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Stray field computation by inverted finite elements: a new
method in micromagnetic simulations

Tahar Z. BOULMEZAOUD1,2,3 and Keltoum KALICHE1,3

Abstract. In this paper, we propose a new method for computing the stray-field
and the corresponding energy for a given magnetization configuration. Our approach
is based on the use of inverted finite elements and does not need any truncation.
After analyzing the problem in an appropriate functional framework, we describe the
method and we prove its convergence. We then display some computational results
which demonstrate its efficiency and confirm its full potential.

1. Introduction

In micromagnetics, the structure of a magnetic body Ω ⊂ R3 if often described by the
magnetization M , which is a vector field defined over Ω and minimizing the Landau-
Lifschitz functional. In terms of dimensionless variables, the latter energy can be written
into the form

E (M) = α

∫
Ω
|∇M |2 +

∫
Ω
ϕ(M)dx+

1

2

∫
R3

|∇u|2dx−
∫

R3

He.Mdx,

where ϕ > 0 is a function describing the orientation of the magnetization, α > 0 is a real
parameter, He the external magnetic field and u is magnetostatic potential. The latter
quantity is related to the stray-field (or the magnetic induction) h by

(1) h = −∇u.

The existence of the scalar potential u comes from Maxwell’s equation

(2) curlh = 0 in R3.

Moreover, the stray-field h and the magnetization M are related by the equation

(3) div (h + MχΩ) = 0 in R3,

where χΩ stands for characteristic (or indicator) function of Ω. Rewritting (3) in terms
of u and M gives the well known equation

(4) ∆u = div (MχΩ) in R3.
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2 T. Z. BOULMEZAOUD AND K. KALICHE

This equation can also be written into the form

(5)


∆u = divM in Ω,
∆u = 0 in R3\Ω,
[u] = 0 on ∂Ω,[

∂u

∂n

]
= −M .n on ∂Ω,

where n is the exterior normal on ∂Ω. In addition, the magnetization M is subject to
the Heisenberg-Weiss condition

(6) |M | is constant in Ω.

It is well known that calculating the stray-field h and the corresponding energy

(7) Esf (u) =
1

2

∫
R3

|h|2dx,

from the magnetization M is one of the most important steps in studying micromagnetic
configurations of a body Ω. We may observe that a consequence of identity (4) is that
the stray-field energy also writes

(8) Esf (u) =
1

2

∫
R3

|∇u|2dx = −1

2

∫
Ω
M .hdx.

(see also the weak formulation of (4) hereafter).
In the existing litterrature, one can find mainly two categories of methods. In the first
category the calculation of u and h is often based on solving the elliptic partial dif-
ferential equation (4). In that case, the computational domain is often truncated and
approximation is done in a sufficiently large bounded region (see, e. g., [3], [18], [10, 15],
[6] and [21], [12] and [13]). In the second category of methods, the approach consists to
evaluate u using the integral formula (see, e. g., [9])

(9) u(x) =
1

4π

∫
Ω

(x− y).M(y)

|y − x|3
dy.

Among methods using formula (9), one can mention methods based on the Fast Fourier
transfor and fast Multipole methods (see, e. g., [4], [17]), H-matrix techniques ([20]) or
direct integration methods (see, e. g., [9], [16]).
In this paper, the focus is on computing the stray-field h from the magnetization M by
a novel approach based on the use of inverted finite element method (IFEM). IFEM was
first introduced by Boulmezaoud in [5] for solving elliptic problem in unbounded domains
without any truncation. In the context of equation (4) considered here, the domain of
computation R3 is considered in its entirety. The deployment of IFEM is based on a
weak formulation of (4) in an appropriate weighted space.

The paper is organized as follows. In section 2, we employ some weighted function
spaces to study equation (4), completed with asymptotic conditions when |x| → +∞.
In particular, we give some details about the behavior at large distances and about the
smoothness of the solution and of its derivatives. Section 3 is devoted to an outline
of IFEM. After giving the general lines of the method, we prove its convergence in the
context of equation (4). In the last section, we give some numerical results obtained with
a 3D code.
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2. Preliminaries. Well posedness of the problem

In the sequel, Ω denotes an open and connected subset of R3 having a lipschitzian
boundary, not necessarily bounded (althought in physical applications Ω is often a
bounded domain). Let M be a vector field defined over Ω. From a strictl mathematical
point, unless otherwise indicated, we only assume that

(10)

∫
Ω
|M |2dx <∞.

Assumption (10) is obviously valid when Ω is bounded (or has a finite volume) and when
|M | is satisfying the Heisenberg-Weiss constraint (6). In that case

‖M‖2L2(Ω)3 =

∫
Ω
|M |2dx = |M |2|Ω| < +∞.

We now come back to equation (4). Without going into the technicalities of Poisson
equation, it can be seen that existence and uniqueness of solutions to (4) depend on the
required behavior at large distances, that is when |x| → +∞. To illustrate this, one may
observe that polynomial growth of solutions at large distances should be excluded, oth-
erwise uniqueness may be lost since harmonic polynomials can be added to any solution
of (4) (see, e. g., [11], [2]). Fortunately, in the current context, u must fulfill the physical
constraint

(11)

∫
R3

|∇u|2dx <∞,

which means that h = −∇u has a finite energy. In view of Hardy’s inequality (see, e.
g., [2]), it is natural to require that

(12)

∫
R3

|u|2

|x|2 + 1
dx <∞.

