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Abstract In computational structural dynamics, particu-
larly in the presence of nonsmooth behavior, the choice of
the time-step and the time integrator has a critical impact on
the feasibility of the simulation. Furthermore, in some cases,
as in the case of a bridge crane under seismic loading,
multiple time-scales coexist in the same problem. In that
case, the use of multi-time scale methods is suitable. Here,
we propose a new explicit–implicit heterogeneous
asynchronous time integrator (HATI) for nonsmooth
transient dynamics with frictionless unilateral contacts and
impacts. Furthermore, we present a new explicit time
integrator for contact/impact problems where the contact
constraints are enforced using a Lagrange multiplier
method. In other words, the aim of this paper consists in
using an explicit time integrator with a fine time scale in the
contact area for reproducing high frequency phenomena,
while an implicit time integrator is adopted in the other parts
in order to reproduce much low frequency phenomena and
to optimize the CPU time. In a first step, the explicit time
integrator is tested on a one-dimensional example and
compared to Moreau-Jean’s event-capturing schemes. The
explicit algorithm is found to be very accurate and the
scheme has generally a higher order of convergence than
Moreau-Jean’s schemes and provides also an excellent
energy behavior. Then, the two time scales explicit–implicit
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1 Introduction

In transient dynamics, time integration schemes for linear
and nonlinear problems have been developed for a long time
as well as their stability and accuracy largely studied in
order to ensure convergence. For linear problems, we can
adopt schemes that allow to preserve the second-order accu-
racy, the most popular being the implicit α-schemes (HHT-α,
CH-α and WBZ-α). Some other schemes enable possible
temporal discontinuities to be accounted for with high-
order accuracy, such as the Time Discontinuous Galerkin
(TDG) scheme. However, for nonlinear problems, the previ-
ous implicit schemes can loose their unconditional stability.
Some recent works have still been devoted to study and clar-
ify specific issues in nonlinear regime, such as accuracy,
stability, high-frequency behavior, energy-decaying proper-
ties, overshoot, and numerical integration of internal forces.
For this purpose, energy-conserving [9,15,77], symplec-
tic (energy-momentum concerving) [60,79] and variational
[58,67] time integrators have been proposed.

However, the main drawback of this standard approach is
that the same time integrator (homogeneous) and the same
time scale (synchronous) are used for all the finite elements of
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of machines especially robotics [36], dynamics of structures
under transient loading (earthquake, strong wind,…) [6] and
granular dynamics [72].

When treating contact problems, two mechanical behav-
iors have to be distinguished. The first one is the contact
which is a smooth behavior without any time disconti-
nuities in velocity, force or acceleration. The second one
is the impact which is a nonsmooth behavior introducing
time discontinuities (velocity jumps). The enforcement of
unilateral contact constraints may generate impacts which
introduce time discontinuities (velocity jumps) in the bal-
ance equations. This nonsmoothness behavior requires the
development of specific time integrators. They are usually
classified in two categories [2,3,16,71] (an other classi-
fication based on the enforcement method of the contact
constraints can be found in [74]):

– Event-tracking (event-driven) time integrators: These
methods account for the exact constraints at event times
and between events (contact or impact). This is very
accurate but requires the use of some event detection
procedures [83,85] which fail if the number of events is
large or infinite (Zeno phenomenon). In this case, these
schemes become inconsistent. Event-tracking methods
usually adopt a force-acceleration formulation, so they
provide to the user the contact force values. Such meth-
ods are more adapted when a few and separated events
occur. Some event-tracking schemes are detailed in [1,5].

– Event-capturing (time-stepping) time integrators: These
methods consider a time-discretization of the equation of
motion including the contact/impact conditions. Time-
capturing methods are performed when a large number
of events are expected because no accurate detection of
the events is needed. All the contacts/impacts are treated
in the same time step. The main event-capturing method
is due to Moreau and Jean [52,70,71]. It is based on a
velocity-impulse formulation where an impact law can
be considered together with the contact constraints at
the velocity level. Moreau-Jean’s time-stepping schemes
enjoy some convergence results [8,53,80,81]. The main
drawback is their low order of convergence. Tradition-
ally, they are of order one over smooth and nonsmooth
periods. Recently, some methods have been developed
in [2,76] to improve the behavior of Moreau’s schemes
during smooth periods.

To enforce contact/impact conditions in transient dynam-
ics, a wide range of methods have been developed. Penalty,
Lagrange multiplier and augmented Lagrangian [7,38,78]
methods are the most commonly used. Penalty methods are
widely used in finite element analysis to solve contact prob-
lems [11,14,22,55,59,63,68,84]. These methods tolerate a
penetration between bodies, which can be reduced with a

the mesh. This is why considerable improvements have been
made to develop heterogeneous (each part of the mesh has
its own time-integrator) asynchronous (each part of the mesh
has its own time discretization) time integrators. It consists of
dividing the considered structure into different sub-domains,
individually handled by an appropriate time integrator with
a chosen time step. This strategy allows to adapt the time
step and the time integrator according to the specificities
of the sub-domain (frequency content of the loading, pres-
ence of nonsmooth behaviors…). Engineering applications
of HATI can be found for instance in multiphysics, fluid-
structure interaction, safety-related impact simulations for
aircraft components.The pioneer works to build HATI meth-
ods have been carried out by Belytschko, who was the first
with Mullen to use a mixed explicit–implicit method [12,13].
A detailed state of the art of HATI can be found in [44]. Here,
the aim of this paper consists in using an explicit time inte-
grator with a fine time scale in the contact area characterized
by high frequency phenomena, and an implicit time inte-
grator in the other parts reproducing much lower frequency
phenomena in order to optimize the CPU time.

There are essentially two methods to link at the inter-
face the different sub-domains. The first approach consists
in linking the sub-domains using a displacement continu-
ity condition. The second approach consists in linking the
sub-domains with a velocity continuity condition. The GC
method, proposed by Gravouil and Combescure [27–29,42,
43], is built with a velocity continuity at the interface at the
finest time scale. The authors showed that any Newmark time
integrators can be coupled with their own time scale, provid-
ing a general demonstration of stability using the pseudo-
energy method [28,42,50]. Many engineering applications
of this method are available [18,19,23,28,29,37,42,43,64–
66]. Mahjoubi, Gravouil and Combescure have developed the
MGC method in order to couple the Newmark schemes, the
HHT-α, Simo and Krenk schemes in linear dynamics [64–
66]. Unlike the GC method, the MGC is also based on a veloc-
ity continuity but at the macro time scale. Recently, two new
coupling methods, BGC-micro (Brun, Gravouil, Combes-
cure) and BGC-macro, have been proposed [44]. The BGC-
macro is a macro-time-based method as the MGC method.
However, it guarantees the zero value of the interface pseudo-
energy whatever is the α time integrator. The BGC-micro
is micro-time-based method as the GC method. The BGC-
micro method exactly matches the GC method for Newmark
schemes but it can also be employed for the α-schemes (more
details can be found in [44]). In this paper, we will use the
GC method because only Newmark schemes are involved.

In this work, we have also been interested in nonsmooth
transient dynamics including impact. Research in this domain
is still very active because it has not reached the maturity of
other domains yet. Applications include many fields such
as the animated computer graphics [10,46], the dynamics
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good choice of the penalty parameters. However, the compu-
tational time may drastically increase because the time step
must be severely reduced for stability reasons [14]. Thus, the
main drawback of these methods is the introduction of addi-
tional parameters for which the user must select an appropri-
ate value depending on the application under consideration.
On the other hand, Lagrange multipliers methods exactly
enforce the contact constraints. However, algorithms based
on these methods usually require the solution of implicit
system of equations [2,20,35,82]. More details about these
methods and other contact algorithms can be found in
[11,59]. This paper is mainly devoted to time integration
for contact dynamics with different time scales. Here, we
assume a Lagrange multiplier formalism with node to node
contact (see [47,49,56,73] for more general contact cases).

