneous and homogeneous formulas of size

poly(=,3) and poly(=) · 3$ (log3 ) respectively for a very concrete

family of polynomials: the Elementary symmetric polynomial E3=
de�ned above. From this very concrete result, we get a similar result

for general depth-3 formulas via the following standard argument

(see, e.g. [19]) which we sketch here. Consider a depth-3 ΣΠΣ for-

mula � . The formula � is a sum of terms, each of which is a product

of linear polynomials. After some manipulation, one can show that

without loss of generality, each such term ) has the form

) = U ·
=∏

8=1

(1 + ℓ8 )

where U ∈ F and each ℓ8 is a homogeneous linear polynomial.

Note that the homogeneous degree-3 component of ) is given by

E3= (ℓ1, . . . , ℓ=) . Thus, if we have e�cient (as obtained in [8, 34])

(quasi-)homogeneous formulas for E3= , we can use these to get

similarly e�cient (quasi-)homogeneous formulas for the degree-3

component of ) and by extension for the polynomial computed by

� (assuming that it is homogeneous of degree 3).

To prove the above results for E3= , the two works [8, 34] use a

common idea: the Girard-Newton identities that allow us to write

the Elementary symmetric polynomials in terms of the Power sum

symmetric polynomials P3= de�ned above. The latter family of poly-

nomials is homogeneous and sparse. Hence, they trivially have

depth-2 homogeneous formulas of small size. So, it su�ces to an-

alyze the complexity of the ‘composing’ weighted homogeneous

polynomial GN such that

E3= = GN3 (P31 , . . . , P
3
=).

By designing small weighted (quasi-)homogeneous formulas for

GN3 , we get (quasi-)homogeneous formulas for E3= .

Extending to higher depths. We extend these results to higher

depths and using this, we are able to get a superpolynomial im-

provement over previously known (quasi-)homogenization results.

This result builds on a series of elementary but non-trivial steps, re-

sulting in a somewhat intricate argument. We sketch the high-level

ideas here.

The depth-3 strategy is tied to the fact that computing the fam-

ily of Elementary symmetric polynomials (quasi-)homogeneously

captures the complexity of (quasi-)homogenizing depth-3 formulas.

Unfortunately, this is not true for higher depths. However, it was

observed in [19] that an analogous role at higher depths is played

by a weighted generalization of these polynomials that we denote

by WE3= . Informally, the underlying variable set is divided into =

buckets, each containing one variable each of weights 1, . . . , 3 . The

polynomial WE3= is the sum of all monomials of weighted degree 3

that contain at most one variable per bucket. Setting variables of

weight greater than 1 to zero inWE3= returns E3= .

Previous results [23, 26, 33] have shown how to generalize the

Girard-Newton identities to express WE3= in terms of an analogous

weighted generalization of the Power sum symmetric polynomials

that we denoteWP3= . In fact, the composing polynomial here again
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is the same polynomial GN3 from the Girard-Newton identities.8

Having these identities is the �rst crucial step in our proof.

The next step is to understand the complexity of computing

the weighted homogeneous polynomials GN3 andWP3= . We have

some understanding of the former from the works [8, 34]. However,

the power sums turn out to be quite a bit more complicated in

the weighted setting. Nevertheless, we are able to show that the

complexity of both polynomials are closely related to the complexity

of the polynomial�:,ℓ,3 de�ned above (and a more general variant).

This is not obvious as the two families of polynomials are not similar

at all at �rst sight.

The �nal step is to construct weighted (quasi-)homogeneous

formulas for the polynomial �:,ℓ,3 and compose these formulas to-

gether to (quasi-)homogenize a depth-Δ formula � . It is not straight-

forward to do this. First, we show how to construct formulas for

�:,ℓ,3 (I1, . . . , I: ) where the number of copies of I8 is inversely re-

lated to its weight 8 . At a high-level, this is useful for the following

reason. Let us imagine that we have a formula using gates that

compute the polynomial �:,ℓ,3 (I1, . . . , I: ). Replacing this gate by
the formulas constructed above results in a large blow-up for inputs

of small weighted degree (which intuitively have small formulas

since they have small weighted degree) but only a small blow-up for

inputs of large weighted degree. We use this high-level idea to show

how to compose these formulas together to (quasi-)homogenize a

depth-Δ formula � e�ciently.