For this reason, we need to introduce some weighted function spaces. For all integers
` > 0 and m > 0, Wm

` (R3) stands for the space of all the functions satisfying

∀|λ| 6 m, (1 + |x|2)(`+|λ|−m)/2Dλv ∈ L2(R3).

This space is endowed with the norm

(13) ‖v‖Wm
` (R3) =

∑
|λ|6m

∫
R3

(|x|2 + 1)|λ|+`−m|Dλv|2dx

1/2

.

In other words, elements of W 1
0 (R3) are those functions satisfying (11) and (12). We may

observe that non vanishing polynomial functions do not belong to W 1
0 (R3). Before con-

tinuing with problem (4), let us recall that for any function v ∈W 1
α(R3), α ∈ R\{−1/2},

one has (see, e. g., [1])

(14) lim
|x|→+∞

|x|α+1/2‖u(|x|, .)‖L2(S2) = 0,

where S2 is the unit sphere of R3 and

(15) ‖u(|x|, .)‖2L2(S2) =

∫
S2

|u(|x|, σ)|2dσ.

Equation (4), completed with asymptotic conditions (11) and (12), can be written into
the variational form: find u ∈W 1

0 (R3) such that

(16) ∀v ∈W 1
0 (R3),

∫
R3

∇u.∇vdx =

∫
Ω
M .∇vdx.
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We have the following result

Proposition 2.1 (Well posedness). Suppose that assumption (10) holds true. Then,
(16), and consequently (4), has one and only one solution in W 1

0 (R3). Moreover, the
following estimates hold

‖(|x|2 + 1)−1/2u‖L2(R3) 6 2‖M‖L2(Ω),(17)

‖∇u‖L2(R3)3 6 ‖M‖L2(Ω).(18)

We should note immediately that the decay of u at large distances is faster than in
estimates (17) and (18). Actually, u ∈ L2(R3) and (|x|2 + 1)1/2∇u ∈ L2(R3)3 as it will
be stated in Proposition 2.2 hereafter.

Proof of Proposition 2.1 – Let us first recall the classical Hardy
inequality

(19) ∀v ∈ D(R3),

∫
R3

|u|2

|x|2
dx 6 4

∫
R3

|∇u|2dx.

Thus,

(20) ∀v ∈ D(R3),

∫
R3

|u|2

|x|2 + 1
dx 6 4

∫
R3

|∇u|2dx.

By density of D(R3) in W 1
0 (R3) (see [14]), the last inequality remains

valid for v ∈ W 1
0 (R3). It follows that the bilinear form on the left hand

side of (16) is coercive. The linear form on the right hand side of (16)
satisfies ∣∣∣∣∫

Ω
M .∇vdx

∣∣∣∣ 6 ‖M‖L2(Ω)3 .‖∇v‖L2(R3)3 .

Existence and uniqueness follow from Lax-Milgram theorem. Moreover,
taking v = u in (16) gives estimate (18). Combining with inequality (20)
gives (17). �

Since the right hand side of (16) is in a divergence form, we also get the following result

Proposition 2.2 (Asymptotic behavior). Let u ∈W 1
0 (R3) be solution of (4). Then,

(1) u ∈ L2(R3),

(2) (1 + |x|2)1/2∇u ∈ L2(R3)3.

(3) lim|x|→+∞ |x|3/2‖u(|x|, .)‖L2(S2) = 0 where ‖u(|x|, .)‖L2(S2) is defined by (15).

Proof of Proposition (2.2) – Let us prove that u ∈ W 1
1 (R3). This

is a direct consequence of the following lemma which is a particular case
of a more general result proven in [2] (Theorem 2.16):

Lemma 2.3. Let m > 0 be an integer. Then, the Laplace operator

∆ : Wm+1
m+1 (R3) 7→Wm−1

m+1 (R3) ⊥ R

is an isomorphism.

HereW−1
1 (R3) stands for the dual space ofW 1

−1(R3). It may be noted at

this point that constant functions belong to W 1
−1(R3). By W−1

1 (R3) ⊥ R
we mean the space of functions f ∈W−1

1 (R3) satisfying

(21) 〈f, 1〉W−1
1 (R3),W 1

−1(R3) = 0.
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In the context of equation (4), the right hand side is f = div (MχΩ).
Thus, f ∈ W−1

1 (R3) (since, obviously, MχΩ ∈ W 0
1 (R3)3) and (21) is

automatically fulfilled. We conclude that u ∈W 1
1 (R3), thanks to Lemma

2.3. This ends the proof of the two first assertions. The third assertion
follows from property (14).
�

Remark – One can also prove that u ∈ L2(R3) by means of the Fourier transform.

Proposition 2.4 (Regularity). Assume that Ω is a bounded open set of R3 with a C 1,1

boundary and that

(22) M ∈ L2(Ω)3, divM ∈ L2(Ω) and M .n ∈ H1/2(∂Ω).