Recently, in solid dynamics, variational or symplectic
(energy-momentum conservation) time integrators [45,62]
have been formulated for contact problems [39,40,48,49,
60]. The resulting algorithms are implicit and require the
detection of contact events. Cirak and West proposed in [26]
to relax this constraint and treat the contact at the end of the
time step, but their algorithm looses its variational nature:
Indeed, an energy loss or gain is observed at each contact
event whereas the system is supposed to conserve energy. In
order to ensure the energy balance, a small time step is then
required. In order to reduce this energy drift, Rychman and
Lew proposed in [75] an asynchronous variational integrator
where a small time step is adopted in the area involved by the
contact. Our work aims to construct an heterogeneous asyn-
chronous explicit–implicit time integrator for contact and
impact dynamics. Furthermore, in order to solve the prob-
lem in the sub-domains in which contact/impact occur, we
propose a new explicit time-stepping contacts/impacts time
integrator using Lagrange multipliers inspired from Cirak
and West’s works [26].

The paper begins in Sect. 2 by proposing a space-time
weak formulation for the explicit–implicit HATI for con-
tact/impact problems. In the same framework, a Lagrange
explicit time integrator for frictionless unilateral contacts and
impacts is also presented. Finally, in Sect. 3, two numerical
examples are studied to illustrate the HATI and the con-
tact/impact time integrator.

2 Explicit–implicit HATI for contact/impact

problems

2.1 Strong formulation for the general case of

contacting deformable bodies

In this section, we define the unilateral contact constraints
between two deformable bodies B1 and B2. We consider the
problem depicted in Fig. 1.

In Fig. 1, Ωα (α = 1, 2) is the current configuration of
the deformable body Bα , Γα is its boundary. The interface
Γα is decomposed into three distinct regions: Γuα , ΓFα and
ΓCα , respectively, the Dirichlet, Neumann parts of Γα and
the interface including all the possible contact points. When
contact occurs, ΓC = ΓC1 = ΓC2 denotes the common con-
tact surface. Here, the normal components refer to the master
body B1. The contact constraints to be enforced ∀ Xα ∈ ΓCα

and ∀t ∈ [0, T ] are summarized for frictionless response
as:

gN = [(X2 + u2) − (X1 + u1)] · n1 ≥ 0 (1a)

tN = σα · nα · nα ≤ 0, α = 1, 2 (1b)

gN · tN = 0 (1c)

where σ α is the Cauchy stress field in Ωα , uα is the displace-
ment field at the point Xα ∈ ΓCα , and nα is the outward
normal to ΓCα . We assume small displacements and small
strains.

The inequality (1a) is the impenetrability condition. It stip-
ulates that the two solids can be either separated from each
other (gN > 0) or contiguous to each other (gN = 0),
gN being called the gap function. The inequality (1b) is
called the intensility condition [11,31]. It expresses that the
two solids can be either inactive with respect to each other
(tN = 0) or press on each other (tN < 0), tN being the con-
tact pressure acting at the point Xα ∈ ΓCα . The Eq. (1c) is
called the complementarity condition. It states that the nor-
mal component of the contact force does no work. It also
describes the fact that the two solids are either distant and
inactive (gN > 0, tN = 0) or contiguous and interactive
(gN = 0, tN < 0). The three unilateral contact conditions
(1a), (1b) and (1c) are usually called Signorini’s conditions,
but, as explained in [31], it seems fair to attribute them
to Hertz, Signorini and Moreau. Therefore, in this paper,
these conditions are called HSM conditions. Furthermore,
for structural dynamics, we will use the HSM conditions
rewritten in terms of velocity. The viability lemma intro-
duced by Moreau [71] justifies the following formulation of
a velocity-impulse HSM conditions as an algorithm:

Ω1(0)

Ω2(0)

⇒

Γu1

Γu2

ΓF1

ΓF2

X1

X2

ΓF1 Γu1

Γu2

ΓF2

x1

x2

Ω1(t)

Ω2(t)

ΓC1

ΓC2

ΓC1

ΓC2

Fig. 1 Configuration of two deformable bodies in contact
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⎧
⎨
⎩

gN ≥ 0
tN ≤ 0
gN · tN = 0

⇐⇒

⎧
⎪⎪⎨
⎪⎪⎩

if gN > 0 then iN = 0

if gN = 0 then

⎧
⎨
⎩

ġN ≥ 0
iN ≤ 0
ġN · iN = 0

(2)

where iN is the contact impulse and ġN is the normal com-
ponent of the relative velocity:

ġN = [u̇2 − u̇1] · n1 = [v2 − v1] · n1 (3)

with superscript dots denoting material time derivatives.
Therefore, the two contacting bodies are governed by the

following momentum equation, the kinematic relations and
the contact constraints:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

divσ + fd = ρv̇ in Ω = Ω1 ∪ Ω2
σ · n = Fd on ΓF = ΓF1 ∪ ΓF2
σ · n = tN on ΓC

u = ud on Γu = Γu1 ∪ Γu2

ǫ = 1
2

(
∇u + (∇u)T

)
in Ω

u(0) = u0; v(0) = v0 in Ω

stress-strain law (bulk material law) in Ω

HSM conditions (interface material law) on ΓC

(4)

where ρ is the density and fd is the body force.
In the following, the stress strain law is assumed to be lin-

ear elastic homogeneous isotropic (or more generally based
on the free energy and the pseudo-dissipation potential (see
[61]). The interface material law can include unilateral con-
tact with impact law (Newton’s impact law), Coulomb’s law,
or more complex dissipative interface laws [33,38]. Here, we
deal with only the case of unilateral frictionless contact.

2.2 Space-time weak formulation of explicit–implicit

HATI for contact/impact problems

In this section, we present the space-time weak formula-
tion for the new explicit–implicit HATI for contact/impact
problems. The method used here is the multi-scale method
developed by Gravouil and Combescure [27,29,42,43]. This
approach allows us to consider different sub-domains with
their own time scale (asynchronous) and their own time inte-
grator (heterogeneous) (see Fig. 2). The first sub-domain
ΩE contains the contact areas where a new explicit con-
tact/impact time integrator, developed in Sect. 2.3, is used
with a suitable time step depending on the mesh. The sec-
ond sub-domain ΩI includes the remaining of the structure
where the implicit Newmark average acceleration scheme is
adopted.

In Fig. 2, Γ E
D and Γ I

D are the interfaces where Dirichlet

ΩI ΩE

ΓG

Γ E
D

Γ I
D

Γ E
C

t0t0

tmtm

tj

Fig. 2 Sub-domains configuration

macro-time scale of the implicit time integrator. The expo-
nents E and I represent the quantities associated with the
explicit ΩE and the implicit ΩI sub-domains, respectively.
In this paper, we consider the finite element method for the
space discretization. The spatially discretized kinematic con-
straints to be imposed on the interface ΓG are introduced in
terms of velocity as follows [27,29,42,43]:

LE
GU̇

E
(t) + LI

GU̇
I
(t) = 0 ∀ t ∈ [t0, tm] (5)

where, Lk
G; k = I, E are the connectivity matrices at the

interface ΓG , Uk(t) is the spatially discretized displacement
field in Ωk at time t. Single and double superposed dots over
a quantity denote its first and second time derivatives, respec-
tively.

