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Abstract

In this paper, we introduce FastLips, an end-to-end neural
model designed to generate speech and co-verbal facial move-
ments from text, animating a virtual avatar. Based on the Fast-
Speech2 Text-to-Speech model, FastLips integrates an audiovi-
sual Transformer-based encoder with distinct audio and visual
neural decoders. This model combines audiovisual representa-
tions computed by the shared encoder with asynchronous gen-
eration of audio and visual features. Furthermore, we enhance
the model with explicit predictors of lip aperture and spread-
ing, adapted from prosodic FastSpeech2’s variance adaptor. The
proposed model generates mel-spectrograms and facial features
(head, eyes, jaw and lip movements) to drive the virtual avatar’s
action units. In our evaluation, we compare FastLips with a
baseline audiovisual-Tacotron2, demonstrating the advantages
of the FastSpeech?2 architecture for lip generation. This benefit
becomes particularly prominent when implementing explicit lip
prediction.

Index Terms: End-to-end TTS, audiovisual synthesis, facial
animation, lip sync

1. Introduction

Virtual avatars are gaining popularity in various applications,
such as video games, interactive chatbots, and immersive expe-
riences in virtual or augmented reality. Embodied avatars en-
able multimodal interactions with computer systems, contribut-
ing to more engaging experiences that closely mirror natural
human-to-human interactions [1, 2].

Expectations of users from these interactions are high, as
their successful management can result in an increased sense
of presence and competence of the virtual agent [1]. However,
since speech and gesture originate from a common communica-
tion intent [3], even subtle discrepancies may be poorly rated by
humans [4], complicating the audiovisual generation process.
Among facial movements, the correct synchronization of jaw
and lip movements (known as lip sync) is crucial in the success-
ful fusion of modalities: inconsistent audio and lip movements
have been showed to negatively impact intelligibility [5, 6].

To generate consistent audiovisual features, the dominant
paradigm — illustrated by latest entries to the GENEA Chal-
lenge [7] —is a two steps approach: 1) a Text-To-Speech (TTS)
model is used to generate the audio from the text input, and
2) a gesture model uses the synthesized audio (potentially aug-
mented with the text) to generate animation features for the vir-
tual avatar. However, this process induces sub-optimal compu-
tations [8] and negates the benefits of building unified audio-
visual representations directly from text, in contrast with the
conception of co-planned speech and gesture [3].

In this paper, we propose a unified end-to-end neural model
to generate speech and facial gesture from text, which we re-

fer to as an Audiovisual Text-To-Speech (AVTTS) model. The
proposed AVTTS model, called FastLips, is based on Fast-
Speech2 [9], which is established as one of the main state-of-
the-art neural TTS architectures. Through this contribution, we
explore the potential of the FastSpeech?2 architecture to generate
audiovisual synthetic speech as an unified process. We evalu-
ate FastLips in comparison with a baseline unified audiovisual-
Tacotron2 model [10]. Through an ablation study, we highlight
the main contributing components to the evaluated benefits of
the proposed FastLips model. Related unified AVTTS models
are discussed in Section 2. The audiovisual dataset as well as
the avatar used in this study is detailed in Section 3. The pro-
posed FastLips architecture is further described in Section 4.
The results of the ablation study are stated in Section 5, and
further discussed in Section 6.

2. Related Works

The latest propositions of unifying speech and gesture into the
same generative models [8] have allowed the emergence of
AVTTS models with remarkable performance [10, 11, 12]. No-
tably, DurlAN [11] and AVTacotron2 [10] have extended the
TTS-architecture from Tacotron [13] and Tacotron2 [14], re-
spectively, in order to generate visual features directly from au-
diovisual embeddings computed from text. These unified mod-
els have been showed to compete with the two-stages generative
process [8] and even surpassed it in terms of naturalness of syn-
thesized gestures [10, 12].