Let u ∈W 1
0 (R3) be solution of (4). Then,

(1) u|Ω ∈ H2(Ω),

(2) u|R3\Ω ∈W 2
2 (R3\Ω), that is

∀1 6 i, j 6 3, (|x|2 + 1)
∂2u

∂xi∂xj
∈ L2(R3\Ω).

(c) If M .n = 0 on ∂Ω, then u ∈W 2
2 (R3).

Proof of Proposition (2.4). – Let u0 ∈ H2(Ω) such that

u0 = 0 and
∂u0

∂n
= M .n on ∂Ω.

Set

U =

{
u− u0 in Ω,
u in R3\Ω.

Since [U ] = 0 on ∂Ω, we easily deduce that U ∈ W 1
0 (R3). Moreover, we

have

[
∂U

∂n
] = 0 on ∂Ω,

Thus,

∆U = (divM −∆u0)χΩ ∈W 0
2 (R3).

The right hand side of this equation satisfies

〈divM −∆u0, 1〉 =

∫
Ω

div (M −∇u0)dx =

∫
Ω

(M .n− ∂u0

∂n
)dσ = 0.

In view of Lemma 2.3, we deduce that U ∈ W 2
2 (R3). By restrincting to

Ω and to R3\Ω we get u|Ω = U|Ω + u0 ∈ H2(Ω) and u|R3\Ω = U|R3\Ω ∈
W 2

2 (R3\Ω). Suppose now that M .n = 0 on ∂Ω. Then, div (MχΩ) ∈
L2(R3). Since div (MχΩ) = 0 in R2\Ω, we also deduce that div (MχΩ) ∈
W 0

2 (R3). In view of Lemma 2.3, we deduce that u ∈ W 2
2 (R3). This ends

the proof of Proposition 2.4. �

Let us finish this section with an observation. In view of equations (5) the potential
u can be as written as

Proposition 2.5. Suppose that M ∈ H(div ; Ω). Let u ∈W 1
0 (R3) be the unique solution

of (4). Then,

(23) u = u0 + u1,
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where u0 ∈W 2
1 (R3) is the unique solution of the Poisson equation

(24) ∆u0 = d̃ivM in R3,

where d̃ivM designates the extension of divM by zero outside Ω, while u1 ∈W 1
0 (R3) is

the unique solution of the system

(25)

∫
R3

∇u1.∇vdv = 〈M .n, v〉H−1/2(∂Ω),H1/2(∂Ω) for all v ∈W 1
0 (R3).

Moreover, u0 ∈W 2
2 (R3) iff 〈M .n, 1〉 = 0. In that case u1 ∈W 1

1 (R3).

Proof. Since divM ∈ L2(Ω), d̃ivM ∈ L2(R3)↪→W 0
−1(R3). Following the same argument

as in the proof Proposition 2.1, we easily deduce existence and uniqueness of u0 and u1

solutions of (24) and (25), respectively. From Lemma 2.3, we deduce that u0 ∈ W 2
2 (R3)

iff d̃ivM ∈W 0
2 (R3) ⊥ R, that is

〈M .n, 1〉 =

∫
Ω

divMdx = 0.

Since u ∈W 1
1 (R3) (see Proposition 2.2), we also have u1 = u− u0 ∈W 1

1 (R3). �

Remark – Under assumptions of Proposition 2.5, we can write (see also, e. g., [9])

u = −N (divM) + V(M .n),

where N is the Newton potential defined by

Nw(x) =
1

4π

∫
Ω

w(y)

|x− y|
dy,

while V is the single layer potential defined by

Vφ(x) =

∫
∂Ω

φ(y)

|x− y|
dσ(y).

When 〈M .n, 1〉 6= 0, N (divM) and V(M .n) decreases more slowly than u when |x| →
+∞. In fact, in view of Proposition 2.5, u0 = −N (divM) ∈ W 2

1 (R3)↪→W 1
0 (R3) and

u1 = V(M .n) ∈ W 1
0 (R3) while uR3\Ω ∈ W 2

2 (R3\Ω)↪→L2(R3\Ω). Indeed, when M is

sufficiently smooth, we have

|u0(x)| = O(
1

|x|
), |u1(x)| = O(

1

|x|
), when |x| → +∞,

while, in view of formula (9), we have

|u(x)| = O(
1

|x|2
), when |x| → +∞.

At this stage, mathematical aspects concerning equation (4) are prepared. It remains to
show the way in which this problem is discretized by inverted finite elements method.
This will be done in the next section.
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3. Inverted finite elements method

Inverted finite elements method was developed by Boulmezaoud [5]. We will tailor it
here for solving problem (4). The starting point consists to partition the whole space R3

into two subdomains

(26) R3 = Ω0 ∪ Ω∞.