In order to obtain the weak space-time formulation, we
introduce the following action integral which is the key point
for building the explicit–implicit HATI time integrator (see
[44] for details):

˜̃
A(UI , U̇

I
, UE , U̇

E
, tc)

= AI (UI , U̇
I
) + ÃE (UE , U̇

E
, tc)

+

∫ tm

t0

(
LE

GU̇
E
(t) + LI

GU̇
I
(t)

)T

λG dt (6)

where λG is the Lagrange multipliers vector associated with
the kinematic constraints (5) on ΓG . It represents the general-
ized momentum [44], tc is the unknown contact/impact time,
AI is the following well-know action integral associated with
the sub-domain ΩI [41]:

AI (UI , U̇
I
) =

∫ tm

t0

L
I (UI (t), U̇

I
(t)) dt (7)

where the term ÃE is the augmented action integral associ-
ated to the sub-domain ΩE containing the contact boundary.
For sake of simplicity, we consider that just one event (con-
tact/impact) occurs at time tc over the time interval [t0, tm] as
in Cirak and West [26]. The same approach can be extended

conditions are imposed, ΓC
E the interface including all the 

prospective contact points, ΓG the interface between the two 

sub-domains. The indexes j and m represent, respectively,
the micro-time scale of the explicit time integrator and the
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to a multi-event case. In ΩE , we consider the following spe-
cial action integral for contact problems, introduced in [26],
as follows:

AE (UE (t), U̇
E
(t), tc) =

∫ tc

t0

L
E (UE (t), U̇

E
(t)) dt

+

∫ tm

tc

L
E (UE (t), U̇

E
(t)) dt (8)

where Lk; k = I, E is the spatially discretized Lagrangian
of the sub-domain Ωk :

L
k(Uk(t), U̇

k
(t)) = T

k(U̇
k
(t)) − V

k(Uk(t)) (9)

The spatially discretized Lagrangian Lk is the difference
between the kinetic energy T k and the potential energy Vk ,
given by:

T (U̇
k
(t)) =

1

2
U̇

k
(t)

T
MkU̇

k
(t) (10)

V(Uk(t)) = V
k
int(U

k(t)) − V
k
ext(U

k(t))

= (Fk
int)

T Uk − (Fk
ext)

T Uk (11)

where Mk is the symmetric definite-positive mass matrix of
the sub-domain Ωk , Vk

int and Vk
ext are, respectively the internal

and external potential energies, Fk
int denote the internal forces

and Fk
ext the external forces.

In presence of contact, the admissible set of p points is:

C(t) = {x ∈ ∂ΩE | gl
N (t) ≥ 0; ∀l ∈ {1, . . . , p}} (12)

The boundary ∂C , given by gl
N (tc) = 0; ∀l ∈ {1, . . . , p},

is the set of points where the contact has just occurred. Note
that the (non-unit) normal to ∂C is given by ∇gN . In order
to take into account the contact constraint gl

N (tc) = 0; ∀l ∈

{1, . . . , p}, we consider the augmented action integral:

ÃE (UE , U̇
E
, tc) = AE (UE , U̇

E
) + λ

T
c (tc)gN (tc) (13)

where λc is the Lagrange multiplier vector of dimension p

on ∂C , verifying the following conditions:

⎧
⎨
⎩

gl
N (t) ≥ 0

λl
c(t) ≥ 0 ∀l ∈ {1, . . . , p}, ∀t ∈ [t0, t f ]

λl
c(t)g

l
N (t) = 0

(14)

The set of equations (14) is often called the Karush-Kuhn-
Tucker conditions (KKT). We can notice here the strong link
between KKT and HSM conditions given in (2).

At the equilibrium configuration, the action integral ˜̃
A is

required to be stationary. Applying variational calculus as in
Cirak and West [26] and Gravouil et al. [44], the space-time

weak formulation for explicit–implicit HATI time integrator
for contact/impact problems can be written as follows:

δ
˜̃
A =

∫ tm

t0

(
∂LI

∂UI
−

d

dt

(
∂LI

∂U̇
I

)
+ ((LI

G)T ΛG)T

)
δUI dt

+

∫

[t0,tc[∪]tc,tm ]

(∂LE

∂UE
−

d

dt

(
∂LE

∂U̇
E

)

+ ((LE
G)T ΛG)T

)
δUE dt

−
([∂LE

∂U̇
E

]t+c

t−c
− λ

T
c (tc)∇gN (tc)

)
δUE (tc)

−
([

L
E
]t+c

t−c
− λ

T
c (tc)∇gN (tc)U̇

E
(tc)

)
δtc

+ δλT
c (tc)gN (tc) +

∫ tm

t0

(
LE

GU̇
E
(t) + LI

GU̇
I
(t)

)T

δλG dt

= 0 ∀ δUk ∈ U
0, δtc ∈T

0
c , δλc ∈Λ0

c , δλG ∈ Λ0
G (15)

where (Lk
G)T ΛG (k = I, E) represent the interface forces.

As shown in [44], we have the relationship ΛG = −λ̇G ,
t−c and t+c are, respectively, instants just before and after
contact/impact event. The spaces of the test fonctions
U 0, T 0

c , Λ0
c , and Λ0

G , introduced in (15), are [44,82]:

U
0 = {δUk ∈ H1(Ωk × [t0, tm ]) | δUk = 0 on Γuk ,

δUk(t0) = 0, δUk(tm) = 0 in Ωk} (16)

Λ0
c = {δλc ∈ H− 1

2 (∂C×[t0, tm ]) | δλl
c ≥0; l ∈{1, . . . , p}} (17)

Λ0
G = {δλG ∈ H1(ΓG × [t0, tm ]) (18)

T
0

c = [t0, tm ] (19)

where H1 and H− 1
2 are Hilbert spaces with suitable proper-

ties of regularity.
From (15), we obtain the following equations:

– In ΩI :

∂L
I

∂UI
−

d

dt

(
∂L

I

∂U̇
I

)
+((LI

G)T ΛG)T =0 ∀t ∈[t0, tm] (20)

– In ΩE :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
E

∂UE
−

d

dt

(
∂L

E

∂U̇
E

)
+ ((LE

G )T ΛG )T = 0 ∀t ∈ [t0, t−c ] ∪ [t+c , tm ]

[ ∂L
E

∂U̇
E

]t+c

t−c
= λ

T
c (tc)∇gN (tc)

[
L

E
]t+c

t−c
−

[ ∂L
E

∂U̇
E

]t+c

t−c
U̇

E
(tc) = 0

gl
N (tc) = 0; ∀l ∈ {1, . . . , p}

(21)

– On ΓG :

LE
GU̇

E
(t) + LI

GU̇
I
(t) = 0 ∀t ∈ [t0, tm] (22)
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Replacing the Lagrangian Lk with its expression (9) in (21)
and (20), we obtain the following spatially discretized equi-
librium system of each sub-domain:

– In ΩI :

MI Ü
I
(t)+FI

int(t)=FI
ext(t)+FI

link(t) ∀t ∈[t0, tm] (23)

– In ΩE :

ME Ü
E
(t) + FE

int(t) = FE
ext(t) + FE

link(t) ∀t ∈ [t0, t−c ] ∪ [t+c , t f ] (24a)
[
ME U̇

E
(t)

]t+c

t−c
= ∇g

T
N (tc)λc(tc) = iN n1 (24b)

[
(ME U̇

E
(t))T (ME )−1(ME U̇

E
(t))

]t+c

t−c
= 0 (24c)

gl
N (tc) = 0; ∀l ∈ {1, . . . , p} (24d)

where Fk
link = (Lk

G)T ΛG are the connecting forces at
the interface ΓG , (23) represents the classical equilibrium
equation including interface forces FI

link which enable the
sub-domains to be glued between each others, (24a) is the
smooth equilibrium equation without impact completed with
(24b) representing the velocity jump during impact, (24c)
denotes the kinetic energy conservation during the impact.
Here, we obtain the physical meaning of the Lagrange mul-
tipliers introduced in the augmented action integral (13):
λl

c; l ∈ {1, . . . , p} represents the contact impulse iN . We add
to the set of equations (24) the KKT conditions (14) which
are equivalent to the HSM conditions (2) (see Moreau [71]).
Using the relation (24b), we can express the HSM conditions
as follows, ∀t ∈ [t0, tm], ∀l ∈ {1, . . . , p}:

if gl
N (t) > 0 then λl

c(t) = 0 (25a)

if gl
N (t) = 0 then

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ġl
N (t) ≥ 0

λl
c(t) ≥ 0

λl
c(t)ġ

l
N (t) = 0

(25b)

2.3.1 Nonsmooth transient dynamic equation

In the following, we use the theory of nonsmooth dynamics
[70]. It allows us to write the smooth dynamics evolution
(24a) and the nonsmooth impact equation (24b) in a single
balance equation. In this framework, the differential measure
of the velocity is decomposed into a smooth and a nonsmooth
parts. This technique has been used and developped in [4,17,
24,25,76] :

dU̇ = dU̇s + dU̇ns (26)

where, the index s denotes a smooth quantity and the index
ns denotes a nonsmooth quantity.