4.3 Lower bounds for non-commutative
homogenization

The proof of Theorem 3.5 uses a lower bound technique introduced

in [36] (building on [19, 28]) where it was used to prove lower

bounds for non-commutative homogeneous formulas computing

a di�erent polynomial.9 This technique is suited to proving lower

bounds for set-multilinear polynomials which are special kinds

of homogeneous polynomials. More precisely, the variables in a

set-multilinear polynomial of degree 3 are partitioned into 3 sets

X1, . . . ,X3 , each monomial contains exactly one variable per set.

While the polynomial E3= is not set-multilinear, in the non-commutative

setting, the complexity of this polynomial is equivalent to the set-

multilinear polynomial essentially obtained by ‘set-mutilinearizing’

each monomial of E3= . We call this polynomial BE3= (Y1, . . . ,Y3 ). It is
easy to show that if E3= has a small homogeneous non-commutative

formula, then so doesBE3= . Since the latter polynomial is set-multilinear,

it is amenable to techniques introduced in [36].

This technique is the partial derivative method of [28] com-

bined with a restriction argument. Fix a set-multilinear polynomial

� (X1, . . . ,X3 ). We divide the underlying variable sets into two

families, say {X81 , . . . ,X8A } and {X91 , . . . ,X93−A }, and analyze the

rank of the ‘partial derivative’ matrix " with rows and columns

labelled by set-multilinear monomials in the two sets of variables.

The coe�cient of the (<1,<2)-th entry of" is the coe�cient in �

of the monomial< that has exactly the variables of<1 and<2 (in

the right order).

8It is not hard to see that this must be the case as the power-sum polynomials

P31 , . . . , P
3
= are algebraically independent.

9The ‘Iterated Matrix Multiplication’ polynomial IMM=,3 which is the top left entry

of a product of 3 = × = generic matrices.

It was shown in [36] that for any polynomial with a small non-

commutative homogeneous formula, the matrix" has small rank,

as long as the sizes of the variable sets |X1 |, . . . , |X3 | are su�ciently

‘di�erent’. In the setting of the hard polynomial % (Y1, . . . ,Y3 )
from [36], it is possible to �nd a ‘projection’ from % to a set-

multilinear polynomial � (X1, . . . ,X3 ) where |X1 |, . . . , |X3 | are dif-
ferent (in the sense required) while maintaining the property that

the partial derivative matrix " is the identity matrix, and hence

full rank. We thus get a lower bound from � , which implies a lower

bound for % .

Here, we instead have to work with the polynomial BE3= (Y1,

. . . ,Y3 ), which does not have the rich combinatorial structure

of the polynomial % from [36], making the argument for that

polynomial inapplicable.10 Nevertheless, we show that for essen-

tially any choice of |X1 |, . . . , |X3 |,11 there is a projection from

BE3= (Y1, . . . ,Y3 ) to a set-multilinear � (X1, . . . ,X3 ) whose partial
derivative matrix is upper-triangular with non-zero entries along

the diagonal. This is an involved combinatorial argument that we

postpone to the full version. The end result is that the polynomial

� has a full-rank partial derivative matrix, implying a lower bound

for computing � . Since � is a projection of BE3= , we obtain the

same lower bound for BE3= as well.

4.4 No Girard-Newton identities in positive
characteristic

The proof of this theorem is based on a more general functional

lower bound. We show in fact that there is no function 5 : F< → F
such that

E3= = 5 (%1, . . . , %<) (3)

where the above equality is an equality of functions mapping

Boolean inputs (i.e. inputs in {0, 1}=) to F.
The proof uses a theorem of Lucas (see Theorem 6.1 below),

which has also found many applications in Boolean complexity.