Here Ω0 is bounded region while Ω∞ is an unbouded one. We should note immediately
that the bounded Ω0 is not intented to be large. In particular, we do not rule out the
possibility that Ω0 = ∅ and Ω∞ = R3. However, the following constraint is imposed to
Ω∞ (or, indirectly, to Ω0 = R3\Ω∞): Ω∞ is the non-overlapping union of a finite number
of infinite tetrahedra, that is

(27) Ω∞ = T1 ∪ T2 ∪ · · · ∪ TM ,
with T1,..,TM , M > 1, are M infinite tetrahedra satisfying the assumptions

• T1,..,TM have a common fictitious vertex. Subsequently, we assume that this
common fictitious vertex is the origin.
• the intersection of two arbitrary infinite tetrahedra Ti and Tj , 1 6 i < j 6M , is

either the empty set, a whole edge (a half-line) or a whole unbounded face.

The concept of infinite tetrahedron and, more generally, of infinite simplices, was intro-
duced in [5]. For the sake of clarity, we recall here this concept in 3D configurations.
Given four non-coplanar points a0, a1, a2 and a3 of the euclidian affine space R3, define
the infinite tetrahedon T whose vertices are a0, a1, a2 and a3 as the set of all the points
x which take the form

x = λ0a0 + λ1a1 + λ2a2 + λ3a3,
3∑
i=0

λi = 1,

with λ0 6 0, λi > 0 for 1 6 i 6 3. It is usual to call a0 the fictitious vertex of T , while
a1, a2 and a3 are called the real vertices. It is worth noting that T is closed and convex.
The tetrahedron ST , associated to T , is the convex hull of the points a0, a1, a2 and a3.
The altitude vector of T is hT = πTa0 − a0, where πTa0 is the orthogonal projection of
a0 on the affine plane containing a1, a2 and a3 and separating T and ST . Notice that

(28) ∀x ∈ T ∩ ST , hT .(x− a0) = |hT |2.
Let us go back now to the decomposition (27). We should also note that M , the number

Figure 1. An example of an infinite tetrahedron.

of infinite tetrahedra, is not intended to be large. This is just a domain decomposition
of a Ω∞ in which the subdomains are infinite tetrahedra and are fixed once for all. In
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practice, M is often small (M = 3, 4, ...). An example is illustrated in Figure 3 where Ω0

is a big tetrahedron centered at the origin and Ω∞ is the union of 4 infinite tetrahedra
(see also section 4 hereafter). Another possibility consists to choose Ω0 as the octahedron
{x = (x1, x2, x3) ∈ R3 | |x1|+ |x2|+ |x3| < R} and Ω∞ = R3\Ω0 as the union of 8 infinite
tetrahedra (see Figure 2). Subsequently, we denote by Si, 1 6 i 6 M , the tetrahedron

Figure 2. A decomposition of R3 in which Ω0 is the octahedron {x =
(x1, x2, x3) ∈ R3 | |x1| + |x2| + |x3| < R}. Here Ω∞ is the union of 8
infinite tetrahedra.

associated to Ti and by hi the altitude vector corresponding of Ti. We have

Ω0 ∩ Ω∞ = ∪Mi=1(Ti ∩ Si).
Set

(29) ri(x) =
hi.x

|hi|2
for x ∈ Si ∪ Ti.

Since 0 is the fictitious vertex of each Ti and in view of (28) it can easily be proved that

ri(x) > 1 for x ∈ Ti, ri(x) 6 1 for ∈ Si, and ri(x) = 1 for x ∈ Ti ∩ Si.

In terms of the local barycentric coordinates in Si, (λ
(i)
0 , λ

(i)
1 , λ

(i)
2 , λ

(i)
3 ), we can write

ri(x) = 1− λ(i)
0 (x) =

3∑
k=1

λ
(i)
k (x) for x ∈ Ti ∪ Si.

The following continuity property holds true: if Ti and Tj are neighbors, then

(30) ri(x) = rj(x) for all x ∈ Ti ∩ Tj .
The local polygonal inversion associated to T is defined as

(31)
φi : (Si ∪ Ti)\{0} −→ (Si ∪ Ti)\{0},

x 7→ x

ri(x)2
.

Obviously φi is a bijection between Si and Ti. It is also an involution which preserves
Ti ∩ Si, that is φi(x) = x for x ∈ Ti ∩ Si.
Define now the global polygonal inversion φ from R3 \ {0} into itself and the global
polygonal radius r(.) as follows

r(x) = ri(x) and φ(x) = φi(x) for all x ∈ Ti ∪ Si, 1 6 i 6M.
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In virtue of property (30), r and φ are well defined and continuous on R3. Moreover, φ
maps Ω∞ into Ω0 and conversely. We have

(32) φ(x) = x for all x ∈ Ω0 ∩ Ω∞.

Moreover, the exists two constants c1 > 0 and c2 > 0 such that

c|x| 6 r(x) 6 c2|x| for all x ∈ R3,

In other words, r(x) ∼ |x| and |φ(x)| ∼ |x|−1 for x ∈ R3. In the sequel, Ω? stands
for the image of Ω∞ by the inversion φ. From a strictly mathematical point of view
Ω? = Ω0\{0}. However, since Ω0 and Ω? will be meshed differently. We will therefore
deal with them separately.
We now consider a family of pairs of triangulations (Th, T ?h )h where

• (Th)h are regular triangulations of Ω0 satisfying the usual conformity assumptions
(see [5] or [7]). In particular, elements of Th are supposed shape regular in the
usual sense: there exists a constant c0 > 0 not depending on h such that

(33) max
K∈Th∪T ?h

hK
ρK
6 c0.