In smooth dynamics, U̇s is at least continuous, therefore
the acceleration Ü has a finite value. Then, we can write:

dU̇s = Üdt (27)

For the nonsmooth part, we have to express the velocity jump:

dU̇ns = U̇(t+c ) − U̇(t−c ) (28)

Then, from (26), (27) and (28), we can write:

MdU̇ = MÜdt + M
(

U̇(t+c ) − U̇(t−c )

)
(29)

From (24a), we have:

MÜdt = Fextdt − Fintdt (30)

with (24b):

M
(

U̇(t+c ) − U̇(t−c )

)
= ∇g

T
N (tc)λc(tc) (31)

Substituting (30) and (31) into (29) gives:

MdU̇(t)+Fint(t)dt =Fext(t)dt+dI(t) ∀t ∈[t0, tm] (32)

where the impact impulse is expressed as:

dI(t) =

{
0 ∀t ∈ [t0, t−c ] ∪ [t+c , tm]

∇g
T
N (tc)λc(tc)

(33)

In addition to the nonsmooth transient dynamic equa-
tion (32), we have the HSM requirements (25). Finally,
the spatially discretized Lagrange multiplier form of the
impact/contact problem can be written as follows:

In the next section, we focus on the problem of the sub-
domain ΩE , in which we will propose a new explicit time-
integrator using Lagrange multipliers for contact/impact
problems.

2.3 Explicit time integrator for contact/impact problems

Since we only deal with the sub-domain ΩE in this section, 
we will remove the index E for a clearer and more general

notation. Moreover, the link forces FE
link , enabling the gluing 

between sub-domains through the interface ΓG , are omitted 

in this section.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

MdU̇ + Fintdt = Fextdt + dI

dI = LT
c dλc (Lc = ∇gN )

vc = LcU̇ = ġN⎧
⎪⎪⎨
⎪⎪⎩

if gl
N > 0 then λl

c = 0

if gl
N = 0 then

⎧
⎨
⎩

vl
c ≥ 0

λl
c ≥ 0 ∀l ∈ {1, . . . , p}

vl
cλ

l
c = 0

(34)

where LT
c is a prolongation operator from Γ E

C to ΩE , Lc a
restriction operator from ΩE to Γ E

C and vc the local velocity
associated with contact points.

Remark The set of equations (34) remains valid for rigid
body systems, but unlike the deformable body systems, an
impact law has to be considered because the HSM conditions
do not give enough information (see [52]). The impact law
could be, for instance, the Newton restitution law: vc(t

+
c )

= −evc(t
−
c ), where e is the coefficient of restitution. As

mentioned in [52], the HSM conditions (25) correspond to
a coefficient of restitution e = 0. Since this paper is mainly
devoted to deformable bodies, impact laws will not be dis-
cussed in the following.

In the next part, we propose a time-discretization based on
an original explicit approach for nonsmooth dynamics with
Lagrange multipliers.

2.3.2 Time discretization based on an explicit approach for

contact dynamics

For the time discretization, we consider the following semi-
discretized equilibrium nonsmooth equation obtained from
the previous developments:

MdU̇ + (Fint + CU̇)dt = Fextdt + dI (35)

where we have introduced the possible damping matrix C. In
the following, we will employ the well-known Central Dif-
ference time integrator (CD) (see [11,41]) in order to proceed
to the time discretization. Indeed, the CD time integrator is
symplectic for conservative mechanical systems and there-
fore preserves energy, linear and angular momentum [54].
Here, we consider an explicit velocity approach [11,41]. Fur-
thermore, based on the explicit mid-point time discretization
(see for instance Casadei [21]), we consider the time interval
[tn+ 1

2
, tn+ 3

2
]. Integrating both sides of the equation (35) over

the time step [tn+ 1
2
, tn+ 3

2
] of length Δt gives:

∫ n+ 3
2

n+ 1
2

MdU̇ +

∫ n+ 3
2

n+ 1
2

Fint dt +

∫ n+ 3
2

n+ 1
2

CU̇ dt

=

∫ n+ 3
2

n+ 1
2

Fext dt +

∫ n+ 3
2

n+ 1
2

dI (36)

From the previous time weak form (36), the discretized non-
smooth equilibrium equation can be written as follows:

Mlump

(
U̇n+ 3

2
− U̇n+ 1

2

)
+ Fint,n+1(Un+1)Δt + CU̇n+ 1

2
Δt

= Fext,n+1Δt + In+1 (37)

with a damping contribution written at tn+ 1
2

in order to ensure

a fully explicit approach (see Belytschko [11]), Mlump is the
lumped mass matrix [11,41,86], U̇n+ 3

2
and U̇n+ 1

2
are, respec-

tively, the velocity vectors at time tn+ 3
2

and tn+ 1
2
, Un+1,

Fint,n+1 and Fext,n+1 are, respectively, the displacement, the
internal and the external forces at time tn+1, In+1 is the con-
tact/impact impulse at time tn+1.
For numerical implementation, (37) is rewritten as follows
(all the known terms are put on the right hand side):

MlumpU̇n+ 3
2

= MlumpU̇n+ 1
2

+Δt
(

Fext,n+1 − Fint,n+1 − CU̇n+ 1
2

)

+ In+1 (38)

Let’s now introduce the smooth acceleration Üs , the non-
smooth velocity U̇I coming from the impact impulse defined
in (33) and W the velocity like quantity including both pre-
vious contributions:

Üs,n+1 = M−1
lump

(
Fext,n+1 − Fint,n+1 − CU̇n+ 1

2

)
(39)

U̇I,n+1 = M−1
lumpIn+1 (40)

Wn+1 = ΔtÜs,n+1 + U̇I,n+1 (41)

Substituting (39), (40) and (41) into (38), the equilibrium
equation (37) can be rewritten as:

U̇n+ 3
2

= U̇n+ 1
2

+ ΔtÜs,n+1 + U̇I,n+1

= U̇n+ 1
2

+ Wn+1 (42)

Then the displacement and velocity at time tn+1 are
obtained through the explicit CD approximation formu-
lae [11,41,57], by distinguishing smooth and non-smooth
parts as follows (see Eq. (26) and Acary [4] for a similar
smooth/nonsmooth decomposition):

Un+1 =
(

Un + ΔtU̇n +
Δt2

2
Üs,n

)
+

(Δt

2
U̇I,n

)

= Us,n+1 + Uns,n+1 (43a)

U̇n+1 =
(

U̇n +
Δt

2
(Üs,n+1 + Üs,n)

)
+

(1

2
(U̇I,n+1 + U̇I,n)

)

= U̇s,n+1 + U̇ns,n+1 (43b)
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Finally, introducing (41) in (43), one obtains:

Un+1 = Un + ΔtU̇n +
Δt

2
Wn (44a)

U̇n+1 = U̇n +
1

2
(Wn+1 + Wn) (44b)

In practice, the expressions (44a) and (44b) are useful to
establish the discrete form of the energy balance equation
(see “Appendix 2.1”).

