
HAL Id: hal-04683674
https://hal.science/hal-04683674

Submitted on 2 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Automated Framework Towards Widespread Formal
Verification of Complex Hardware Designs

Jonathan Certes, Benoît Morgan

To cite this version:
Jonathan Certes, Benoît Morgan. An Automated Framework Towards Widespread Formal Verification
of Complex Hardware Designs. Conférence Embedded Real Time Software and Systems (ERTS 2022),
Jun 2022, Toulouse, France. pp.1–11. �hal-04683674�

https://hal.science/hal-04683674
https://hal.archives-ouvertes.fr

An Automated Framework Towards Widespread

Formal Verification of Complex Hardware Designs

Jonathan CERTES, Benoı̂t MORGAN

IRIT-ENSEEIHT, University of Toulouse

email : firstname.lastname@irit.fr

Abstract—Verification is an essential step of critical systems
design flow with regard to safety and security. It supports respec-
tively fault and vulnerability removal. Model-checking ensures
that a design meets its specifications by using an exhaustive
state exploration approach. It has been adopted to design critical
and/or secure by design embedded hardware systems. On the
one hand, model-checking is fully automated; on the other
hand, it does not scale and faces state-space explosion when
working with large industrial circuits and complex specifications.
Compositional model-checking and theorem proving enable to
verify large designs at the cost of finding abstractions and proving
an implication of the specifications. In this paper, we present a
method along with a framework to reduce this cost and improve
hardware verification performances.

We formally verified a hardware security monitor involved
in a remote attestation scheme for microprocessors. This ver-
ification could not be achieved using classical approaches as
it faces state-space explosion: the monitor is complex enough
to be unfit for model-checking. So, we applied our method to
the verification and successfully proved the security of remote

attestation using symbolic model-checking and automatic theorem
proving. Our verified security monitor is described with an
hardware description language and its specifications are written
in property specification language. Our method makes extensive
use of compositional model-checking techniques to leverage the
modular and partitioned aspects of most automata involved
in hardware modelling. This method is fully automated in a
framework build on top of free model checkers and automatic
theorem provers. Automation relies on synthesis and translation
tools which exploit the modular structure of sequential circuits
and avoid having to re-design.

Index Terms—Automation, formal verification, security, FPGA

I. INTRODUCTION

Verification of hardware designs is traditionally performed

through simulation and testing. Selected input vectors are fed

into the system and outputs are checked for correctness. The

drawback of these traditional verification techniques is that

they aim at tracing the most potential defects and suffer from

incompleteness.

Another approach, adopted to design critical and/or secure

hardware systems [1], [2], relies on formal methods to ensure

that the design meets its specifications. Formal verification is

generally conducted in three steps. First, the system (hardware

or software) is modeled, for example as an automaton. Then,

properties to be satisfied by the system are formally expressed.

Eventually, model-checking and/or proof is used against the

model to demonstrate that it satisfies the required properties.

The major obstacle for widespread application of model-

checking to real-world designs is called the state-space ex-

plosion problem [3]: when the number of states needed to

model the system accurately turns out to exceed the physical

limits of the computer memory. One of the most successful

ways to cope with this problem is to use abstract models

and check the property on them instead of the original

model. However, over-approximation, as a consequence of

abstraction, turns out to generate false negatives [4]. Finding

satisfactory abstractions, which reduce the model enough and

do not lead to false negatives, is non-trivial. Compositional

model-checking techniques, such as localization reduction and

partitioned transition relations, guarantee the absence of false

negatives [5]. These techniques are particularly adapted to

abstract hardware designs as partitioned structure of sequential

circuits ensures no interdependence between processes.

In this paper we propose a mostly fully automated frame-

work to improve hardware verification performances and effi-

ciently remove the presence of faults (consequently vulnera-

bilities) in realistic hardware designs. Our method is based on

a specific case of compositional model-checking and exploits

the modular and partitioned structure of sequential circuits.

Then, we extensively present how we applied this approach to

formally verify a hardware security monitor for remote attes-

tation of microprocessor software [6]. One of the objectives

of this monitor is to preserve the confidentiality of a secret

key used to compute a HMAC. It relies on a complex trace

decompresser for ARM CoreSight debug interface [7] whose

verification is the cornerstone of overall system security. Our

main objective is to prove the security for remote attestation

of microprocessor software from locally verified properties.

A lot of work has been dedicated to efficient and/or auto-

matic abstraction for Register Transfer Level (RTL) Verilog,

either with a smart predicate partitioning through slicing of

bit vectors [8], [9], using uninterpreted functions abstraction

[10] or by applying algebraic rewriting to extract arithmetic

functions [11]. The authors automatically provide sound parti-

tions for the system to increase compositional model-checking

efficiency. Unfortunately, writing consistent properties to be

verified regarding the content of the generated abstract model

is left to the designer’s expertise. This process is inconve-

nient since the main goal is to verify overall specifications

(i.e. formal definition of security), potentially expressed with

signals or memories that have been removed or split/renamed

in the generated abstract models. Also, local properties are

then to be expressed with generated names while making sure

that their conjunction still implies the overall specifications.

A more convenient approach, that we extensively use in our

method, is to write local properties with a proof deduction in

mind and then find abstract models that are adapted to their

verification.

For a wide adoption of formal methods to hardware verifi-

cation, expressing specifications and dividing them into local

properties must be convenient and theorem proving must be

automated. As a consequence, automatic theorem proving

must be conducted on highly expressive temporal logics.

Moreover, abstraction that is adapted to the verification of

these local properties must be automated too. To answer the

aforementioned bottleneck and challenges, we introduce in this

paper two main contributions:

1) an automated translation of Property Specification Lan-

guage (PSL) [12], dedicated to automatic theorem prov-

ing. The tool also supports uninterpreted functions ab-

straction, if needed, in order to relieve deductive proof

systems in solving the satisfiability problem;

2) an automated framework that computes, for complex

hardware designs, adapted abstract models from tempo-

ral properties, verifies their soundness and feeds model-

checking software.

Source code for algorithms that rewrite PSL and verifies the

soundness of abstract models is publicly available at [13].

This article is organized as follows: state of the art is given

in Section II. Section III details our automated verification

framework. The case study is described in Section IV and

Section V shows the application of our framework. Eventually,

limitations are listed in Section VI.

II. STATE OF THE ART

In this section we provide background on modeling complex

hardware designs and formal verification.