Here hK and ρK are respectively the diameter of K and the diameter of the
sphere inscribed inside of the tetrahedron K.
• (T ?h )h are regular triangulations of Ω? which satisfies, besides (33), the following

additional requirement:
– for each K? ∈ T ?h , there exists i 6 M such that K? ⊂ Si (in other words,
T ?h is a conforming union of triangulations of the subdomains S1,..,SM ).

– the triangulations (T ?h )h are µ-graded, where µ ∈ (0, 1] is a fixed parameter.
That means that there exists three constants c?1 > 0, c?2 > 0 and c?3 > 0, not
depending on h, such that

(34) max
K∈T ??h

hK

d1−µ
K

6 c?1h,

(35) max
K∈T ?h \T

??
h

hK 6 c
?
2h

1/µ,

(36) min
K?∈T ??h

dK? > c
?
3h

1/µ,

where T ??h = {K ∈ T ?h | 0 6∈ K} (elements not touching the origin), dK =
infx∈K |x| for all K ∈ T ?h , and

h = h(Th, T ?h ) = max
K∈Th∪T ?h

hK ,

Conditions (34), (35) and (36) mean that tetrahedra of T ?h which are adjacent
to ∂Ω? ∩ ∂Ω∞ have a size of order h, while those touching the fictitious vertex 0
have a size of order h1/µ. Construction of graded meshes is detailed in [5].
• Th and T ?h have the same vertices, edges and faces on the common boundary

Ω0 ∩ Ω∞ = ∂Ω0 = ∂Ω?\{0}.
In the sequel, given a function v defined over Ω∞, v̂ stands for the function defined on
Ω? as follows

(37) v̂(x?) =
1

r(x?)γ
v(φ(x?)), for x? ∈ Ω?.
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with γ > 0 a parameter. Conversely, we have

(38) v(x) =
1

r(x)γ
v̂(φ(x)), for x ∈ Ω∞.

Now, let k > 1 be a fixed integer and consider the finite dimensional space

Wh = {v ∈ C 0(R3) | ∀K ∈ Th, v|K ∈ (Pk)
3; ∀K∗ ∈ T ∗h , v̂|K∗ ∈ (Pk)

3, v̂(0) = 0}.

We may observe that functions of Wh are piecewise polynomial in the FEM region Ω0,
but not in the IFEM region Ω∞. The last observation is due to distorsion resulting from
the composition with the inversion and the multiplicative factor involved in formula (37).
Another observation concerns the behavior at large distances of functions belonging to
Wh. Let v ∈Wh. Then, v ∈ H1

loc(R
3)3. Moreover, since v̂(0) = 0, we have

|v̂(x?)| 6 C0|x?|, for all x? ∈ Ω?,

for some constant C0, not depending on x?. It follows that for all x ∈ Ω∞, we have

|v(x)| = |r(x)|−γ |v̂(φ(x))| 6 C|x|−γ |φ(x)| 6 C|x|−γ−1.

In similar way, we prove that

|∇v(x)| 6 C|x|−γ−2.

We deduce this

(39) γ > −1

2
=⇒Wh↪→W 1

0 (R3)3.

This justifies the following assumption on γ:

(40) γ > −1

2
.

The discrete problem writes: find uh ∈Wh such that

(41) ∀wh ∈Wh,

∫
R3

∇uh.∇whdx =

∫
Ω
M .∇whdx.

The corresponding stray-field energy is given by

(42) Esf (uh) =

∫
R3

|∇uh|2dx =

∫
Ω
M .∇uhdx.

We have

Proposition 3.1. The discrete problem (41) has one and only one solution uh ∈ Wh

and Esf (uh) 6 Esf (u). If in addition, γ > 0 and u ∈W k+1
k+γ (R3), then

‖u− uh‖W 1
0 (R3)3 6 C1h

τk‖u‖Wk+1
k+γ (R3)3 ,(43)

0 6 Esf (u)− Esf (uh) 6 C2h
τk‖M‖L2(Ω)‖u‖Wk+1

k+γ (R3)3 ,(44)

where C1 and C2 are two constants not depending on h, M and u, and

(45) τ = min(
γ

µk
, 1).

Proposition 3.1 states in particular that if u ∈ W k+1
k+γ (R3) and if the mesh of Ω? is

graded enough (µ 6 η
k ), then the error is similar to that held in the finite element

method in bounded domains, that is

(46) ‖u− uh‖W 1
0 (R3)3 6 Ch

k‖u‖Wk+1
k+γ (R3)3 .
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We also have

(47) 0 6 Esf (u)− Esf (uh) 6 C2h
k‖M‖L2(Ω)‖u‖Wk+1

k+γ (R3)3 .