As explained in Sect. 1, the contact is a smooth interface
behavior (contrary to impact which is nonsmooth). Then,
when contact occurs, the contact force and the acceleration
have finite values and can be calculated as follows:

Fc,n+1 =
In+1

Δt
(45)

and [11,41]:

Ün+1 =
U̇n+ 3

2
− U̇n+ 1

2

Δt
=

Wn+1

Δt
(46)

Finally, the new explicit time integrator using Lagrange
multipliers for a contact/impact problem is summarized as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+1 = Un + ΔtU̇n +
Δt

2
Wn

gN ,n+1 = Lc,n+1Un+1

Wn+1 = M−1
lump

[
Δt (Fext,n+1 − Fint,n+1 − CU̇n+ 1

2
) + In+1

]

U̇n+ 3
2

= U̇n+ 1
2

+ Wn+1

vc,n+ 3
2

= Lc,n+1U̇n+ 3
2

In+1 = LT
c,n+1λc,n+ 3

2⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

if gl
N ,n+1 > 0 then λl

c,n+ 3
2

= 0

if gl
N ,n+1 ≤ 0 then

⎧
⎪⎪⎨
⎪⎪⎩

vl

c,n+ 3
2

≥ 0

λl

c,n+ 3
2

≥ 0 ∀l ∈ {1, . . . , p}

vl

c,n+ 3
2

λl

c,n+ 3
2

= 0

(47)

where the state vector is (Un+1, U̇n+ 3
2
, Wn+1).

Remark Here we can notice that due to the time-
discretization, we have slightly modified the HSM conditions
(25b). Indeed, in order to build a time-stepping algorithm, we
allow an interpenetration (gl

N ,n+1 ≤ 0) at the discrete time.

Multiplying the nonsmooth equilibrium equation (38) by
Ln+1M−1

lump gives the local impact/contact equation to be
solved:

Hλc,n+ 3
2

= vc,n+ 3
2

− Lc,n+1
(
U̇n+ 1

2
+ ΔtM−1

lump(Fext,n+1 − Fint,n+1 − CU̇n+ 1
2
)
)

(48)

where

H = Lc,n+1M−1
lumpLT

c,n+1 (49)

It is important to note that the Steklov-Poincaré (or Delas-
sus) operator H is diagonal because we assume matching
meshes and M−1

lump is diagonal. However, if H is not diagonal,
a system solver is then required. Moreover, when assuming
e = 0 (see remark above), the local relative velocity at con-
tact points vc,n+ 3

2
= 0.

The set of equations (47) and (48) is the basis for
a general explicit formulation with Lagrange multipliers
for contact/impact dynamics. The implementation of this
time integrator is illustrated in “Appendix 1”. The corre-
sponding discrete energy balance equation is also given in
“Appendix 2.1”. In the following, this algorithm is called
CD-Lagrange time integrator. It will be performed in the sub-
domain ΩE , whereas an implicit Newmark scheme will be
used in the sub-domain ΩI .

2.3.3 Moreau-Jean scheme for contact/impact problem

In order to compare the CD-Lagrange time integrator to
the Moreau-Jean time integrato, the governing equations
of the Moreau-Jean algorithm are reminded in the case of
deformable structures. More details concerning this method
can be found in [2,3,5].

The Moreau-Jean time integrator is performed using the
θ method (θ ∈ [0, 1]). On an interval [tn, tn+1] of size Δt ,
the scheme can be summarized as follows :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U̇n+1 = U̇free + M̂
−1

In+1

Un+1 = Un + Δt
(
θU̇n+1 + (1 − θ)U̇n

)

vn+1 = Ln+1U̇n+1

In+1 = LT
n+1λn+1⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if gl
N (x̃n+1) > 0 then λl

n+1 = 0
if gl

N (x̃n+1) ≤ 0 then⎧
⎨
⎩

vl
n+1 ≥ 0

λl
n+1 ≥ 0 ∀l ∈ {1, . . . , p}

vl
n+1λ

l
n+1 = 0

(50)

If we assume linear elasticity (Fint = KU where K is the
global stiffness matrix), we have:

M̂ = M + ΔtθC + Δt2θ2K (51)

U̇free = U̇n + ΔtM̂
−1

(
− CU̇n − KUn − ΔtθKU̇n

+
(
θFext,n+1 + (1 − θ)Fext,n

))
(52)

x̃n+1 is a prediction of the position that manages the activation
of the constraints. Several formulae for this prediction are
discussed in [3]. In the following, we consider:
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x̃n+1 = X0 +

(
Un +

Δt

2
U̇n

)
(53)

2.4 Time-discretization of explicit–implicit HATI for

contact/impact problems

2.4.1 The governing space-time discrete equations

Let ΔT be the coarse time step and Δt the fine time step
associated, respectively, with the implicit sub-domain ΩI

and the explicit one ΩE (with possible unilateral contact and
impact). We take ΔT = mΔt (see Fig. 2). We recall that
the indexes j and m represent, respectively, the micro-time
scale of the explicit time integrator and the macro-time scale
of the implicit time integrator (see Fig. 2). From (22), (23),
(38) and (47), we obtain the following governing equations,
discretized in time and space, of the explicit–implicit HATI
for contact/impact problems:

– Balance equation of each sub-domain:

MI Ü
I
n+m + CI U̇

I
n+m + FI

int,n+m

= FI
ext,n+m + FI

D,n+m + FI
link,n+m (54)

ME
lumpU̇

E

n+ j+ 1
2

= ME
lumpU̇

E

n+ j− 1
2

− Δt (FE
int,n+ j + CE U̇

E

n+ j− 1
2
)

+Δt
(

FE
ext,n+ j + FE

D,n+ j + FE
link,n+ j

)
+ In+ j (55)

where we have introduced, for a more general case, the
possible damping matrices Ck and the forces Fk

D due to
possible Dirichlet conditions Fk

D = (LI
D)T

Λ
k
D where Lk

D

are the connectivity matrices at the interfaceΓ k
D .Λ are the

Lagrange multiplier vectors. In the following, we assume
linear elasticity in the implicit subomain (FI

int = KI UI

where KI is the global stiffness matrix).
– Unilateral frictionless contact/impact conditions at the

fine time on the interface Γ E
C :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vc,n+ j+ 1
2

= Lc,n+ j U̇
E

n+ j+ 1
2

In+ j = LT
c,n+ jλc,n+ j+ 1

2

gN ,n+ j = Lc,n+ j U
E
n+ j⎧

⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

if gl
N ,n+ j > 0 then λl

c,n+ j+ 1
2

= 0

if gl
N ,n+ j ≤ 0 then⎧

⎪⎪⎨
⎪⎪⎩

vl

c,n+ j+ 1
2

≥ 0

λl

c,n+ j+ 1
2

≥ 0 ∀l ∈ {1, . . . , p}

vl

c,n+ j+ 1
2
λl

c,n+ j+ 1
2

= 0

(56)

The algorithm solving the contact/impact problem has
been explained in the previous section.

– Dirichlet boundary conditions in each sub-domain:

L E
DU̇

E

n+ j = 0 (57)

L I
DU̇

I

n+m = 0 (58)

– Velocity continuity on the interface ΓG at the fine time
tn+ j [42]:

LE
GU̇

E

n+ j + LI
GU̇

I

n+ j = 0 (59)

where U̇
I

n+ j is the linear interpolation of U̇
I

n+m at time
tn+ j (see Eq. (74) below).

2.5 Sub-domains coupling strategy

In order to solve the interface equation (59), we split the
equilibrium equation in each sub-domain into a free and a
link problem, which leads to a decomposition of the velocity
and displacement as follows:

U̇
k

= U̇
k

free + U̇
k

link (60a)

Uk = Uk
free + Uk

link (60b)

where the free part corresponds to the problem without any
interface constraint (59) on ΓG , and the link part is due to the
interface loads Fk

link .
In the implicit sub-domain, the use of the Newmark for-

mulae to approximate the velocity and displacement gives:

U̇
I

free,n+m =P U̇
I

n + ΔT γI Ü
I

free,n+m (61a)

U̇
I

link,n+m = ΔT γI Ü
I

link,n+m (61b)

and

UI
free,n+m =P UI

n + ΔT 2βI Ü
k

free,n+m (62a)

UI
link,n+m = ΔT 2βI Ü

I

link,n+m (62b)

where the predictor quantities are expressed as:

PU̇
I

n = U̇
I

n + ΔT (1 − γI )Ü
I

n (63a)

PUI
n = UI

n + ΔT U̇
I

n +
ΔT 2

2
(1 − 2βI )Ü

I

n (63b)

The equations of motion are split in two parts:

M̃
I
Ü

I

free,n+m = FI
ext,n+m − CI PU̇

I

n − KI PUI
n (64a)

M̃
I
Ü

I

link,n+m = FI
link,n+m (64b)

where M̃
I

is defined by:

M̃
I

= MI + ΔT γI CI + ΔT 2βI KI (65)
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γI and βI being the Newmark parameters in the implicit sub-
domain. Here we use γI = 1

2 and βI = 1
4 .