In both models, visual features are predicted from the very
end of the autoregressive decoder. This setup ensures the
computation of audiovisual embeddings in the whole model.
Although we also believe that the computation of audiovi-
sual embeddings should benefit to the consistency of generated
synchronous features, the visual modality may exhibit asyn-
chronous behaviors such as pre-phonatory gestures or more
general anticipatory articulatory activations [15]. Therefore, we
consider that an earlier distinction between the audio and visual
decoders should benefit to both modalities. This made us con-
sider the implementation of distinct audio and visual decoders
from a shared audiovisual encoder, closer to the Tacotron2-
Integrated Speech and Gesture (Tacotron2-ISG) [8]. How-
ever, we avoided the challenging training of the autoregressive
Tacotron2 architecture by using the parallel Transformer-based
FastSpeech2 [9] implementation instead.

3. Audiovisual Dataset

For this study, we recorded an audiovisual French dataset. This
dataset was uttered by a French professional theater actress.
Sentences are taken from the SIWIS database [16], which is
composed of isolated extracts from French Novels and French
parliament debates, spoken without any particular style instruc-
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tions. This corpus contains 5.04 hours of audiovisual record-
ings, segmented into 6538 utterances (2.77s11.22s). The au-
dio is recorded at a 22 050 Hz sampling rate and 32-bit depth.

The face of the speakers was recorded with a Logitech
StreamCam. The speaker’s facial animation parameters are then
tracked by an external service provider'. These facial anima-
tions — including head, eyes, jaw and lip movements — are used
to emulate the virtual avatar by morphing the tracked facial fea-
tures into deformations of the 3D model of the avatar. 152 ele-
mentary action units (AU) are computed to animate the avatar,
sampled at 60 Hz. The avatar is illustrated in Figure 1a.

Since some of these control features co-vary in time, we
used Principal Component Analysis (PCA) to compute a set of
37 facial features (FF) from the original 152 AU. These 37 FF
are distributed among the main facial segments: 6 degrees-of-
freedom for the head, 6 for the eyes, 3 for the eyelids, 4 for
the eyebrows, 5 for the jaw, 10 for the lips and 3 for the nose.
This dataset was recorded at GIPSA-lab, as part of the Theradia
project [17]. Due to its intended use for commercial purposes,
we are unable to share the complete dataset for public access or
distribution. But two hours of this corpus were shared for the
Spoke Task of the Blizzard Challenge 2023 [18].

4. Proposed Audiovisual TTS Model

This section describes the proposed FastLips architecture. Our
implementation, the avatar player and pre-trained checkpoints
are available online>. Hyperparameters used in this study are
specified in the configuration files shared with the implementa-
tion.

4.1. FastLips Architecture

The proposed FastLips model is illustrated in Figure 1b.
FastLips is a end-to-end neural model trained to predict mel-
spectrograms and facial features from text and/or phones. Fol-
lowing the FastSpeech2 framework [9], FastLips adopts the en-
coder/decoder architecture, with both components being stacks
of Feed-Forward Transformer (FFT) layers [19]. As opposed to
LSTM units [20], FFT layers allow for the contextualization of
the input sequence irrespective of the proximity of symbols in
the sequence. Thus, FFT layers facilitate the learning of long-
range dependencies [21]. Moreover, FFT layers allow for the
parallel computing of the whole input sequence, reducing the
training and inference time compared to recurrent models (in-
ference speed reduced by a factor of 5, see Table 1).

The original single decoder of FastSpeech2 is duplicated
to distinguish between one audio decoder and one visual de-

'DynamicXYZ®© performed the tracking with the software Grabber.
2https://github.com/MartinLenglet/FastLips

(b) FastLips architecture.

and preview of the virtual avatar.

coder. In both cases, the output of the last FFT layer is pro-
jected into the dimension of the corresponding modality: 80
mel-spectrogram energies for the audio decoder and 37 FF for
the visual decoder. The original Mean Absolute Error (MAE)
is kept for the spectral prediction loss. A Tacotron2-like post-
net is added after the mel-spectrogram prediction. This postnet
models finer-grained temporal patterns through a stack of 5 con-
volutional layers. The spectral residual computed by the postnet
is added to the prediction of the decoder. The postnet is trained
with MAE spectral reconstruction loss after the addition of the
residual. Similarly, the visual loss is computed before and after
the visual postnet, also with MAE, and is added to the total loss
during training. The benefit of the visual postnet is explored in
the evaluation presented in Section 5.