A. Modeling of complex hardware designs

Automatic translation tool Verilog2SMV [14] converts Ver-

ilog to SMV language, which supports similar high-level types

of state variables as Hardware Description Languages (HDL)

for wires and registers. In particular, Verilog2SMV aims at

handling designs with memories efficiently [14]. Verilog2SMV

is built on top of Yosys [15], a free Verilog synthesis suite. It

first flattens the Verilog high-level design, synthesizes the RTL

circuit while providing optimizations and then translates the

output into a corresponding SMV model.

Tuerk et al. have formally validated the correctness of a

translation from PSL to Linear Temporal Logic (LTL) [16],

they produced a model-checking infrastructure that works by

translating model-checking problems to equivalent checks for

the existence of fair paths through a Kripke structure [17].

B. Formal verification

Deterministic Büchi automata are specific ω-automata that

can accept infinite words. More especially, a word is accepted

if and only if the automaton goes infinitely often through

accepting states, called acceptance set. A deterministic Büchi

automaton can be defined as a tuple A = 〈Q,Σ,∆, I,F〉
where:

• Q is a finite set of states

• Σ is an alphabet

• ∆ : Q× Σ → Q is a transition function

• I ⊆ Q is a set of initial states

• F ⊆ Q is an acceptance set

Deterministic Büchi automata are used to model finite state

machines and formulae in temporal logics [18]. Model-

checking algorithms manipulate them according to the au-

tomata theory approach.

NuSMV is an open-source model checker which implements

symbolic model-checking, using a fixed point algorithm with

Binary Decision Diagrams (BDD), where a set of states

is represented by a BDD instead of an exhaustive list of

individual states [19]. Models are described in SMV language

and NuSMV supports the analysis of specifications expressed

as invariants or in temporal logics, including LTL and PSL.

Duret-Lutz et al. presented Spot, a C++ library with Python

bindings designed to manipulate LTL and ω-automata [20].

Spot contains algorithms to perform the usual tasks in model-

checking, including filtering, conversion and transformation for

LTL formulae and Büchi automata.

As a response to the state-space explosion problem in

model-checking, R. Kurshan, E. Clarke and H. Veieth for-

malized the most commonly used abstraction techniques [4]:

localization reduction abstracts models by hiding variables that

are not referenced in the verified property; predicate abstrac-

tion is an over-approximation technique which may produce

spurious counterexamples; counterexample-guided abstraction

refinement is an iterative process to create new abstract models

and checks spurious counterexamples on the concrete model

until the checked property is either proved or disproved.

Berezin et al. describe the rules to follow to ensure the

soundness of compositional model-checking techniques, in-

cluding with partitioned transition relations [5], where the

global transition relation of a system is written as the con-

junction or disjunction of transition relations for the individual

components of this system. Also, R. Milner introduced the

concept of simulation between automata [21]. Bensalem et

al. demonstrated the preservation of properties in the case

of simulations parameterized by a Galois connection [22]:

establishing a simulation relation between systems, which is

straightforward in the case of compositions, allows to share a

proof that a property is verified.

III. AUTOMATED VERIFICATION FRAMEWORK

In our framework, overall specifications are formally ex-

pressed with PSL and local properties for compositional

model-checking are elaborated manually to be sufficient to

imply the specifications. All PSL properties are translated into

LTL by model checker NuSMV, which is considered correct.

Nevertheless, it is possible to also rely on proven translation

works [16], which preserve PSL semantics. Then, Spot is

leveraged to prove the implication of the overall specifications

from the conjunction of the local properties.

The hardware design is described in Verilog, it is synthe-

sized and translated using Verilog2SMV into a Büchi automa-

ton, which model is described in SMV language. To avoid

state-space explosion, we propose a method to automatically

generate abstract models, with localization reduction, for

each PSL property to verify. Property preserving simulation

relations are established between the abstract models and the

concrete model: this provides a certificate that the abstractions

are sound. Then, PSL properties are verified locally with

model checker NuSMV.

Our approach differs from previous works as abstract mod-

els are deduced from the properties to verify. We believe

that writing local properties with a proof deduction in mind

is key to proving the implication of complex specifications,

even if it implies a non-optimal reduction for the abstractions.

Furthermore, our framework is automated and relies on syn-

thesis tools so that the generated models are close to the final

implementation of the system.

Several Electronic Design Automation (EDA) suite are

available in the industry, most of which providing solutions

for synthesis and assertion based formal verification. The

approach we propose is agnostic to the choice of an EDA

toolchain: it can be applied to any of these suite as soon as

the dedicated tools can be instrumented with a high level of

granularity. For this reason, we instantiated it in a framework

which relies on open-source software.

Now, we present our automated framework, depicted in

Figure 1, which follows those three major steps:

• Step 1: as opposed to [8], [9], [10], [11], we start by

rewriting the specifications in local properties. We take

great care in ensuring that the conjunction those local

properties is sufficient to imply the specifications.

• Step 2: once we have the local properties, we prove that

their conjunction imply the specifications, i.e. when this

implication is a tautology. To do so, we rely on Spot

which provides filtering algorithms for LTL properties

[20].

• Step 3: finally, we can move on to the automatic abstrac-

tion of the system using the local properties. Hopefully,

those local properties are shrunk enough to generate

localization reductions of the system that can be model

checked in a reasonable amount of time. Model-checking

with NuSMV ensures the verification of the local proper-

ties.

A. Step 1: Formal expression of specifications and local

properties with PSL

In our framework, we take advantage of extended next

operators, a subset of PSL that can be seen as syntactic sugar

for LTL. This subset is supported by NuSMV for model-

checking [23]. PSL can be described as follows:

In addition to propositional operators, such as conjunction

(∧), disjunction (∨), negation (¬), and implication (→), PSL

features temporal operators along with replicators, which are

Verilog

PSL local
properties

PSL 0

Spot

PSL
Specifications

NuSMV

SMV 0

Verilog2SMV

Wrapper 0

NuSMV

PSL n SMV n

Verilog2SMV

Wrapper n

Step 3Step 2Step 1

Fig. 1. Automated verification framework

quantification operators. The following operators find their

equivalent in LTL, they are simple but of interest to express

our specifications:

• always(φ): holds if property φ is true for all future

states;

• next(φ): holds if φ is true at the next system state;

• (ψ) until (φ): holds if there is a future state where φ is

true and ψ is true for all states before that.