Lucas’ theorem gives a nice functional interpretation to the El-

ementary symmetric polynomials on Boolean inputs. More pre-

cisely, if 3 = ?: , then the evaluation of the polynomial E3= on input

0 ∈ {0, 1}= is the (: + 1)th least signi�cant digit of the Hamming

weight F of 0. More generally, for a degree parameter � that is

not a power of ? , E�= (0) is a function of the ⌈log? (� + 1)⌉ least
signi�cant digits ofF .

Looking at (3), since 3 = ?: , we thus see that the left hand side

is functionally the (: + 1)th least signi�cant digit of the Hamming

weightF of the input 0.

On the right hand side, each of the polynomials %1, . . . , %< are

symmetric polynomials of support-size less than 3 . However, as

functions on Boolean inputs, they are functional equivalent to mul-

tilinear symmetric polynomials of support-size less than 3 , which

are simply linear combinations of Elementary symmetric polynomi-

als of degree less than 3 . Again, by Lucas’ theorem, we see that the

right hand side depends functionally only on the : least signi�cant

digits ofF .

10The crucial fact about % used in [36] is that it is complete for the class of polynomials
computed by small Algebraic Branching Programs. It is unclear if this is true for the

polynomial BE3= we consider here.
11Slightly more precisely, we only consider |X1 |, . . . , |X3 | where each |X8 | is a power
of 2 and the underlying partial derivative matrix is square.
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Thus, we cannot have a functional equivalence between the two

sides.

5 LOWER BOUND AGAINST WEIGHTED
HOMOGENEOUS FORMULAS

In this section, we prove the lower bound against weighted ho-

mogeneous formulas (Theorem 3.1). Throughout this section, the

set / = {I1, . . . , I: } will denote a weighted set of variables where

I8 has weight 8 . As de�ned also above, we de�ne the weighted

homogeneous polynomial �:,ℓ,3 as follows.

�:,ℓ,3 =



(
:∑

8=1

I8

)ℓ 3
.

We will �rst prove a product lemma for weighted homogeneous

formulas. The product lemma is very similar to one for homoge-

neous formulas [8].

Lemma 5.1 (Product Lemma for Weighted Homogeneous

Formulas). Let % (/ ) be a weighted homogeneous polynomial of

weighted degree 3 ≥ 1 such that % (/ ) is computed by a weighted

homogeneous formula of size B . Then we can write

% (/ ) =
B∑

8=1

C∏

9=1

68, 9 (/ ),

where C = ⌈log3 (3/:)⌉ and 68, 9 s are weighted homogeneous polyno-

mials of weighted degree at least one.

Proof. (Proof of Lemma 5.1)

The proof is similar to the proof of Hrubeš and Yehudayo� of a

similar lemma for homogeneous formulas [8]. The proof proceeds

by induction on B and 3 .

The base cases: If 3 ≤ 3: , then the product lemma is trivially

true, as we can get C = 1 by simply de�ning 61,1 = % (/ ). Suppose
B = 1, then it means that 3 ≤ : and the statement holds again by

the previous argument.

Now, let us assume that B > 1 and 3 > 3: . Let � be the formula

computing % (/ ). Without blowing up the size of the formula, we

may assume that each gate of � has fan-in at most 2.

For any node D in the formula � , let �D be the formula rooted at

D. Let 5D (/ ) be the polynomial computed by �D . Let BD denote the

size of �D . Let �D=0 be the formula obtained by substituting D = 0

in � and let B′D be the size of �D=0. Let ℎD (/ ) be the polynomial

computed by �D=0. Notice that B ≥ BD + B′D and that BD , B
′
D < B .

Given a formula � for % (/ ), there exists a node D in the formula

such that the weighted degree of the polynomial 5D is at least 3/3
and at most 23/3. It is easy to see that we can express % (/ ) in terms

of 5D (/ ) and ℎD (/ ). Speci�cally, % (/ ) = 60 (/ ) · 5D (/ ) +ℎD (/ ), for
some non-constant homogeneous polynomial 60 (/ ).