Both decoders consume the contextualized sequence of in-
put embeddings computed by the shared encoder. Note that the
backpropagation is not stopped at the input of the visual de-
coder. Therefore the text encoder is constrained to produce au-
diovisual embeddings, as advocated by Wang et al.[8].

4.2. Visual Variance Adaptor and Lip Prediction

At the interface between the text encoder and the audio de-
coder, FastSpeech2 implements a variance adaptor which goal
is twofolds: 1) two explicit predictors for pitch and energy are
trained with a Mean Squared Error (MSE) loss function. In our
implementation, pitch and energy prediction are trained at the
phone-level. Values are first computed by frame [22] and av-
eraged by phone following the phone-alignment. Pitch and en-
ergy values are normalized. 2) An explicit duration predictor is
trained with MSE. The duration prediction is used at inference
to produce the text-to-audio alignment through the length regu-
lator [19]. Duration values are predicted as log(1+# frames).
Ren et al. [9] reported better perceived voice quality thanks to
these explicit prosodic predictions.

Similar to this audio variance adaptor, FastLips implements
a visual variance adaptor, illustrated in Figure 1b. The visual
variance adaptor implements the explicit prediction of two vi-
sual features: the lip aperture (A) and spreading (S) defined as
the external lip height and width respectively (in millimeters),
as illustrated in Figure 1a. Lips account for only 10 of the 37 FF
of the avatar; the prediction of A and S is therefore an additional
constraint to avoid conflicts between the visual and the audio
modalities. A and S predictors are implemented after the length
regulator in order to take into account the anticipatory lip move-
ments [15]. The effect of the lip predictors on the visual loss and
perceived audiovisual quality are evaluated in Section 5.

A and S predictors are trained with MSE losses, which are
added to the total loss of the model. Similar to pitch and energy,
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each predictor computes a scalar value for A and S respectively,
which is converted into an embedding that is added to the cor-
responding frame embeddings of the phone. Note that the aper-
ture and spreading embeddings (resp. pitch and energy embed-
dings) are only added to the embeddings sequence of the visual
decoder (resp. audio decoder). The losses are not weighted.
We did not implement a duration predictor in the visual
variance adaptor. Training two duration predictors may cause
global asynchronicity at inference between the audio and visual
modalities. Instead, only the audio duration predictor is trained.
The audio duration predictor is trained to predict the number
of mel-spectrogram frames to produce from each symbol of
the input sequence. On the one hand, the mel-spectrogram is
predicted with a temporal sampling-frequency of ~86 Hz>. On
the other hand, FF are predicted with a sampling-frequency of
60 Hz. Thus, the number of frames predicted by the audio du-
ration predictor is down-scaled by a factor 60 + 86 ~ 0.7.

4.3. Avatar Generation from Audiovisual Features

Mel-spectrograms and facial features are combined to drive the
animation of the virtual avatar. The vocoder used is Waveg-
low [23]. The original architecture remains unchanged*. The
pre-trained model shared with this implementation is fine-tuned
on the French corpus shared for the Blizzard Challenge 2023
organizers [18] for 50 epochs. Facial features are reconstructed
from the reduced set of 37 FF to the original 152 AU using the
inverse PCA transformation.

5. Experiments

In this section, we evaluate the proposed FastLips model in
comparison with an AVTTS baseline: AVTacotron2 [10]. The
contribution of each specific layer is first evaluated through ob-
jective metrics to asses the minimization of the visual distortion
between models. Best models according to objective metrics
are selected for perceptual evaluations.

5.1. Baseline AVTacotron2 Implementation

To the best of our knowledge, Hussen et al. [10] have not shared
their implementation of AVTacotron2. Therefore, we imple-
mented our version based on their description. Our implemen-
tation is available online’. Since the presented experiment is fo-
cused on the audiovisual synthesis of neutral speech, we did not
implement the emotion encoder. Our implementation consists
in the original Tacotron2 architecture enhanced with a linear
projection from the hidden states of the second LSTM layer of
the autoregressive decoder to the 37 FF. Using a shared audio-
visual decoder forces the same sampling rate between the two
modalities. During training, FF are thus linearly extrapolated to
match the audio sampling rate. At inference, predicted FF are
interpolated at 60 Hz to compare all models at equivalent visual
sampling rate.