When smoothness of u is only local, we have this

Proposition 3.2. Assume u|R3\Ω ∈W
k+1
k+γ (R3\Ω) and u|Ω ∈ Hk+1(Ω). Assume also that

Ω ⊂ Ω0 and that Th|Ω is a triangulation of Ω. Then,

(48) ‖u− uh‖W 1
0 (R3)3 6 C1(hτk‖u‖Wk+1

k+γ (Ω∞) + hk‖u‖Hk+1(Ω) + hk‖u‖Hk+1(Ω0\Ω)),

(49)

0 6 Esf (u)−Esf (uh) 6 C2‖M‖L2(Ω)(h
τk‖u‖Wk+1

k+γ (Ω∞)+h
k‖u‖Hk+1(Ω)+h

k‖u‖Hk+1(Ω0\Ω)).

with τ given by (45).

From Proposition 2.4, we know that if divM ∈ L2(Ω) and M .n ∈ H1/2(∂Ω), then
u|R3\Ω ∈ W 2

2 (R3\Ω) and u|Ω ∈ H2(Ω). With k = 1 (P1 like elements) and γ = 1, we get

the error estimate

(50) ‖u− uh‖W 1
0 (R3)3 6 Ch(‖u‖W 2

2 (R3\Ω) + ‖u‖H2(Ω)),

(51) 0 6 Esf (u)− Esf (uh) 6 C2‖M‖L2(Ω)h(‖u‖W 2
2 (R3\Ω) + ‖u‖H2(Ω)),

for any µ ∈ (0, 1]. This estimate is similar to the usual finite element error for elliptic
problems in bounded domain.

Proof of Propositions 3.1 and 3.2 – Observe first that u is also
solution of the minimization problem

min
v∈W 1

0 (R3)3
F (v), with F (v) =

1

2

∫
R3

|∇v|2 −
∫

R3

M .∇vdx,

and, by virtue of (16), we have

F (u) = −1

2

∫
R3

|∇u|2dx = −Esf (M),

Similarly, the approximate solution uh is solution of

min
vh∈Wh

F (vh),

and, in view of (41), we have

F (uh) = −1

2

∫
R3

|∇uh|2dx = −Esf (uh),

Since Wh ⊂ W 1
0 (R3)3, we deduce that F (uh) > F (u). Thus, Esf (uh) 6

Esf (u).
Now, Céa’s lemma gives

‖u− uh‖W 1
0 (R3)3 6 C1 inf

wh∈Wh

‖u− wh‖W 1
0 (R3)3 .

for some constant C1 not depending on u nor on h. In [5], the following
estimate is proven:

inf
wh∈Wh

‖u− wh‖2W 1
0 (R3)3 6 C(h2τk‖u‖2

Wk+1
k+γ (Ω∞)

+ h2k
∑
K∈Th

‖u‖2Hk+1(K)).
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We easily get estimate (43) and (48). In addition, we have

0 6 Esf (u)− Esf (uh) =
1

2

∫
R3

|∇u|2dx− 1

2

∫
R3

|∇uh|2dx =
1

2

∫
R3

M .(∇u−∇uh)dx.

Thus,

Esf (u)− Esf (uh) 6
1

2
‖M‖L2(Ω).‖∇u−∇uh‖L2(Ω).

Combining with (43) gives (44). Estimates (48) and (49) are obtained by
the same argument. �

4. Numerical results

The task of this section is to show some numerical results obtained with a 3D code
writting for solving (4) with the following parameters: k = 1 (P1 like elements). We use
the following domain decomposition of R3:

• Ω0 is the (big) tetrahedra whose vertices are

(52)
a1 = R0(

√
8

3
, 0,−1

3
), a2 = R0(−

√
2

3
,

√
2

3
,−1

3
),

a3 = R0(−
√

2

3
,−
√

2

3
,−1

3
), a4 = R0(0, 0, 1),

where R0 > 0 is a size parameter (see Figure 3).
• Ω∞ = R3\Ω0 is decomposed as the union of four infinite simplices Ti, 1 6 i 6 4,

with the origin as a common fictitious vertex. The three real vertices Ti, 1 6 i 6
4, are (aj)16j 6=i64 (the bounded faces of Ti, 1 6 i 6 4, are the faces of Ω0).

The code we write does not depend on the considered configuration. It only requires
that Ω ⊂ Ω0. In all the tests, we choose

Figure 3. The decomposition R3 = Ω∞ ∪Ω0 is used in implementation.
Here Ω0 is a big tetrahedron whose vertices are given by formula (52).

γ = 1.
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Numerical example 1 (homogeneously magnetized sphere). We consider the case
of a ball Ω = {x ∈ R3 | |x| < r0}. If M is constant, that is M = M0 for some unit
vector field M0 ∈ R3, then the solution of (4) is given by

(53) u(x) =


1

3
M0.x if |x| < r0,

r0
3

3

M0.x

|x|3
if |x| > r0.

In computational tests, we choose M0 = (0, 0, 1), r0 = 0.5 and R0 = 4. In order to check
the convergence of the method, we measure the following errors

e0(u) =
‖uh − u‖W 0

−1(R3)

‖u‖W 0
−1(R3)

, e(Esf ) =
|Esf (u)− Esf (uh)|

|Esf (u)|
.