Remark The forces FI
D due to Dirichlet conditions are not

taken into account in the free equilibrium equation (64a)
because ΓG ∩ Γ I

D = ∅.

In the explicit sub-domain ΩE , using the CD-Lagrange
time integrator presented in Sect. 2.3, the velocity (44b) can
be decomposed into a free part and a link part as follows:

U̇
E

free,n+ j = U̇
E

n+ j−1 +
1

2
WE

n+ j−1 +
1

2
WE

free,n+ j (66a)

U̇
E

link,n+ j =
1

2
WE

link,n+ j (66b)

In an analogous manner, the decomposition of the dis-
placement (44a) gives the two equations:

UE
f ree,n+ j = UE

n+ j−1 + ΔtU̇
E

n+ j−1 +
Δt

2
WE

n+ j−1 (67a)

UE
link,n+ j = 0 (67b)

It can be remarked that the link part of the displacement
is zero because we know the configuration at the beginning
of the micro-time step as classically done in explicit compu-
tation. Thus the configuration given by Eq. (67a) has not to
be corrected.

We can decompose the Eq. (55) into two equations related
to free and link quantities:

ME
lumpU̇

E

free,n+ j+ 1
2

= ME
lumpU̇

E

free,n+ j− 1
2

+Δt
(

FE
ext,n+j −FE

int,n+ j −CU̇
E

n+ j− 1
2

)
(68a)

ME
lumpU̇

E

link,n+ j+ 1
2

= ME
lumpU̇

E

link,n+ j− 1
2

+ ΔtFE
link,n+ j (68b)

Remark FE
D due to Dirichlet conditions and contact/impact

impulses IE are not taken into account in the free equilibrium
equation (68a) because ΓG ∩ Γ E

D = ∅ and ΓG ∩ Γ E
C = ∅.

Using the decomposition given in (60a) and (60b), the
interface equation (59) becomes:

LE
GU̇

E

link,n+ j +LI
GU̇

I

link,n+ j =−LE
GU̇

E

free,n+ j −LI
GU̇

I

free,n+ j (69)

Substituting (61b), (64b), (66b) and (68b) into (69) gives:

Δt

2
LE

G(ME
lump)

−1FE
link,n+ j + ΔT γI LI

G(M̃
I
)−1FI

link,n+ j

= −LE
GU̇

E

free,n+ j − LI
GU̇

I

free,n+ j (70)

Using the relation Fk
link = (Lk

G)T
ΛG , the interface equation

to be solved can be written as follows:

(
HE + HI

)
ΛG,n+ j = −LE

GU̇
E

free,n+ j − LI
GU̇

I

free,n+ j (71)

where:

HE =
Δt

2
LE

G(ME
lump)

−1(LE
G)T (72)

HI = ΔT γI LI
G(M̃

I
)−1(LI

G)T (73)

and U̇
I

free,n+ j is the linear interpolation of U̇
I

free,n+m at time
tn+ j such as:

U̇
I

free,n+ j =

(
1 −

j

m

)
U̇

I

free,n +
j

m
U̇

I

free,n+m (74)

A flowchart of the explicit–implicit HATI for con-
tact/impact problems is given in Algorithm 1.

Algorithm 1 Multi-time-scale contact algorithm
1. Initialization
2. Loop on the coarse time step

(a) Solve the free problem (64a) on the implicit sub-domain ΩI

(b) Loop on the fine time step for 0 ≤ j ≤ m

i. Solve the interface problem (71)
ii. Solve the Dirichlet boundary conditions at the fine time

scale
iii. Solve the contact problem (56) (see “Appendix 1”)
iv. Solve the constrained problem (55) on the sub-domain

ΩE

(c) End loop on the fine time step
(d) Solve the constrained problem (54) on the sub-domain ΩI

3. End loop on the coarse time step

The multi-time-scale method used here is stable. A proof
of stability, using the pseudo-energy method [50], can be
found in [42]. In practice, when different time scales are used,
the ratio m between the two time scales allows to control
the possible dissipated energy at the interface between the
sub-domains. The discrete energy balance equation for the
explicit–implicit HATI is given in “Appendix 2.2”.

3 Numerical examples

3.1 Contact/impact of two identical elastic bars

In order to check the accuracy and the efficiency of the
proposed explicit contact/impact time-integrator, a one-
dimensional contact/impact problem is investigated in this
section. Numerical results are computed using the CD-
Lagrange time integrator (47) and compared to the numerical
results obtained using Moreau-Jean’s time-stepping schemes
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Fig. 3 Configuration of two identical bars in contact

(50) for θ = 1, denoted by Moreau-implicit. Kinematic and
dual variables computed by the finite element method are also
compared to the analytical results. Numerical energy balance
and empirical order of convergence are also discussed. The
error indicator used for the convergence study is presented
in “Appendix 3”.

This one-dimensional contact/impact problem depicted in
Fig. 3 is widely examined in the literature [3,14,17,20,21,
24–26,50,51,59,82]. The example consists of two identical
linear elastic bars moving with equal speed in opposite direc-
tions.

The simulation parameters are given in the follow-
ing: the elastic modulus E = 2.11011 Pa, the density ρ

= 7847 kg/m3, the initial length L = 0.254 m, the sec-
tion A = 0.64510−3 m2, the initial gap d = 0.210−3 m
and the initial velocity v0 = 5 ms−1. A detailed analyt-
ical solution of this example can be found in [20]. The
bars are discretized in 40 equal length linear elastic finite
elements. The time step used to obtain the numerical solu-
tion is chosen as Δt = 0.8Δtcri tical ≈ 9.810−7 s, where
Δtcri tical ≈ 1.2210−6 s is the time step satisfying the CFL
condition [30] for stability requirement of the CD explicit
time integrator. Figure 4 displays the displacement, the veloc-
ity and the contact force of the left bar.

In Fig. 4, the results obtained with the CD-Lagrange
algorithm are found to be very accurate compared to the
exact solution. During the contact time, a very small contact
penetration is observed for both CD-Lagrange and Moreau-
implicit schemes, but this penetration gets smaller as the time
step size decreases. During the contact, no spurious oscilla-
tion is observed contrary to what was observed for instance
in [3,20,32,34]. After the contact’s release, local oscillations
in the velocity are noticed in the case of the CD-Lagrange
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Fig. 4 Contact of two bars: displacement, velocity and contact force of the left bar Δt =≈ 9.810−7 s
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scheme. It is mainly due to spurious oscillations well know
for the CD time integrator. However, when carried out a
space-time refinement, the result converges to the solution
as highlighted in Fig. 5.

Figure 6 presents the energy balance of the left bar for the
CD-Lagrange scheme. We observe that during the impact, a
part of the kinetic energy is converted into internal energy
and a loss of kinetic energy is observed. This energy loss
(1.25% of the kinetic energy) is due to the jump in the velocity
during the impact. The same observation is made for Moreau-
Jean’s schemes [17,24,25]. After the impact time, no more
dissipation is observed because the work done by the contact
forces remains equal to zero [4]. It can be remarked that this
kinetic energy loss vanishes with a refinement of the mesh
around the contact area [20].