Similar to [8, 10], visual features are not transmitted to the
autoregressive process through the prenet, and no postnet is im-
plemented for the visual features. Our AVTacotron2 uses the
same hyperparameters as the original Tacotron2 [14].

5.2. Training Procedure
Five variants of the FastLips model are trained for this ex-
periment: the complete architecture described in Section 4

(Complete), without lip aperture predictor (-A), without lip
spreading predictor (-S), without lip predictors (-A&S) and

3 Audio is recorded at 22 050 Hz and mel-spectrograms are com-
puted with a hop length of 256.

‘https://github.com/NVIDIA/waveglow

Shttps://github.com/MartinLenglet/AVTacotron2
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without lip predictors and visual postnet (-PN -A&S). Techni-
cal specificities of the proposed FastLips variants, the baseline
(AVTacotron2) and the Waveglow vocoder are given in Table 1.

All AVTTS models are trained on the same subset of the
dataset presented in Section 3. 5% of this dataset (327 utter-
ances) are randomly selected as the test set. Utterances are pre-
sented twice by epoch to the model: once with text inputs and
once with phone inputs. This procedure enables the use of both
text and phones at inference as showed by [24]. All models are
trained from scratch for 40 000 iterations with a batch size of
32, which is equivalent to 100 epochs.

5.3. Objective Evaluation

We conducted an ablation study to evaluate the individual con-
tribution of each component of the proposed FastLips model.
The 327 utterances of the test set were synthesized with phone
inputs to ensure correct pronunciation. Since synthesized stim-
uli may vary in duration compared to the original record-
ings, all objective metrics are computed on predicted stimuli
aligned with the Ground-Truth (GT) via Dynamic Time Warp-
ing (DTW) [25]. All statistical test performed are pairwise
Wilcoxon test. None of the evaluated models showed any statis-
tical difference for the audio modality, so this evaluation focuses
on the visual features. Figure 2 summarizes this evaluation.

5.3.1. Visual Distortion

The visual distortion between predicted and GT features was
evaluated by root mean squared error (RMSE) on aligned FF
sequences. Distributions of RMSE by utterance are showed in
Figure 2a. These results validate that FastLips variants with
at least one lip predictor (-A, -S and Complete) produce FF
that are closer to GT than other models. However, this metric
does not highlight benefits of the FastSpeech2 architecture in
comparison with Tacotron2 for FF prediction.

Although visual distortion gives equal consideration to all
degrees of freedom of the virtual avatar, not every feature carries
the same weight in determining the animation quality. Specifi-
cally, the accurate modeling of lip sync is anticipated to have a
more decisive impact on the perceived quality of the synthetic
model. Consequently, we also conducted an assessment of the
precision of lip sync.

5.3.2. Lip Sync

The lip sync is evaluated as the accuracy of models in predict-
ing the aperture and spreading of the lips. Given that synthetic
sequences are temporally aligned with GT, note that this metric
evaluates lip sync based on the correct synchronization of jaw
and lip movements’ amplitude with the audio stimulus. Aper-
ture and spreading errors are showed in Figures 2b-2c.

Both figures highlight the advantages of explicitly predict-
ing lip aperture and spreading. Models equipped with the aper-
ture predictor (Complete and -S) exhibit fewer aperture er-
rors compared to all other models. Interestingly, AV Tacotron2

Table 1: Technical specificities and performances of the models.
Inference speed is reported as the Real-Time Factor (RTF). Per-
formances are computed on a single GPU Quadro RTX 8000.