In addition to these basic temporal operators, PSL also offers

extended next operators, including:

• next event a(ψ)[range](φ): holds if φ is true at all the

next states where ψ is true in the range defined by range

(where a range is a set of consecutive integer numbers);

• next event(ψ)(φ): this is a shorthand for

next event a(ψ)[1 : 1](φ).

The last interesting operator is the forall replicator:

• forall i in {range} : φ(i): holds if the conjunction of

parameterized sub-properties φ(i) is true for all possible

values of identifier i in the range defined by range.

Specifications are formally expressed with PSL and local

properties are elaborated while trying to keep their conjunction

sufficient for the implication. These tasks rely on the designer’s

expertise in logics. This is the only part of our framework

which is manual.

B. Step 2: Proof strategy

Implication of the specifications is obtained through auto-

matic theorem proving using Spot. To achieve this, we have

instrumented parsing and translation functions from NuSMV in

order to convert PSL, which is not entirely supported by Spot,

to LTL. As a consequence, extended next operators are only

expressed with basic temporal operators; for instance, operator

next event is expressed as:

next event(a)(b) ≡ (¬(a) until (a ∧ b))∨always (¬(a))

After the translation, we generate the following formula

from a conjunction of the local properties and an implication

of the specifications:

(property0) ∧ (property1) ∧ ... → (specifications)

We rely on filtering functions from Spot [20] to automatically

process this formula:

• if the filtered formula is a tautology, then specifications

are implied;

• if the filtered formula is a temporal expression, then the

conjunction of local properties is not sufficient to imply

the specifications;

• if the physical limits of the computer memory are

reached, we cannot conclude.

Despite being automatic, proving the implication consists in

solving a satisfiability problem which suffers from state-space

explosion just like model-checking. To tackle this problem,

we provide uninterpreted functions abstractions to reduce the

proof effort:

• logic operations between bit vectors are abstracted into

booleans. For instance, equality between two vectors a

and b is only considered as either true or false to prove

the implication, regardless of the vectors size;

• forall replicators are not expanded into a conjunction

of sub-properties: only replicated sub-properties (i.e. ex-

pressions using the identifier) are considered. This greatly

reduces the complexity of the proof but comes at the

cost of manually making sure that all possible values are

verified through model-checking.

For example, the following expression gives a property that

has been verified through model-checking:

forall i in {0 : 255} : always{(a = i) → next(b = i)}

Our abstractions reduce it to boolean “(a = i)” always

implying boolean “(b = i)” at the next state. Since sizes

for vectors a and b do not appear in the expression, it is the

responsibility of the designer to ensure that model-checking

with range {0 : 255} for identifier i covers all possible values

for both a and b. In a case where the provided abstractions are

still not sufficient to run the proof, rewriting local properties

from Step 1 or separating the proof into several steps is

required.

Our translation and abstraction algorithm is available at

[13]. It has been implemented using pyNUSMV [24], a Python

framework for prototyping and experimenting with BDD-

based model-checking algorithms from NuSMV.

C. Step 3: Automatic localization reduction and model-

checking

A model of the hardware design is described in Verilog at

RTL. To automatically generate abstract models dedicated to

the verification of the properties, we rely on hypothesis H0,

defined as follows:

H0: the concrete model is composed of multiple finite systems

running in parallel. When outputs are unused, optimiza-

tions step of synthesis separates them, removes unused

registers and leaves the useful parts of the system un-

touched.

We take advantage of synthesis optimizations step to create

localization reductions of the model: outputs are left uncon-

nected and all state variables from the model that are irrelevant

in verifying the property are abstracted. With H0, we assume

that the useful parts of the system are left untouched and

that there is a simulation relation parameterized by a Galois

connection between the concrete model and the generated

abstract models.

Since H0 is a hypothesis, we conduct an a posteriori

verification and provide a certificate that the abstract model

is simulated by the concrete model. Verified properties are

then preserved. This task is embedded in our framework and

is automatically applied to all generated abstract models. The

strength of this approach is that it makes the verification

process possible for any synthesis optimizations algorithm

and configuration as soon as our certificate guarantees its

soundness. The only restriction is to use the same algorithm

and configuration for converting both the concrete model and

its abstract model.

Regarding our framework, we proceed as follows:

• a Verilog wrapper is automatically created where all the

module outputs which do not appear in the property

are left unconnected. This is achieved using the Verilog

Procedural Interface of Icarus Verilog [25].

• Verilog2SMV synthesizes and translates the Verilog

model, extended with the previously generated wrapper,

and converts it to SMV. Optimizations step from Yosys

proceeds to a localization reduction of the model which

is dedicated to verify the property.

• Verification of replicated properties is split into the veri-

fication of several non-replicated sub-properties, one for

each value of the replicator. This reduces the cost of

model-checking as size of the BDD grows exponentially

with the complexity of the property.

• NuSMV is used to verify that the property holds on its

dedicated abstract model. If the property does not hold,

NuSMV generates a counterexample which is converted

into Value Change Dump (VCD) format.

This operation is repeated for each property as depicted in

sub-graph “Step 3” from Figure 1.

Certificate of soundness

We establish a simulation relation between the concrete

model and the generated abstract model, this is performed

by comparing transition functions of Büchi automata. To

understand the verification of soundness, we first need to

introduce some concepts regarding SMV models.

A SMV model is defined by input variables, state variables,

initial values and transition functions [14], [19]:

• SMV input variables represent the inputs of the hardware

circuit; all possible tuples for SMV input variables values

represent the alphabet (Σ) of the automaton.

• SMV state variables represent Verilog registers as either

single bits, bit vectors or multidimensional arrays; all

possible tuples for SMV state variables values represent

the finite set of states (Q) of the automaton.

• Their possible initial values are set as a result of the

translation from Verilog initial directive; initial states (I)

of the automaton are the product of initial values for all

SMV state variables.

• Finally, SMV transition functions determine, for each

SMV state variable, which SMV state the variable should

be set to from its current state and SMV input variables;

the global transition function (∆) of the Büchi automaton

is also the result of a product between SMV transition

functions for all SMV state variables.

There is no acceptance set (F) in the SMV model since it is

a consequence of having a property to be verified: final states

are, in model-checking, states that satisfy the negation of the

property on the product of both the model and the automaton

generated from the property.

SMV models are then represented by a conjunctive parti-

tioned transition relation [5]: each partition (δ) of the transition

function (∆) for the model is then a transition function for

one SMV state variable. To establish a simulation relation, we

verify that all partitions of the transition function and initial

states from the abstract model are identical in the concrete

model.