We apply the induction hypothesis to ℎD (/ ) and 5D (/ ) to obtain
the following expressions.

ℎD (/ ) =
B′D∑

8=1

C∏

9=1

ℎ8, 9 (/ ),

where C = ⌈log3 (3/:)⌉ and the ℎ8, 9 s are weighted homogeneous

polynomials. Similarly, using the fact that deg(5D ) ≥ 3/3, we see

that

5D (/ ) =
BD∑

8=1

C ′∏

9=1

58, 9 (/ ),

where C ′ ≥ ⌈log3 (3/3:)⌉ = C − 1 and the 58, 9 s are weighted homo-

geneous polynomials.

Therefore, overall we get

% (/ ) = 60 (/ ) ·
BD∑

8=1

C−1∏

9=1

58, 9 (/ ) +
B′D∑

8=1

C∏

9=1

ℎ8, 9 (/ )

By distributivity of multiplication and using the fact that B ≥
BD + B′D , we get the claimed expression for % (/ ). □

From now, let ℓ = 2⌊log(3)⌋ and : = 2⌊3/ℓ⌋ + 1 (with 3 large

enough). Our aim is to show that any weighted homogeneous

formula � computing �:,ℓ,3 has size 3Ω (log log3 ) (it is not hard to

see that this bound is tight).

We will prove Theorem 3.1 using Lemma 5.1.

Proof. (Proof of Theorem 3.1) Let �:,ℓ,3 (/ ) be computed by a

weighted homogeneous formula of size B . Then by Lemma 5.1 we

can write

� (/ ) =
B∑

8=1

C∏

9=1

68, 9 (/ )

with C = ⌈log3 (3/:)⌉.
Fix a speci�c product term ) = 61 · 62 . . . · 6C . We say that

a monomial is covered by such a product term if the monomial

appears in ) after ) is simpli�ed as a sum of monomials. To prove

the lower bound, we will show that any such product term can only

cover a few monomials of �:,ℓ,3 (/ ). This will show that we need B

to be large to cover all the monomials of the polynomial. We will

do this by using a probabilistic argument.

Let 81, 82, . . . , 8ℓ be chosen randomly from [:]. The distribution
is given by the following random experiment.

Random experiment to generate 81, 82, . . . , 8ℓ . For every 9 ∈ [ℓ],
let .9,1, .9,2, . . . , .9,:−1 be independent Bernoulli random variables

that take values 0, 1 with probability 1/2 each. Let .9 =
∑:−1
?=1 .9,?

and let 8 9 = .9 + 1. Note that, 8 9 ∈ [:] and E[.9 ] = (: − 1)/2.
Here is a simple property about the random variable .9 , which

will be useful later.

Lemma 5.2. Let .9,1, . . . , .9,:−1 and .9 be as de�ned above and let
A ∈ [: − 1]. Then,

Pr
.9,1,...,.9,:−1

[.9 = A ] ≤ 1/
√
: − 1.

Proof. As .9 is distributed as per the binomial distribution, it is

easy to see that

Pr
.9,1,...,.9,:−1

[.9 = A ] =
(:−1
A

)

2:−1
.

Here, the numerator is maximised when A = (: − 1)/2 and for this

value of A , the ratio is upper bounded by 1/
√
: − 1. □
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Let � denote the set of these indices {81, . . . , 8ℓ } and let M� de-

note the monomial I81I82 · · · I8ℓ . Conditioned on the event that the

weighted degree ofM� is exactly 3 , the monomial appears in the

polynomial �:,ℓ,3 . On the other hand, conditioned on this event,

we will show that the probability that the product term ) covers

M� is upper bounded by 1/3Ω (log log3 ) . This will imply the lower

bound.