Model # Parameters Inference Speed (RTF)
AVTacotron2 28241318 9.95x 1072
FastLips -PN -A&S 47683942 1.89 x 1072
FastLips -A&S 51811797 2.11x1072
FastLips -S 52272597 2.17x 1072
FastLips -A 52272597 2.21x1072
FastLips Complete 52733397 2.31x1072
Waveglow 87 879 272 5.31x 1072
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Figure 2: Objective evaluation of FF predicted by models.
vs. “**” indicates that the distribution of each model of a group
differs statistically from all models of the other group via a pair-
wise Wilcoxon test (p < .05 and p < .01 respectively).

predicts lip spreading relatively accurately. This can be at-
tributed to the infrequent occurrence of lip protrusions with AV-
Tacotron2, which tends to favor neutral positions, more com-
monly found in the corpus.

5.4. Perceptual Experiments
5.4.1. Perceptual Lip Sync

The objective evaluation highlighted the benefits of explicitly
predicting lip for FastLips variants. Additionally, AVTacotron2
exhibited better lip spreading prediction. Consequently, we
conducted a perceptual test with three models to explore the
impact of the observed differences on perceived lip animation
quality: AVTacotron2, -A&S, and Complete.

We conducted an online MUSHRA-like experiment [26]
with 50 participants, run with the HEMVIP framework [27].
Participants were asked to rate the lip animation quality of the
avatar on a scale from 0 (“bad”) to 100 (“excellent”). The ref-
erence (i.e. the GT animation features tracked from the original
recordings) is hidden among the models, resulting in 4 condi-
tions to evaluate. In all videos, only the GT audio is played
to focus participants solely on the visual modality. Predicted
FF are temporally aligned with GT. Head is fixed and only the
lips of the avatar are displayed for this experiment, i.e. only the
cropped section in Figure 1a is displayed. The 40 test stimuli
for which the models predict the most different FF are selected
for his experiment. Results of this experiment are given in Fig-
ure 3a.

On average, AVTacotron2 was rated as “fair” (>40),
whereas FastLips variants and GT were rated as “good” (>60).
Complete was rated as producing significantly better lip ani-
mation quality than all other conditions, whereas AVTacotron2
was rated significantly lower than other conditions. The out-
comes of this evaluation is twofold: 1) Despite similar objective
performances, AVTacotron2 was judged as producing worse
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Figure 3: Perceptual Experiment Results.
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lip animation quality than -A&S. Although the difference was
not significant, the higher errors of lip aperture on average may
have impacted participants’ ratings. 2) The explicit prediction
of lip aperture and spreading improves lip animation quality.
Note that this evaluation revealed tracking errors from GT in
our recordings, leading to an overall lower animation quality
than Complete on average. This score may be attributed to the
stimuli selection method, which implicitly favored GT errors
that artificially differ from FF predicted by other conditions.

5.4.2. Preference Test

In order to assess the potential of the explicit lip prediction for
the audiovisual synthesis as a whole, we finally conducted an
ABX preference test between the two best-performing models
from the perceptual lip sync test: -A&S and Complete. 30 par-
ticipants took part in this preference test. 80 utterances of the
test set were selected for this test, also based on the maximum
FF differences. For each utterance, the two models were pre-
sented as videos of the entire face of the avatar (with placement
of models randomized). Results showed in Figure 3b indicate a
statistical preference for FastLips with explicit lip predictors.

6. Conclusions and Discussion

In this work, we proposed FastLips, an end-to-end neural
AVTTS model based on the FastSpeech2 architecture [9]. We
showed that this model was able to generate better lip anima-
tion quality than the baseline AVTacotron2 [10]. This model
emphasizes the advantages of an early distinction between the
audio and visual modalities, enabling more effective support for
asynchronous behaviors. This feature is crucial to take into ac-
count the anticipatory lip movements [15]. The preference test
confirmed the objective results regarding the benefits of explicit
lip aperture and spreading prediction in enhancing the overall
quality of the audiovisual synthesis for virtual avatars. Samples
are available on our online demo page®.

We will consider applying the FastLips architecture to ex-
pressive audiovisual synthesis in the future. Additionally, we
may explore the integration of other visual features, such as eye
blinks and head nods, as explicit predictions in the proposed
visual variance adaptor.

Shttp://ssw2023.0rg/demo/FastLips/index.html
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