Algorithm 1 Comparison of transition functions

Input: C: concrete model, A: abstract model

Output: boolean: soundness of the abstraction

1: [∆C , IC] = parse(C)

2: [∆A, IA] = parse(A)

3: normalize(∆C); normalize(IC)

4: normalize(∆A); normalize(IA)

5: for all δA in partition(∆A) do

6: if not (∃δC ∈ partition(∆C)|δC ≡ δA) then

7: return False

8: end if

9: end for

10: for all qA in partition(IA) do

11: if not (∃qC ∈ partition(IC)|qC ≡ qA) then

12: return False

13: end if

14: end for

15: return True

Algorithm 1 presents how the comparison of transition

functions is performed. It requires two models generated from

the RTL description of the circuit: the concrete model (C)

and the abstract model (A), where both are generated using

Verilog2SMV with the same synthesis optimization algorithm

and configurations. It returns a boolean giving the soundness

of the abstraction. This returned value is true if the expression

of all transition functions and initial states from the abstract

model exist with the same expression in the concrete model.

• First, it parses both the concrete model and the abstract

model to extract their global transition function (∆C , ∆A)

and sets of initial states (IC , IA). As explained earlier,

global transition functions of both automata are the results

of a product between several transition functions (δC ,

δA) from all state variables. Respectively, global initial

states of both automata are the results of a product

between several initial states (qC , qA) from the same state

variables.

• Then, a normalization is performed so that descriptions of

initial states and transition functions are only expressed

with members of the alphabet (Σ) and other states

variables (Q). This step is important since different cir-

cuits have been processed by the optimization algorithm

and descriptions may not result from the same wiring

(Verilog2SMV preserves the hierarchy of the circuits

by expressing wires through the definition of symbols

[14]; initial states and transition functions are expressed

with these symbols). Normalization allows to abstract the

wiring of the circuit as these are not memories and do

not alter the BDD when model-checking.

An implementation of Algorithm 1 is available at [13].

Equivalence of partitioned transition functions is verified

through a comparison at syntactic level. This is justified by

the fact that many abstract models have to be checked for

soundness (one per property) for a single circuit and it makes

the algorithm more efficient. Also, this makes the algorithm

easily adaptable to fit a particular purpose if enhanced with

the use of semantic comparison instead of checking for an

equivalence. It has been implemented using pyNUSMV. Thus,

parsing and normalization functions follow an instrumentation

of NuSMV: the same model checker is used to verify the

soundness of the abstraction and the satisfiability of the

properties.

IV. CASE STUDY

We successfully applied our framework to the verification

of a hardware security monitor involved in a remote attestation

scheme for ARM microprocessors [6]. This could not be

achieved with classical automated approaches.

Modern Systems on Chip (SoC), such as Xilinx Zynq-7000,

integrate ARM microprocessors along with programmable

logic in a single device. This combines the flexibility and the

parallelism of a Field-Programmable Gate Array (FPGA) with

the performances of an Application-Specific Integrated Circuit.

Spatial partitioning for sensitive memories and implementation

of our hardware security monitor takes place in the FPGA.

ARM microprocessors come with a debug interface called

CoreSight which enables real-time instruction flow tracing

without slowing down execution. Traces contain information

to reconstruct the execution of a program which, in our case

study, is composed of cryptographic primitives.

During the computation of an integrity check, the activation

of program flow tracing, combined with the addition of specific

instructions, provides data that can be used for monitoring.

These traces are accessed by the hardware security monitor in

the FPGA and processed to achieve remote attestation security.

The proof strategy to achieve remote attestation security is

described in [6] along with the architecture of our security

monitor. Proving the security is an iterative process involving

model-checking and proving lemmas for each of four hardware

sub-modules as described in figure 2.

A0 ∧P0 → security
1 ∧P1 → A0A1

A2 ∧P2 → A1

A3 ∧P3 → A2

mod l-check ng

mode -chec ing

model c ec ing

Fig. 2. Proof strategy

Overall security is based on axioms that are formally ex-

pressed from the documentation of the SoC (A3). In particular,

the format of ARM CoreSight traces and the events causing

their output are described in PSL. The security monitor is a

composition of four sub-modules dedicated to trace decom-

pression, trace decoding, transduction and security enforcing.

Model-checking ensures that each sub-module verifies local

properties Pi (with i ∈ [0 : 3]) and proofs of lemmas provide

new axioms Ai for the next sub-module.

Understanding the overall verification of the security mon-

itor is not a prerequisite to appreciate the application of our

method as it is an iterative process. To illustrate our approach,

we focus on one iteration: the verification of temporal proper-

ties and proof of a lemma on the CoreSight trace decompresser.

This is relevant because the trace decompresser is the sub-

module of the security monitor which comes with most

memories, hence the bottleneck to model-checking regarding

the state-space explosion problem.

A. The decompresser

Traces are transmitted packet-wise by CoreSight. These

packets are compressed so that unmodified data between two

transmissions is not repeated. A packet header determines the

type of packet being transmitted and compression bits inform

about the presence of following bytes of data [26]. Figure 3

gives an overview of the decompresser’s input/output.

clk

decompresser

reset

enable

in[7:0]

ready

data_size[3:0]

data[(15 × 8)-1:0]

Fig. 3. Overview of the decompresser’s inputs/outputs

The decompresser retrieves data from a 8-bit vector (in) and

features a synchronization clock (clk) and an enable bit: data

is read from input in only when CoreSight asserts this enable

bit, which can be de-asserted in the middle of a reception for

an undefined amount of time. Once all data is received, it is

output to a longer vector which contains the content of the

whole packet. Minimal size for the decompresser’s memory

is fixed by the length of the biggest packet, hence a 15 bytes

memory to store the payload of isync packets [26].

The type of packet being decompressed is identified from

the received header. Expected size for a packet depends on

this identification and the content of the packet; it can vary

between 1 and 15 bytes. Output ready is set at the reception

of the last byte, output data size gives the number of bytes

in the decompressed packet and output data gives its content.

B. Specifications

To guaranty the overall security for the monitor, decompres-

sion for several types of packets must be correct. In particular,

CoreSight branch packets, that provide destination address

for an indirect branch and exception informations, are the

longest packets which decompression must be verified [26],

[6]. In this section, we describe the specifications for correct

decompression of a branch packet.