Let 61, 62, . . . , 6C be polynomials of positive weighted degrees

31, 32, . . . , 3C , respectively. If ) covers M� then there exists a parti-

tion of � into C parts, say c = (�1, �2, . . . , �C ), such that wt(� 9 ) = 3 9
for 9 ∈ [C], where wt(() for a set ( is the sum of the elements of

that set.

We will now bound the probability of ) coveringM� for a ran-

domly chosen � . Let E� be the event that there exists a partition
c� = (�1, �2, . . . , �C ) of � such that wt(�8 ) = 38 . In order to bound

the probability that ) coversM� , it su�ces to bound the following

probability.

Pr
�
[E� |wt(� ) = 3]

We will do that as follows.

Pr
�
[E� |wt(� ) = 3]

= Pr
�
[∃c� = (�1, �2, . . . , �C ) : ∀9 ∈ [C],wt(� 9 ) = 3 9 |wt(� ) = 3]

≤ C ℓ · Pr
�
[∀9 ∈ [C],wt(� 9 ) = 3 9 |wt(� ) = 3]

= C ℓ ·
Pr� [∀9 ∈ [C],wt(� 9 ) = 3 9 AND wt(� ) = 3]

Pr� [wt(� ) = 3]
≤ C ℓ ·$ (

√
3) · Pr

�
[∀9 ∈ [C],wt(� 9 ) = 3 9 AND wt(� ) = 3] (4)

= C ℓ ·$ (
√
3) · Pr

�
[∀9 ∈ [C],wt(� 9 ) = 3 9 ]

= C ℓ ·$ (
√
3) ·

∏

9∈[C ]
Pr
�
[wt(� 9 ) = 3 9 ]

≤ C ℓ ·$ (
√
3) ·

(
1

√
: − 1

)C
.

The �rst inequality is by applying the union bound. Here, C ℓ

is an upper bound on the total number of partitions. The inequal-

ity (4) above uses Lemma 5.3 below. The �nal inequality follows

by observing that for any 9 ∈ [C], Pr� [wt(� 9 ) = 3 9 ] ≤ 1/
√
: − 1

and that the events are independent for di�erent 9 . To see that

Pr� [wt(� 9 ) = 3 9 ] ≤ 1/
√
: − 1 for every 9 , observe that if all the ele-

ments of the partition are �xed, but the last one, and the sum is say

38 − A for some A , then the probability that the �nal element equals

A is upper bounded by 1/
√
: − 1 by Observation 5.2. Therefore, the

overall probability is upper bounded by this quantity as well.

Lemma 5.3. For the choice of parameter ℓ and for the random

experiment de�ned above

Pr[wt(� ) = 3] = Ω

(
1
√
3

)
.

Proof. Note that wt(� ) = ∑ℓ
9=1 8 9 =

∑ℓ
9=1 (.9 +1) =

(∑ℓ
9=1 .9

)
+

ℓ . We have ℓ (: − 1) random variables. Note that from our choice

of parameters, ℓ (: − 3)/2 ≤ 3 − ℓ < ℓ (: − 1)/2 ≤ 3 . So we want to

estimate what is the probability that 3 − ℓ of these random variables

are set to 1 (getting : and ℓ as integers as we did, implies 3 − ℓ is

not exactly half of the random variables and we need to be precise

enough so that the approximation does not become too large).

Using estimate of Lemma 7, Chapter 10 in [22], we know that
(
ℓ (: − 1)
3 − ℓ

)
≥

(
ℓ (: − 1)
ℓ (: − 3)/2

)

>

√
ℓ (: − 1)

2ℓ2 (: − 3) (: + 1)
2ℓ (:−1)� ( (:−3)/(2:−2) )

where � is the binary entropy function:

�

(
: − 3

2: − 2

)

= − : − 3

2(: − 1) log2
(

: − 3

2(: − 1)

)
− : + 1

2(: − 1) log2
(

: + 1

2(: − 1)

)

≥ 1 − : − 3

2(: − 1) log2
(
1 − 2

: − 1

)
− : + 1

2(: − 1) log2
(
1 + 2

: − 1

)

≥ 1 −$ (1/:2).