Figure 7a displays contact force for different time steps.
We observe that the peak corresponding to the first contact
between the two bars, increases when the time step decreases.
We call this effect an “impact”. However, during the con-
tact period following the time step of the impact, the force
becomes independent on the time step. We call this effect a
“contact”. As for the contact force, we observe in Fig. 7b
that the acceleration converges except for the value corre-
sponding to this first contact between the two bars. Thus,
two behaviors are to be distinguished here. The first behav-
ior corresponds to the impact which occurs when the bars
come into contact. This instantaneous phenomenon involves
a velocity discontinuity. This is why the contact impulse is
the key unknown of the problem. The second behavior is a
persistent contact which is a smooth phenomenon without
any velocity discontinuity. In contrast with the force and the
acceleration, we observe in Fig. 8 that the impulse of the
impact is independent on the time step. It only depends on
the mass of the degrees of freedom involved in the impact.
This is why, thanks to the refinement of the mesh, we can
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Fig. 7 Contact of two bars: contact force and acceleration of the left bar for different time steps
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decrease the impulse and tend to a conservative behavior (no
energy dissipation).

For this one dimensional finite element problem, we will
study a space-time numerical order of convergence. For this
purpose, the size h of the finite elements of the homogeneous
mesh is calculated for each time step Δt so as h = c ∗ Δt ,
c being the celerity of the elastic wave. Figure 9 presents the
global order of convergence in time after contact’s release.
The Moreau-implicit scheme is of order 1

2 and the CD-
Lagrange time integrator is of order 1 in displacement as
shown in Fig. 9a. The same orders are illustrated in Fig. 9b
for velocity.

Figure 10 presents the global order of convergence in
space after contact’s release. As for the global order of con-
vergence in time, the Moreau-implicit scheme is of order 1

2
and the CD-Lagrange time integrator is of order 1 in dis-
placement and in velocity as shown in Fig. 10.
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Fig. 9 Contact of two bars: empirical order of convergence in time after contact’s release for a displacement, b velocity
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Trolley

Girders

End-carriages

Fig. 11 Example of a bridge crane

The previous results confirm both the space and time
convergence of the proposed explicit time integrator for con-
tact/impact dynamics. Furthermore, it is observed that this
time integrator has generally a higher order of convergence
than Moreau-Jean’s schemes, and exhibit a suitable energy
behavior.

3.2 Bridge crane under seismic loading

In this section, an industrial example of a bridge crane is car-
ried out using the explicit–implicit HATI algorithm described
in Algorithm 1. The numerical results are compared to a
full-explicit simulation performed with the CD-Lagrange
algorithm developed in Sect. 2.3.

This numerical example consists of a bridge crane sub-
jected to an earthquake. A bridge crane is usually located

In blue: the explicit sub-domain

In red: the implicit sub-domain
: the link interface

x

y

z

Fig. 13 Bridge crane: sub-domains partition

overhead in buildings or warehouses. It is composed of two
girders, two end-carriages and a trolley as shown in Fig. 11.
A bridge crane operation is characterized by three main
motions: the trolley translational motion on the girders, the
long travel motion of the crane on the runway rails and the
hoisting motion of the lifted load, driven by the hoist installed
on the trolley.

During an earthquake, the bridge crane is exposed to sev-
eral impacts between trolley wheels and girders, as well as
between crane wheels and the runway rails of the build-
ing. These several impacts can cause large damage in the
bridge crane which can fall on some critical materials in
the building. For risk mitigation purpose, the qualification
of bridge cranes, with respect to normative seismic design
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Fig. 12 Bridge crane: geometry, beam sections and masses
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Fig. 14 Bridge crane: acceleration applied to bridge crane in the z

direction

requirements, requests for strengthened non-linear simu-
lation techniques, including an adequate modeling of the
impact phenomenon.

For both numerical simulations, the bridge crane is mod-
eled using linear elastic beam elements where the elastic
modulus is E = 2.11011 Pa. The crane wheels are clamped
and only the contact between trolley wheels and girders are
considered. The model dimensions and masses are given in
Fig. 12. The explicit domain is discretized with equal length
(hexp = 100 mm) finite elements as well as the implicit
domain (himp = 200 mm). The fine time step of the explicit
domain is Δt ≈ 2.8510−7 s and the coarse time step of the
implicit domain is ΔT = 100 ∗ Δt . The bridge crane is first
subjected to the gravity (g = 10 m/s2). The girders and the
end-carriages are also subjected to the temporal acceleration
depicted in Fig. 14 in the z direction, where this acceleration
represents a beginning part of an earthquake signal. For the
asynchronous simulation, the partition between explicit and
implicit sub-domains is depicted in Fig. 13.

Figures 15 and 16 show, respectively, the displacement and
the velocity of one of the four contacts between the trolley
and the girders (the same observations can be made for the
other contacts).
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Fig. 15 Bridge crane: displacement of the trolley and the girders a full-explicit simulation, b asynchronous explicit–implicit simulation
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Fig. 16 Bridge crane: velocity of the trolley and the girders a full-explicit simulation, b asynchronous explicit–implicit simulation
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Fig. 17 Bridge crane: contact force and impact impulse, zoom on t ∈ [0, 2 10−4]
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Fig. 18 Bridge crane: discrete energy balance a full-explicit simulation, b asynchronous explicit–implicit simulation

This analysis shows that the bridge crane under seismic load-
ing is subjected to several impacts followed, sometimes, by
contact phase.

Figure 18 shows that the energy balance equation is con-
served for both simulations. The energy dissipated at the
interface between implicit and explicit domains remains neg-
ligible (see Fig. 19) in comparison to global energies involved
in the simulation.

In this example, an asynchronous explicit–implicit time
integrator is used for contact/impact dynamic simulation
with a ratio of time scales of 100. The results are simi-
lar to a full-explicit simulation and the energy dissipated at
the explicit–implicit interface remains very low. The gain
in the computational time is not significant (23 min for a
full-explicit simulation and 20 min for the explicit–implicit
simulation). However, a higher ratio of time scales and an
adequate domain decomposition (small explicit sub-domain)
should be considered for achieving substantial gains in terms
of computation time.

We note that the asynchronous explicit–implicit and the
full explicit simulations give very similar kinematic results.
The velocity presents some oscillations which are due to the
velocity jumps when impacts occur and to the high frequency
modes of the bridge crane. The introduction of a numerical
damping would help to damp out these oscillations.

In order to analyse and distinguish the contact and impact

phases, Fig. 17 presents a zoom on t ∈ [0, 2 10−4 s] of the 

contact force and the impact impulse. We recall that an impact
is a transition from a non contact state to a contact state (see
the bars example previously discussed).

From Fig. 17a, we can see that the trolley and the gird-
ers are initially in contact. The first bounce of the trolley

is observed at t ≈ 1.05 10−4 s. When the trolley comes 

into contact again with the girders, an impact occurs at

t ≈ 1.18 10−4 s as we can  see in Fig. 17b. This impact is fol-
lowed by a contact phase before the trolley bounces again at

t ≈ 1.2 10−4 s. Figure 17b shows that a second impact occurs 

at t ≈ 1.38 10−4 s but it is not followed by a contact phase.
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Fig. 19 Bridge crane: energy dissipated at the explicit–implicit inter-
face

The feasibility of the asynchronous explicit–implicit
approach has been proven and its interest for an industrial
application has been highlighted [23]. Further studies are in
progress to estimate the CPU gain when the bridge crane is
modeled using a full 3D FEM.

4 Conclusions

This work has led to the development of an explicit–implicit
HATI for contact/impact dynamics. This method allows us to
adopt an explicit contact/impact time integrator in the contact
area and an implicit time integrator with a coarse mesh in the
rest of the domain. The time integrator is tested on a bridge
crane under seismic loading, and gives accurate numerical
results along with a very satisfactory energy behavior. Work
is in progress to extend this approach to a full 3D model for
the bridge crane.