• data is memorized from input in, at rising edge of clk,

when enable bit is asserted;

• packet type is deduced according to the received header,

i.e. the first received byte;

• if input reset is asserted at rising edge of clk, memo-

rization and packet type deduction are discarded;

• output ready rises when the decompresser receives the

last byte of a branch packet and is set only during one

clock cycle;

• output data size gives the number of bytes in the

decompressed packet when ready rises;

• output data takes the value of the decompressed packet

when ready rises.

Figure 4 shows an example of the reception of a 4 bytes

packet, where w, x, y and z are received bytes (w contains

the packet header) and signal memory refers to an internal

memory. The last received byte is output at its reception.

clk

reset

enable

in[7:0] w x y z

memory[(15 × 8)-1:0] 0 w xw yxw zyxw

ready

data size[3:0] 0 4 0

data[(15 × 8)-1:0] 0 zyxw 0

Fig. 4. Description of the data flow stream

V. APPLICATION TO THE CASE STUDY

In this Section, we show how we applied our approach to

verification of the decompression for ARM CoreSight branch

packets.

The concrete model for the decompresser uses a total of

132 bits for SMV state variables and 11 bits for SMV input

variables. Its description in Verilog HDL has approximately

five hundred lines of code. Verilog2SMV is used to re-create

the SMV model from the HDL, which has approximately five

thousand lines of code. Both Verilog and SMV models are

available at [13].

Verification is conducted using our framework on a com-

puter cluster of 256 nodes for parallelization. Each node has

4GB of RAM and a single-core CPU running at 3GHz.

Computation times and memory usage for this application may

differ if our approach is instantiated in an other toolchain.

A. Step 1: Formal expression of specifications and local

properties

The first step consists in manually expressing the speci-

fications and local properties in PSL. Formal expression of

specifications is a difficult process and might give different

results depending on the designer’s writing choices: several

PSL expressions may translate the same specifications in

natural language.

Here, we provide an example for the formal expression of

specifications from section IV-B. To ease understanding, we

purposefully omit certain aspects of the specifications, such

as the input filtering depending on the format of CoreSight

branch packets. We also omit the duplication of forall opera-

tors for all replicators: this is not syntactically correct as a PSL

replicator only accepts one identifier but it greatly reduces the

representation of the expression. Complete PSL expressions

with correct syntax and dependencies to CoreSight format are

available at [13].

To guaranty the overall security for the monitor, decompres-

sion for the first 7 bytes of branch packets must be correct as

forall i0,i1, i2, i3, i4, i5, i6 in {0 : 255} : (1)

always(

((clk ∧ reset) ∨ (clk ∧ ready))∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 7)

∧ next event a(clk ∧ enable)[1 : 1](in = i0)

∧ next event a(clk ∧ enable)[2 : 2](in = i1)

∧ next event a(clk ∧ enable)[3 : 3](in = i2)

∧ next event a(clk ∧ enable)[4 : 4](in = i3)

∧ next event a(clk ∧ enable)[5 : 5](in = i4)

∧ next event a(clk ∧ enable)[6 : 6](in = i5)

∧ next event a(clk ∧ enable)[7 : 7](in = i6)

)

→

next(

next event(clk ∧ ready)(data[7 : 0] = i0)

∧ next event(clk ∧ ready)(data[15 : 8] = i1)

∧ next event(clk ∧ ready)(data[23 : 16] = i2)

∧ next event(clk ∧ ready)(data[31 : 24] = i3)

∧ next event(clk ∧ ready)(data[39 : 32] = i4)

∧ next event(clk ∧ ready)(data[47 : 40] = i5)

∧ next event(clk ∧ ready)(data[55 : 48] = i6)

)

)

they contain destination addresses and exception informations

[26]. This is formally expressed by specification 1.

This PSL specification deals with traces starting when

the decompresser is reset or ready. From the next state, a

restriction for the traces is that input reset cannot be asserted

at a rising edge of clock until output ready is set. Also, only

traces where data size is greater or equal to 7 are considered.

Left side of the implication expresses that data is memorized

from input in, at rising edge of clk, when enable bit is

asserted. This is true for all possible values between 0 and 255

for each of the 7 bytes of data. Right side of the implication

expresses that output data takes the value of the decompressed

packet when ready rises.

Expression of local properties is a manual process. Conjunc-

tion for these local properties must imply PSL specification

1. The designer can keep in mind that this implication is

proven by an automatic theorem prover and that abstracting a

module’s output in a property reduces both the complexity of

the property and the size of the automaton for model-checking.

One possible solution for expressing local properties is to

split the content of output data into seven bytes, where each

local property has one replicator of 256 possible values. An

other solution is to split the content of output data into 7× 8
bits, where each local property has one replicator of 2 possible

values. The first solution is straightforward as expressing

a local property only consists in removing next event a

operators from specification 1. The second solution requires

more rewritings but reduces the complexity of the property and

the size of the automaton even more, enabling model-checking

for more complex specifications.

For our case study, following the first solution is sufficient to

enable formal verification. An example for one local property

is given by expression 2. A total of seven local properties,

following the same approach, is needed to imply the specifi-

cation.

It is possible to give more expressive power to a local

property — in case the same property helps proving more

than one specification. For this reason, the value of output

data size in property 2 is now greater or equal to one —

forall i0 in {0 : 255} : (2)

always(

((clk ∧ reset)∨ (clk ∧ ready))∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 1)

∧ next event a(clk ∧ enable)[1 : 1](in = i0)

)

→

next(

next event(clk ∧ ready)(data[7 : 0] = i0)

)

)

since we only verify the first byte of data. But, care must be

taken, when modifying local properties, that the specification

remains provable.

B. Step 2: Proof strategy

Once all seven local properties are available, a proof that

the specifications are implied must be conducted. Since we

wrote the local properties with proof deduction in mind, the

proof strategy is straightforward:

• expressions that appear in both the specification and the

local properties can be left uninterpreted and abstracted;

for instance, we can replace the following PSL expres-

sions with single booleans:

– next event a(clk ∧ enable)[1 : 1](in = i0)
– next event(clk ∧ ready)(data[7 : 0] = i0)

• axioms are added if we gave more expressive power to a

local property. For instance, one axiom can be as follows:

if data size is greater than 7, then it is greater than 1.

• we rely on our framework to translate PSL into LTL, pro-

vide abstractions to reduce the proof effort and generate

the formula. Spot is leveraged to prove the implication.