Consequently, the probability that wt(� ) equals 3 is bounded by

below by
(
ℓ (: − 1)
3 − ℓ

)
/2ℓ (:−1) >

√
1

2ℓ (: − 1) 2
ℓ (:−1) (� ( :−3

2:−2 )−1)

≥ 1
√
43

2−$ (ℓ/: ) ≥ Ω

(
1
√
3

)
. □

Now, by using the values of :, ℓ, C the probability that the term

) covers M� is upper bounded by

C ℓ ·$ (
√
3) · 1

√
(: − 1)C

= exp

(
ℓ log C + 1

2
log3 − 1

2
C log(: − 1) +$ (1)

)

≤ exp

(
−1

2
log3 log log3 +$ (log3 log log log3)

)

= 3−Ω (log log3 ) . □

6 NO GIRARD-NEWTON IDENTITIES IN
POSITIVE CHARACTERISTIC

The proof is a consequence of Lucas’ theorem (see, e.g. [25]), which

is a standard result in combinatorial number theory. We recall this

result below. Throughout this section, �x a constant prime ? and

let F be any �eld of characteristic ? .

Theorem 6.1 (Lucas’ theorem). Let ? be any prime and 0, 1 ∈ N.
Let 01, . . . , 0ℓ ∈ {0, . . . , ? − 1} and 11, . . . , 1ℓ ∈ {0, . . . , ? − 1} be the
digits in the ?-ary expansion of 0 and 1, i.e., 0 =

∑
9∈[ℓ ] 0 9?

9−1 and
1 =

∑
9∈[ℓ ] 1 9?

9−1. Then, we have
(
0

1

)
≡

∏

8≤ℓ

(
08

18

)
(mod ?)

where
(08
18

)
is de�ned to be 0 if 08 < 18 .

This has the following well-known corollary (see, e.g. [21, Propo-

sition 1] for a similar statement when ? = 2).
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Corollary 6.2. Let 3 = ?: and = ≥ 3 . Then, for any function

5 : F3−1 → F, there is an 0 ∈ {0, 1}= such that

E3= (0) ≠ 5 (E1= (0), . . . , E3−1= (0)).

Proof. On any input 0 ∈ {0, 1}= of Hamming weightF , we note

that E3= (0) is in the base �eld F? and takes the value
(F
3

)
(mod ?).

Since 3 = ?: , by Lucas’ theorem (Theorem 6.1), this is the (: + 1)th
least signi�cant digit ofF written in base ? .

On the other hand, again by Theorem 6.1, each of E1= (0), . . . , E3−1= (0)
depend on the : least signi�cant digits ofF .

Consider inputs 0 (0) and 0 (1) of weights F0 = 0 and F1 = ?:

respectively (such an 0 (1) exists as = ≥ ?: ). The two Hamming

weights have the same : least signi�cant digits but the :th digit is

di�erent. Thus, for 0 = 0 (0) or 0 = 0 (1) we have the statement of

the corollary. □

We now prove the main result of this section.

Proof of Theorem 3.7. Assume that 3 = ?: and = ≥ 3 . For the

sake of contradiction, assume that

E3= = &3 (%1, . . . , %<) (5)

where %1, . . . , %< are symmetric polynomials of support-size at

most 3 − 1. We consider the above as an equality of functions on

Boolean inputs 0 ∈ {0, 1}= . On Boolean inputs, we also have the

simple functional equality G28 = G8 . This implies that the function

computed by any symmetric polynomial %8 of support-size at most

3 − 1 is also computed by a symmetric multilinear polynomial %̃8
of degree at most 3 − 1.

Note that any multilinear symmetric polynomial of degree at

most 3 − 1 is a linear combination of elementary symmetric poly-

nomials of degree at most 3 − 1. This shows that from (5) we get

the functional equality

E3= = 5 (E31 , . . . , E
3−1
= ) .

However, Corollary 6.2 implies that such a functional inequality

cannot hold. This proves the theorem. □
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