A Lagrange explicit time-stepping contact/impact time
integrator has been also proposed. The main advantages of
this time integrator are: no detection of events, no iteration
to solve the equilibrium equation and the contact constraints,
and no additional numerical parameters. The algorithm,
tested on an academic example and compared to Moreau-
Jean’s schemes, turned out to be accurate. Indeed, the
proposed scheme has generally a higher numerical order of
convergence than the implicit Moreau-Jean scheme (θ = 1).

Acknowledgements We acknowledge the French technical center of
mechanical industry (CETIM) for its partnership in this project initiated
by the French crane industry.

Appendix 1: CD-Lagrange contact/impact algo-

rithm

The implementation of the time integrator (47) is illustrated
in the following flow-chart (Algorithm 2). For sake of sim-

plicity, no contact searching procedure is used here, as we
assume the p prospective contact points to be known. Thus,
the (p×n) boolean contact operator Lc is known at the begin-
ning of the computation, where n is the number of DOFs of
the problem. In this paper, this algorithm will be called CD-
Lagrange time integrator.

Algorithm 2 Lagrange explicit contact/impact algorithm

Input X0, U0, U̇0, Δt , e

1: Initialize Ü0, U̇ 1
2

2: t ← 0
3: while (t ≤ t f inal ) do

4: t ← t + Δt

5: Compute Un+1, gN ,n+1 ⊲ (44a), (47b)
6: λc,n+ 3

2
← 0

7: for all (l ≤ p) do ⊲ Loop on all prospective contact points
8: if (gl

N ≤ 0) then

9: vl

n+ 3
2

← 0

10: Compute λl

c,n+ 3
2

⊲ (48)

11: if (λl

c,n+ 3
2

< 0) then

12: λl

c,n+ 3
2

← 0

13: end if

14: end if

15: end for

16: Compute In+1, Wn+1 ⊲ (47f), (47c)
17: Compute U̇n+ 3

2
, vc,n+ 3

2
⊲ (47d), (47e)

Output if impact: Un+1, In+1, U̇n+1 ⊲ (44b)
Output if contact: Un+1, In+1, U̇n+1, Fc,n+1, Ün+1 ⊲ (44b), (45),

(46)
18: end while

Appendix 2: Discrete energy balance equation

Appendix 2.1: Explicit CD-Lagrange time integrator for

contact/impact problems

In order to evaluate the energy properties of the proposed
CD-Lagrange time integrator, we give the following discrete
energy balance equation. It is obtained by multiplying the

nonsmooth equation of motion (32) by U̇
T

.

d

(
1

2
U̇

T
MU̇

)
= U̇

T
Fdt + U̇

T
dI (75)

where (assuming that C = 0 for sake of simplicity):

F = Fext − Fint (76)

Using the relation dU = U̇dt , we get the following energy
balance:
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d

(
1

2
U̇

T
MU̇

)
= dUT F + U̇

T
dI (77)

The term in the parenthesis on the left hand side is the kinetic
energy, and the two terms on the right hand side are the rate of
internal/external work and the contact/impact impulse work.
The discrete form of the energy balance equation is obtained
by expressing the increment of the kinetic energy over the
time interval [tn, tn+1]:

[1

2
U̇

T
MU̇

]n+1

n
= 〈U̇n〉T M[U̇n] (78)

The notations [.] and 〈.〉 denote the increment and the mean
value. They are defined as follows:

[Xn] = (Xn+1 − Xn) (79)

〈Xn〉 =
1

2
(Xn+1 + Xn) (80)

The path independent kinetic energy increment uses
the expressions of means value 〈.〉 and increment [.] (see
Eq. (78)). For the CD time integrator, from Eq. (44a) and
(44b), we obtain the following expressions in terms of mean
values and increments:

[U̇n] = 〈Wn〉 (81a)

[Un] =Δt〈U̇n〉 −
Δt

4
[Wn] (81b)

Combining (78) and (81a) involves:

[1

2
U̇

T
MU̇

]n+1

n
= Δt〈U̇n〉T 〈Fn〉 + 〈U̇n〉T 〈In〉 (82)

From (81b) we obtain:

[ 1

2
U̇

T
MU̇

]n+1

n
= [Un]T 〈Fn〉 +

Δt

4
[Wn]T 〈Fn〉 +

[Un]

Δt

T

〈In〉 +
1

4
[Wn]T 〈In〉

= [Un]T 〈Fn〉+
[Un]

Δt

T

〈In〉+
1

4
[Wn]T

(
Δt〈Fn〉+〈In〉

)

= [Un]T 〈Fn〉 +
[Un]

Δt

T

〈In〉 +
1

4
[Wn]T M〈Wn〉 (83)

Then, the discretized energy balance can be written as fol-
lows:

[1

2
U̇

T
MU̇−

1

8
WT MW

]n+1

n
=[Un]T 〈Fn〉+

[Un]

Δt

T

〈In〉 (84)

which can also be denoted:

ΔWkin,n+1+ΔWcomp,n+1+ΔWint,n+1 =ΔWext,n+1+ΔWI C,n+1 (85)

The expression of energies involved in the above balance
energy are:

ΔWkin,n+1 =
[1

2
U̇

T
MU̇

]n+1

n
(86)

ΔWcomp,n+1 =
[

−
1

8
WT MW

]n+1

n
(87)

ΔWext,n+1 = [Un]T 〈Fext,n〉 (88)

ΔWint,n+1 = [Un]T 〈Fint,n〉 (89)

ΔWI C,n+1 =
[Un]

Δt

T

〈In〉 (90)

and ΔWkin, ΔWint , ΔWcomp, ΔWext , ΔWI C are, respectively,
the increments over the time step of the kinetic, internal,
complementary, external and impact/contact energies with
explicit time integrator.

It can be noticed that the quantities inside bracket on the
left hand side are path independent quantities (conservative
quantities) (see [50]). The balance energy (85) corresponds
to a generalization of the Newmark energy balance given in
[57] to the case of contact/impact dynamics.

Appendix 2.2: Explicit–implicit HATI for

contact/impact problems

In order to check the energy properties of the proposed
explicit–implicit HATI, we recall the discrete energy balance
equation between t0 and tm :

ΔW I
kin,m + ΔW I

int,m

+

m∑

j=1

(
ΔW E

kin, j + ΔW E
int, j + ΔW E

comp, j

)
= ΔW I

ext,m (91)

+ΔW I
D,m +

m∑

j=1

(ΔW E
ext, j + ΔW E

I C, j + ΔW E
D, j )

+ΔWinter f ace

The expressions of the increments over a time step of
the kinetic ΔWkin, internal ΔWint , complementary ΔWcomp,
external ΔWext and impact/contact ΔWI C energies are given,
respectively, in Eqs. (86), (89), (87), (88) and (90). In addi-
tion, the definitions of the additional energy terms are given
below:

ΔW k
D,e = [Uk

e ]
T 〈Fk

D,e〉 ; e = 0, ( j − 1); k = I, E (92)

ΔWinterface = [UI
0]T (L I

G)T [ΛG,0] +

m−1∑

j=0

[UE
j ]T (L E

G)T [ΛG, j ] (93)
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Appendix 3: Time error indicator

In contact dynamics, due to velocity discontinuities, the
convergence cannot be observed using uniform norm as
demonstrated in [2]. For this reason, Moreau [69] intro-
duced the convergence in the sense of filled-in-graph using
the Hausdorff distance to measure the error with respect to
a reference solution. It is shown in [2] that an equivalent
absolute l1-norm gives the same order of convergence as the
Hausdorff norm and can be used thanks to its easy imple-
mentation. For this purpose, we introduce the relative error
indicator as follows:

e f =

Δt

N∑

i=1

| fi − f (ti )|

Δt

N∑

i=1

| f (ti )|

=

N∑

i=1

| fi − f (ti )|

N∑

i=1

| f (ti )|

(94)

where N is the number of time steps in the time interval
[0, T ], fi the numerical results and f (ti ) is the reference
results at time ti . f indicates generalized coordinate, dis-
placement or velocity.
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