Figure 5 shows how we prove for the decompression for

ARM CoreSight branch packets. This can be separated in three

steps:

1) uninterpreted PSL expressions are replaced with single

booleans ;

2) a proof is conducted that the specification is implied by

the conjunction of local properties. This step is where

Spot is leveraged, it is represented in red in Figure 5.

3) uninterpreted PSL expressions are refined to re-create

the specification.

Optimizations can be achieved by separating the proof into

several steps. In this case, we create an intermediate property,

which is larger than the local property but smaller than the

specifications to prove, then we follow the same approach. For

example, an intermediate property can describe the decompres-

sion of the first four bytes; then an other intermediate property

describes the decompression of the last three bytes. Steps 2′

and 2′′ in Figure 5 represent how we optimize the proof.

Sources to reproduce the experiment are available at [13].

Table I summarizes memory usage and computation times.

Optimizations %MEM Computation time

No (step 2) 9.6 2 minutes

Yes (steps 2
′ and 2

′′) < 1 < 2 seconds

TABLE I
PROOF: MEMORY USAGE AND COMPUTATION TIMES

Note: separating the proof into several steps is also an

elegant solution in case we opt for the second solution when

expressing the local properties, i.e. a split of output data into

7×8 bits. In this case, property from expression 2 serves as an

intermediate property. It must be proven from a conjunction

of the local properties and the rest of the proof remains the

same.

Regarding the abstractions of uninterpreted expressions, i.e.

steps 1 and 3 in Figure 5, we provide a coq proof at [13] that

this is correct at semantic level for any temporal property. This

proof relies on a LTL library written in coq [27]. We assume

that LTL semantic is identical for both Spot and this coq

library. So, for this particular proof, verifying the correctness

in Spot for each abstraction is unnecessary. Nevertheless, to

advocate in favor of abstraction of uninterpreted functions, we

leveraged Spot for a verification in some cases. A verification

consists in proving an implication between a local property and

its abstracted form (step 1 in Figure 5). In the abstracted form,

for each value of integer j, the following PSL expressions are

replaced with single booleans:

• next event a(clk ∧ enable)[j + 1 : j + 1](in = ij)

• next event(clk∧ready)(data[8×(j+1)−1 : 8×j)] = ij)

forall i0 in {0 : 255} :

always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 1)

∧ next event a(clk ∧ enable)[1 : 1](in = i0)

)
→

next(

next event(clk ∧ ready)(data[7 : 0] = i0)

)

)
•

•

•∧

forall i6 in {0 : 255} :

always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 7)

∧ next event a(clk ∧ enable)[7 : 7](in = i6)

)
→

next(

next event(clk ∧ ready)(data[55 : 48] = i6)

)

)

1

forall i0 in {0 : 255} :

always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 1)

∧ abstract next event a 0

)
→

next(

abstract next event 0

)

)
•

•

•∧

forall i6 in {0 : 255} :

always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 7)

∧ abstract next event a 6

)
→

next(

abstract next event 6

)

)

2

2′

forall i0, i1, i2, i3 in {0 : 255} :

always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 7)

∧ abstract next event a 0

∧ abstract next event a 1

∧ abstract next event a 2

∧ abstract next event a 3

)
→

next(

abstract next event 0

abstract next event 1

abstract next event 2

abstract next event 3

)

)

∧

forall i4, i5, i6 in {0 : 255} :

always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 7)
...

2′′

forall i0, i1, i2, i3, i4, i5, i6 in {0 : 255} :

always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 7)

∧ abstract next event a 0

∧ abstract next event a 1

∧ abstract next event a 2

∧ abstract next event a 3

∧ abstract next event a 4

∧ abstract next event a 5

∧ abstract next event a 6

)
→

next(

abstract next event 0

abstract next event 1

abstract next event 2

abstract next event 3

abstract next event 4

abstract next event 5

abstract next event 6

)

)

3

forall i0, i1, i2, i3, i4, i5, i6 in {0 : 255} :

always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 7)

∧ next event a(clk ∧ enable)[1 : 1](in = i0)

∧ next event a(clk ∧ enable)[2 : 2](in = i1)

∧ next event a(clk ∧ enable)[3 : 3](in = i2)

∧ next event a(clk ∧ enable)[4 : 4](in = i3)

∧ next event a(clk ∧ enable)[5 : 5](in = i4)

∧ next event a(clk ∧ enable)[6 : 6](in = i5)

∧ next event a(clk ∧ enable)[7 : 7](in = i6)

)
→

next(

next event(clk ∧ ready)(data[7 : 0] = i0)

next event(clk ∧ ready)(data[15 : 8] = i1)

next event(clk ∧ ready)(data[23 : 16] = i2)

next event(clk ∧ ready)(data[31 : 24] = i3)

next event(clk ∧ ready)(data[39 : 32] = i4)

next event(clk ∧ ready)(data[47 : 40] = i5)

next event(clk ∧ ready)(data[55 : 48] = i6)

)

)

Fig. 5. Proving the decompression for ARM CoreSight branch packets

This verification is resource-intensive as complexity of the

properties grows exponentially with the value of integer j.

Sources to reproduce the experiment are available at [13].

Table II summarizes memory usage and computation times.

j %MEM Computation time

0 < 1 10 seconds

1 < 1 35 seconds

2 1.8 4 minutes

3 100 (runs out of memory)

TABLE II
UNNECESSARY VERIFICATION OF ABSTRACTIONS

This shows the limitations of automatic theorem proving

when dealing with complex properties. Expression of extended

next operators with basic temporal operators, which is not

required if they appear in both the local properties and the

specification, prevents the proof to complete. This is because

the number of basic temporal operators grows exponentially

with the value of integer j for our PSL expressions.

C. Step 3: Automatic localization reduction and model-

checking

The conjunction of our local properties is sufficient to imply

the specifications. Now, model-checking must guaranty that the

decompresser verifies these local properties.

Since we opted for local properties where the content of

output data is split into bytes, our framework automatically

removes 14 bytes of memory from the model, out of 15, at

each abstraction. Also, since our local properties have one

replicator of 256 possible values, our framework automatically

splits the verification into 256 steps where properties are not

replicated. As a consequence, a verification of a local property

on our concrete model results in 256 verifications of sub-

properties that are 28 times smaller, on an abstract model that

is 2(14×8) times smaller, hence an exponentially reduced BDD.