In the context of this example, the exact energy is given by

(54) Esf (u) =
1

2

∫
R3

|∇u|2dx = −1

2

∫
Ω
M0.hdx =

2π|M0|2

9
r0

3 = 0.08723.

Obviously, u|Ω ∈ H2(Ω). One can also check that u|R3\Ω ∈ W 2
2 (R3\Ω). However, u 6∈

W 2
2 (R3) since [∂u∂n ] = −M0.n 6= 0 on ∂Ω. According to estimates (51) and (51) errors

e0(u) and e(Esf ) decrease as h (for any gradation parameter µ). Table 1 and Figure 4
display these errors versus h for several values of µ. We may observe that e0(u) decreases
as h0.96 while e(Esf ) decreases as h1.33. The errors are essentially the same for µ = 1,
µ = 0.7 and µ = 0.5. This is in accordance with estimates (50) and (51). In Figure
5 the approximate solution and the exact one are displayed versus r when x = y = 0.
It can be seen by a visual comparison that these solutions are very close although the
discontinuity of the normal component of h = −∇u across the interface ∂Ω.

µ µ
DoF h 1 0.7 0.5 1 0.75 0.5

e0(u) e(Esf ) (energy error)
875 1.131 0.292 0.284 0.280 0.532 0.523 0.517
6750 0.565 0.145 0.139 0.135 0.322 0.315 0.312
22625 0.377 0.101 0.098 0.097 0.157 0.152 0.150
53500 0.282 0.076 0.074 0.073 0.127 0.124 0.123
104375 0.226 0.064 0.062 0.062 0.089 0.086 0.085
180250 0.188 0.052 0.051 0.051 0.073 0.072 0.071
427000 0.141 0.040 0.039 0.039 0.043 0.042 0.041
833750 0.113 0.032 0.031 0.031 0.025 0.024 0.024
The log. slope 0.96 0.96 0.96 1.33 1.34 1.33

Table 1. (Example 1) The relative errors e0(u) and e(Esf ) (r0 = 0.5,
γ = 1, and R0 = 4).

4.1. Numerical example 2 (non homogeneously magnetized sphere). In this
second example, we consider the case of a non homogeneous magnetization of a sphere
Ω = {x ∈ R3 | |x| < r0}. More precisely, M is the unit vector field

(55) M = (cos θ)eϕ + (sin θ)eθ in Ω.
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Figure 4. (Example 1) the exact and the approximate energy versus h
with µ = 0.5, γ = 1, R0 = 4 and r0 = 0.5.

Figure 5. (Example 1) the exact and the approximate scalar potential
versus r = |x| when x = y = 0 and z > 0 (µ = 0.5, γ = 1, R0 = 4,
r0 = 0.5 and DoF = 833750).

Here (r, ϕ, θ), r > 0, 0 6 ϕ 6 2π, 0 6 θ 6 π, denote the spherical coordinates and
(er, eϕ, eθ) the corresponding unit vectors. In that case, the solution can be obtained
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explicitly (see the appendix):

(56) u(x) =


−2z

9
+

2z

3
ln(
|x|
r0

) if |x| 6 r0,

−2r0
3z

9|x|3
if |x| > r0.

This solution belongs to W 2
2 (R3), as forecasted in Proposition 2.4 (indeed, divM ∈ L2(Ω)

and M .n = 0 on ∂Ω). In our numerical experiences, we fixe r0 = 0.5 and R0 = 6. The
exact stray-field energy is given by

(57) Esf (u) =
1

2

∫
R3

|∇u|2dx =
16

81
πr0

3 = 0.0776.

According to Proposition 2.4, no gradation is needed to get optimal convergence. More
precisely, estimates (46) and (47) hold true for any gradation paramater µ 6 1 (here
k = 1 and γ = 1), that is

‖u− uh‖W 1
0 (R3)3 6 Ch‖u‖W 2

2 (R3)3 ,(58)

0 6 Esf (u)− Esf (uh) 6 C2h‖u‖W 2
2 (R3)3 .(59)

Table 2 shows these relative errors versus h. The behavior of the discrete stray-field en-
ergy Esf (M) is also displayed in Figure 6, while the approximate and the exact solutions
are displayed versus r = |x| in Figure 7 (when x = y = z). We can observe that the
energy converges as h2.5. This superconvergence of energy is not foreseen in estimate
(44) and has not been proved. We conjecture that this superconvergence of the energy
holds when u ∈W 2

2 (R3) (or, equivalenty, when M ∈ H(div ; Ω) and M .n = 0 on ∂Ω).

µ µ
DoF h 1 0.7 0.5 1 0.75 0.5

e0(u) e(Esf )
875 1.131 0.258 0.250 0.247 0.623 0.619 0.615
6750 0.565 0.153 0.149 0.148 0.325 0.322 0.320
22625 0.377 0.101 0.099 0.099 0.151 0.149 0.148
53500 0.282 0.073 0.072 0.071 0.084 0.083 0.082
104375 0.226 0.061 0.060 0.059 0.054 0.053 0.052
180250 0.188 0.049 0.048 0.048 0.033 0.032 0.032
427000 0.141 0.037 0.036 0.036 0.009 0.008 0.008
833750 0.113 0.029 0.029 0.029 0.001 0.002 0.002
The log. slope 0.95 0.94 0.93 2.79 2.49 2.49

Table 2. (Example 2) The relative errors e0(u) and e(Esf ) (γ = 1, R0 =
6 and r0 = 0.5).