Note: even if the specification is not split into local

properties, our framework would also automatically remove 8

bytes of memory out of 15 in the abstraction. This is because

these 8 bytes of memory do not appear in the specification

either. The verification process would also be split into 7×256
steps since the specification has 7 replicators with a range of

256 values each.

To verify the soundness, our framework automatically cre-

ates one concrete SMV model — in addition to an abstract

SMV model for each sub-property. For each abstract SMV

model, it tries to establish a simulation relation with the

concrete SMV model:

• in case of success, NuSMV is used to verify that the

property holds;

• in case of failure, it shows in a log file the differences

between transition functions and initial states for the state

variables that differ.

NuSMV computes symbolic model-checking of the sub-

properties on their dedicated abstract model. It shows in a

log file the sub-properties and the results of the computation:

• in case a sub-property holds, NuSMV provides the men-

tion ”is true”;

• in case a sub-property does not hold, NuSMV provides a

counterexample. In addition to the log file, our framework

converts the counterexample into a VCD file which can

be visualized with a waveform viewer.

Memory usage and computation times depend on both the

size of the abstract model and the complexity of the property.

Size of the abstract model is identical for each of our seven

local properties. Complexity of the property mainly results of

having a high integer number in the range of PSL operator

next event a. Table III and figure 6 summarize memory

usage and computation times on one node of our computer

cluster, i.e. for the verification of one sub-property. Row

indexes represent the integer number in the range of PSL

operator next event a. Indexes 1 to 7 are of interest as

they represent our seven local properties.
Note: for the sake of the experiment, we verified two un-

necessary properties to evaluate our strategy of decomposition

for more complex specifications. This shows that we could

rely on the same solution if we specify the decompression of

packets with 8 bytes of data, but we nearly reach the limits of

our computer’s memory at the 9th byte.

%MEM Computation time

1 21.9 7 seconds

2 28.4 8 seconds

3 29.9 10 seconds

4 39.5 15 seconds

5 60.2 35 seconds

6 28.7 7 minutes

7 41.6 25 minutes

8 47.9 39 minutes

9 95.0 6 hours 55 minutes

TABLE III
MODEL-CHECKING: MEMORY USAGE AND COMPUTATION TIMES

1 3 5 7
0

20

40

60

80

100

M
em

o
ry

u
sa

g
e

[%
]

0 2 4 6 8 10
0

10

20

30

40

50

C
o

m
p

u
ta

ti
o

n
ti

m
es

[m
in

u
te

s]

Fig. 6. Model-checking: memory usage and computation times

Sources to reproduce the experiment are available at [13].

We recommend to proceed to model-checking on a computer

cluster of 256 nodes. Otherwise, computation times to verify

one local property would be approximately 256 times higher.

D. Summary

To sum up, our framework automatically provided sound

abstractions for our ARM CoreSight trace decompresser and

increased compositional model-checking efficiency. Synthesis

optimizations algorithms helped deducing these abstractions

from the local properties to verify.

We had several solutions to express our local properties: we

opted for a decomposition of an output vector into bytes as it

eases proof deduction and allows model-checking in a reason-

able amount of time. Fortunately, expression is conducted with

proof deduction in mind. So, finding a strategy to prove the

specification is straightforward: we opted to abstract functions

depending on the decomposed bytes as they appear in both

the specifications and the local properties.

In the case where our specification would have been more

complex, we could also have opted for a decomposition of the

output vector into bits. On the one hand, this solution would

have forced us to add one step in the proof strategy since

local properties would be smaller. On the other hand, it would

have greatly reduced model-checking computation times as the

abstract model would automatically be reduced as well.

We also applied our automated framework to the verification

of several hardware modules: we verified the correctness for

trace decompression, trace decoding, transduction and security

enforcing. In the end, it allowed to verify the design of our

whole security monitor and to prove the security for remote

attestation of microprocessor software [6].

VI. LIMITATIONS

This approach can be generalized to the verification of other

sequential circuits with complex specifications. Although, au-

tomatic theorem proving may show some limitations. Despite

many abstractions, implication of the specifications may be

too large to be processed in an acceptable amount of time. A

solution is then to create an intermediate property, which is

larger than the ones that are verified through model-checking

but smaller than the specifications to prove. Then the proof

must be separated into several steps following the same

approach. An example of a proof in more than one step is

publicly available at [13].

Other limitations may occur when it comes to verifying

systems depending on a high number of inputs or when the

memory of an atomic automaton already exceeds the tolerated

size. For such systems, a workaround consists in altering their

architecture so that they can be turned into partitioned systems.

Such a strategy must be anticipated as freezing the architecture

of a system is part of the early stages of the design flow for

integrated circuits.

In a case where the specification contains PSL operators

next event a with a too high integer number in the range,

a different proof strategy must be considered. This might

imply using model-checking to verify simpler properties —

for instance, about the internal memory of the hardware —

and rely on a more complex proof to imply the specifications.

A drawback is that it increases the level of expertise needed

to conduct the proof. In such case, relying on a proof assistant

might be a more elegant solution than decomposing the proof

in a high number of steps.

VII. CONCLUSION

The major obstacles for widespread application of formal

verification to real-world designs are the complexity of their

specifications and the state-space explosion problem. A lot of

work has been dedicated to automatically provide smart ab-

stractions for RTL Verilog and increase compositional model-

checking efficiency [8], [9], [10], [11]. However, dealing with

complex specifications requires to prove their implication from

local properties, and writing properties function of automati-

cally generated abstract models is inconvenient for automatic

theorem proving.

In this paper we propose a framework to overcome this

challenge and help the community going towards the adoption

of formal methods. Our framework leverages the modular and

partitioned aspects of sequential circuits and relies on synthesis

and translation tools [14] to avoid a profound redesign. It

computes convenient and sound abstract models from RTL

Verilog and the properties to verify, allowing to prove com-

plex specifications for hardware designs. Translation of PSL

properties, to be fed to automatic theorem provers, is also

automated and supports uninterpreted functions abstraction to

relieve deductive proof systems in solving the satisfiability

problem.

Further work can be conducted such as using a proven

translation from PSL to LTL [16] to ensure the correctness of

the LTL properties to manipulate. Nevertheless, our framework

has been successfully applied as is to verify the design of

a hardware security monitor for remote attestation of micro-

processor software [6]. Such hardware design contains many

memories and has similar complexity to the ones we find

in industrial designs. This brings hope to see our approach

adopted in the industry, especially since it is agnostic to the

choice of an EDA toolchain.