Numerical example 3. As a last benchmark, we consider a homogeneously magnetized
unit cube: M = (0, 0, 1) and Ω = [−1/2, 1/2]3 (see, e. g., [8]). The stray-field energy in
this case is given by

(60) Esf (u) =
1

6
.

In Table 3, error on the energy versus h is displayed for several values of µ. In figure 8, we
show the evolution of the energy versus h. Here also we may observe that the approximate
energy converges quickly to the exact one. This superconvergence can clearly be seen in
Figure 8.
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Figure 6. (Example 2) The exact and the approximate energy versus h
with µ = 0.5, r0 = 0.5, γ = 1 and R0 = 6.

Figure 7. (Example 2) The exact and approximate magnetic scalar po-
tential versus r = |x| (with x = y = z). Here µ = 0.5, γ = 1, R0 = 6 and
DoF = 833750.
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The relative error of energy
DOF h µ

1 0.7 0.5
875 1.697 0.468 0.463 0.460
6750 0.848 0.364 0.360 0.358
22625 0.565 0.298 0.295 0.294
53500 0.424 0.243 0.241 0.240
104375 0.339 0.205 0.203 0.203
180250 0.282 0.134 0.133 0.133
427000 0.212 0.013 0.013 0.012

Table 3. The relative error of energy for γ = 1 (example 3)

Figure 8. (Example 3) The computed energy of an homogeneously mag-
netized unit cube.

Appendix A. Solving the problem in the case of an inhomogeneously
magnetized ball (numerical example 2)

The resolution of the system in the case of a ball Br0 and M given by (55) can be
done by means of a decomposition on spherical harmonics (Y m

` )`>0,−`6m6` (which is
orthonormal with respect to the inner product in L2(S2)). We have outside the ball Br0 :

∆u = 0 in R3\Br0 .

Developping u on the basis of spherical harmonics gives (see, e. g., [19]):

u(x) =
+∞∑
`=0

∑̀
m=−`

Am`

(
r

r0

)−`−1

Y m
` (ϕ, θ).

where (Am` )`>0,−`6m6` is a sequence of complex coefficients. On the other hand, we have
in the interior of the ball

∆u = divM = 2
cos θ

r
=
α

r
Y 0

1 (ϕ, θ) in Br0 , with α = 4

√
π

3
.
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Writing

u(x) =
+∞∑
`=0

∑̀
m=−`

um` (r)Y m
` (ϕ, θ), in Br0 ,

gives:

1

r2

d

dr
(r2du

m
`

dr
)(r)− `(`+ 1)

r2
um` (r) =

α

r
δ`,1δm,0 for all ` > 0 and − ` 6 m 6 `,

where δi,j , i ∈ N, j ∈ N, denotes the usual Kronecker delta. The solutions of this
equations are of the form

um` (r) = Bm
`

(
r

r0

)`
+ Cm`

(
r

r0

)−`−1

+
α

3
r ln(

r

r0
)δ`,1δm,0,

where Bm
` and Cm` are constants. Since u ∈ W 1

0 (R3) we deduce that uBr0 ∈ H
1(Br0).

Necessarily Cm` = 0 for all ` > 0 and |m| 6 `. Since [u]∂Ω = 0, we deduce that Bm
` = Am`

for all ` > 0 and |m| 6 `. In addition,[
∂u

∂r

]
∂Ω

= −M .n = −M .er = 0.

Thus, for all ` > 0 and |m| 6 ` we have

`
Bm
`

r0
+
α

3
δ`,1δm,0 = −`+ 1

r0
Am` .

Thus, Aml = Bm
l = 0 for (`,m) 6= (1, 0) and

A0
1 = B0

1 = −αr0

9
.

Thus, if |x| > r0 then

u(x) = A0
1

(r0

r

)2
Y 0

1 = − r0
3

9r2
αY 0

1 = −2r0
3 cos θ

9r2
= −2r0

3z

9r3
.

and

‖∇u‖2
L2(R3\Br0 )

=
32π

243
r0

3.

If |x| 6 r0 then

u(x) = (B0
1

r

r0
+
α

3
r ln(

r

r0
))Y 0

1 = (−r
9

+
r

3
ln(

r

r0
))αY 0

1 =
2r cos θ

9
(−1 + 3 ln(

r

r0
)).

Thus,

u =
2z

9
(−1 + 3 ln(

r

r0
)),

and

‖∇u‖2
L2(Br0 )

=
64π

243
r0

3.

Thus, the energy of the corresponding stray-field is

Esf (u) =
1

2

∫
r03
|∇u|2dx =

16

81
πr0

3.
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[19] J.-C. Nédélec. Acoustic and electromagnetic equations, volume 144 of Applied Mathematical Sciences.
Springer-Verlag, New York, 2001. Integral representations for harmonic problems.
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