REFERENCES

[1] W. Khan, M. Kamran, S. R. Naqvi, F. A. Khan, A. S. Alghamdi, and
E. Alsolami, “Formal verification of hardware components in critical
systems,” Wireless Communications and Mobile Computing, 2020.

[2] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik, “VRASED: A verified hardware/software co-design for
remote attestation,” in 28th USENIX Security Symposium. Santa Clara,
CA: USENIX Association, Aug. 2019.

[3] C. Wang, G. D. Hachtel, and F. Somenzi, Abstraction Refinement for

Large Scale Model Checking. Springer, 2006.
[4] E. M. Clarke, R. P. Kurshan, and H. Veith, “The localization reduction

and counterexample-guided abstraction refinement,” in Time for Verifi-

cation, Essays in Memory of Amir Pnueli, Z. Manna and D. A. Peled,
Eds. Springer, 2010.

[5] S. Berezin, S. V. A. Campos, and E. M. Clarke, “Compositional
reasoning in model checking,” in Compositionality: The Significant

Difference, International Symposium, COMPOS’97, Bad Malente, Ger-

many. Revised Lectures, W. P. de Roever, H. Langmaack, and A. Pnueli,
Eds. Springer, 1997.

[6] J. Certes and B. Morgan, “Remote attestation of bare-metal microproces-
sor software: a formally verified security monitor,” The 5th International

Workshop on Cyber-Security and Functional Safety in Cyber-Physical

Systems (IWCFS), 2021.
[7] Coresight Technology System Desgin Guide, no. ARM DGI 0012D

ID062610, 2006-2013.

[8] Z. S. Andraus and K. A. Sakallah, “Automatic abstraction and verifica-
tion of verilog models,” in Proceedings of the 41th Design Automation
Conference, DAC 2004, San Diego, CA, USA, S. Malik, L. Fix, and
A. B. Kahng, Eds. ACM, 2004.

[9] H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke, “Word-level
predicate-abstraction and refinement techniques for verifying RTL ver-
ilog,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2008.

[10] Y. Ho, P. Chauhan, P. Roy, A. Mishchenko, and R. K. Brayton,
“Efficient uninterpreted function abstraction and refinement for word-
level model checking,” in 2016 Formal Methods in Computer-Aided

Design, FMCAD, Mountain View, CA, USA, R. Piskac and M. Talupur,
Eds. IEEE, 2016.

[11] C. Yu and M. J. Ciesielski, “Automatic word-level abstraction of
datapath,” in IEEE International Symposium on Circuits and Systems,

ISCAS 2016, Montréal, QC, Canada. IEEE, 2016.
[12] 1850-2010 IEEE Standard for Property Specification Language (PSL).

IEEE, 2010.
[13] J. Certes and B. Morgan, “Verification materials:

source code and examples,” 2021. [Online]. Available:
https://gitlab.irit.fr/these-jonathan-certes-public/erts-2022

[14] A. Irfan, A. Cimatti, A. Griggio, M. Roveri, and R. Sebastiani,
“Verilog2smv: A tool for word-level verification,” in 2016 Design,

Automation & Test in Europe Conference & Exhibition, DATE 2016,
Dresden, Germany, 2016.

[15] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.
[16] T. Tuerk and K. Schneider, “From PSL to LTL: A formal validation in

HOL,” in Theorem Proving in Higher Order Logics, 18th International
Conference, TPHOLs 2005, Oxford, UK, Proceedings, J. Hurd and T. F.
Melham, Eds. Springer, 2005.

[17] T. Tuerk, K. Schneider, and M. Gordon, “Model checking PSL using
HOL and SMV,” in Hardware and Software, Verification and Testing,
Second International Haifa Verification Conference, HVC 2006, Haifa,

Israel, Revised Selected Papers, E. Bin, A. Ziv, and S. Ur, Eds., 2005.
[18] M. Y. Vardi, “An automata-theoretic approach to linear temporal logic,”

in Logics for Concurrency - Structure versus Automata (8th Banff Higher

Order Workshop, Banff, Canada, Proceedings), 1995.
[19] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,

M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv version 2: An
opensource tool for symbolic model checking,” in Proc. International

Conference on Computer-Aided Verification (CAV). Copenhagen,
Denmark: Springer, July 2002.

[20] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and
L. Xu, “Spot 2.0 — a framework for LTL and ω-automata manipulation,”
in Proceedings of the 14th International Symposium on Automated

Technology for Verification and Analysis (ATVA). Springer, Oct. 2016.
[21] R. Milner, “An algebraic definition of simulation between programs,”

in Proceedings of the 2nd International Joint Conference on Artificial

Intelligence. London, UK, 1971.
[22] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis, “Property

preserving simulations,” in Computer Aided Verification, Fourth Inter-

national Workshop, CAV ’92, Montreal, Canada, Proceedings, G. von
Bochmann and D. K. Probst, Eds. Springer, 1992.

[23] NuSMV 2.6 User Manual. FBK-irst - Via Sommarive 18, 38055 Povo
(Trento) – Italy, 2015.

[24] S. Busard and C. Pecheur, “Pynusmv: Nusmv as a python library,” ser.
LNCS, G. Brat, N. Rungta, , and A. Venet, Eds., vol. 7871. Springer-
Verlag, 2013, pp. 453–458.

[25] S. Williams, “Icarus verilog,” http://iverilog.icarus.com/.
[26] CoreSight Program Flow Trace Architecture Specification, no. ARM IHI

0035B ID060811, 1999-2011.
[27] C. M. V. Reyes, “Ltl (linear temporal logic) in coq,”

https://github.com/spidermoy/LTL Coq.

https://gitlab.irit.fr/these-jonathan-certes-public/erts-2022
http://www.clifford.at/yosys/
http://iverilog.icarus.com/
https://github.com/spidermoy/LTL_Coq

	Introduction
	State of the Art
	Modeling of complex hardware designs
	Formal verification

	Automated verification framework
	Step 1: Formal expression of specifications and local properties with PSL
	Step 2: Proof strategy
	Step 3: Automatic localization reduction and model-checking

	Case study
	The decompresser
	Specifications

	Application to the case study
	Step 1: Formal expression of specifications and local properties
	Step 2: Proof strategy
	Step 3: Automatic localization reduction and model-checking
	Summary

	Limitations
	Conclusion
	References

