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Abstract: Mechanical stress governs the dynamics of viscoelastic polymer systems and supercooled
glass-forming fluids. It was recently established that liquids with long terminal relaxation times are
characterized by transiently frozen stress fields, which, moreover, exhibit long-range correlations
contributing to the dynamically heterogeneous nature of such systems. Recent studies show that
stress correlations and relaxation elastic moduli are intimately related in isotropic viscoelastic systems.
However, the origin of these relations (involving spatially resolved material relaxation functions)
is non-trivial: some relations are based on the fluctuation-dissipation theorem (FDT), while others
involve approximations. Generalizing our recent results on 2D systems, we here rigorously derive
three exact FDT relations (already established in our recent investigations and, partially, in classical
studies) between spatio-temporal stress correlations and generalized relaxation moduli, and a couple
of new exact relations. We also derive several new approximate relations valid in the hydrodynamic
regime, taking into account the effects of thermal conductivity and composition fluctuations for
arbitrary space dimension. One approximate relation was heuristically obtained in our previous
studies and verified using our extended simulation data on two-dimensional (2D) glass-forming
systems. As a result, we provide the means to obtain, in any spatial dimension, all stress-correlation
functions in terms of relaxation moduli and vice versa. The new approximate relations are tested
using simulation data on 2D systems of polydisperse Lennard–Jones particles.

Keywords: supercooled liquids; polymers; viscoelasticity; amorphous solids

1. Introduction

Viscoelastic liquids and amorphous materials are characterized by long-lasting mem-
ory effects often involving a wide spectrum of relaxation times correlating the flow to the
prior external forces and strains [1–4]. Examples of such materials include complex fluids
like viscoelastic polymer melts and solutions, molten metallic alloys, glass-forming (super-
cooled) liquids and soft-matter systems [3–19]. The central physical quantity governing the
dynamics of such materials is the mechanical stress [20]. Stress-correlation functions can pro-
vide important information on the rheological properties of amorphous systems, including
the most important rheological functions like shear and longitudinal relaxation moduli (and
the corresponding dynamical moduli) [3,4,21]. Moreover, glass-forming liquids are known
to be highly heterogeneous (near or below the glass transition temperature Tg) [22–29],
leading to a significant wave-vector dependence of their shear viscosity and relaxation
moduli [30–32]. A similar behavior was observed [33] and predicted [34] for polymer
liquids, and it is expected to be even more important for high-molecular-weight polymers.

Useful relations between the spatio-temporal stress correlation functions and the
generalized (length-scale dependent) relaxation moduli (GRMs) have recently been ob-
tained using the Zwanzig–Mori projection operator formalism [35,36] and the fluctuation-
dissipation theorem (FDT) [32,37]. Based on these theoretical relations, it was established
that liquids with long terminal relaxation times are characterized by transiently frozen
stress fields, which, moreover, exhibit long-range correlations supporting the dynamically
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heterogeneous nature of glass-forming systems [32,35–39]. These theoretical predictions
reinforce the conclusions of the prior extensive and pioneering simulation studies on stress-
correlations in supercooled liquids [40–43] and also agree with more recent simulation
results [32,44,45].

While the recent theoretical studies show that stress correlations and viscoelastic
relaxation moduli are intimately related in complex fluids like polymer and supercooled
liquids [32,35–37], the origin of these relations (involving spatially resolved relaxation
functions) appears to be non-trivial: a number of relations are exact and follow from the
fluctuation-dissipation theorem (FDT), while alternative physical arguments are required
to derive other relations [32,37]. Generalizing our recent results on two-dimensional (2D)
systems [32,37], we here obtain and discuss the full set of such stress–fluctuation relations
valid for arbitrary space dimension.

In the next two sections, we reprise the relevant classical results on the bulk elastic
and viscoelastic properties of amorphous systems, presenting the fully tensorial relations
between fluctuations of volume-averaged stress and elastic (relaxation) moduli. The bulk
equations are then generalized in Section 4 to deal with wave-vector (q)-dependent stress
correlations (characterized by the tensorial correlation function C = C(q, t)) and spatially
resolved relaxation moduli (elasticity tensor E = E(q, t)). The methodologically new point
here is that we first present a detailed derivation of the general tensorial equation linking
C- and E-tensor fields, which then yields three basic relations between the generalized
shear, longitudinal and transverse (mixed) relaxation moduli (G(q, t), L(q, t) and M(q, t))
on the one hand, and the invariant correlation functions on the other hand. The recently
discovered M-relation (Equation (64)) then follows from the general tensorial equation
in exactly the same way as other relations (Equations (62) and (63)). Different aspects
concerning the definition of the q-dependent elasticity tensor E are discussed in Section 5.
In particular, it is highlighted there that not all the components of E can be unambiguously
defined for q ̸= 0 based on a stress-to-strain response. In Section 6, we introduce the concept
of stress noise σn and propose a new definition of all components of the elasticity tensor
E(q, t) in terms of σn. It is also demonstrated there that the new definition is consistent
with all the known properties of this tensor. On this basis, we derive the full set of exact
relations between the correlation and elasticity tensors, C(q, t) and E(q, t), and establish
two approximate relations allowing to obtain the full correlation tensor C(q, t) in terms
of only three material functions, G(q, t), L(q, t) and M(q, t), also known as viscoelastic
memory functions (VMFs). We also discuss how to improve the accuracy of an approximate
relation for two-dimensional systems. The theoretical predictions are then compared with
simulation results on 2D polydisperse systems of Lennard–Jones (LJ) particles. Such 2D
systems have been recently studied experimentally [46–48] and have received a lot of
attention in simulation studies [32,44]. The main results of the paper are summarized in
the last Section 7. In particular, the most important novel results are highlighted in the last
point 11 of this section.

2. Classical Elasticity

For tutorial purposes, we start with the linear (affine) elasticity of a macroscopically
uniform isotropic solid body. Its deformation is defined by the (coarse-grained) field of
displacements u = u(r) of its material elements (here, r is the initial position of an element).
At equilibrium (u = 0), the mean mechanical stress σ = σ(0) is isotropic, σ

(0)
αβ = −p0δαβ,

where p0 is the external pressure [49]. (Note that in computer simulations the mean stress
tensor for a given configuration can be slightly anisotropic. In this case, σ(0) should
be considered as the mean stress tensor averaged over a sufficiently large ensemble of
configurations). Let us consider a weak affine deformation

γαβ ≡ ∂uα/∂rβ (1)
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where γαβ is the strain tensor which does not change in time, and α, β refer to Carte-
sian components. It leads to a macroscopically homogeneous stress as a linear response,
∆σαβ = σαβ − σ

(0)
αβ , where σαβ is the mean (time-averaged) stress in the deformed state.

According to Hooke’s law
∆σαβ = Eαβα′β′γα′β′ (2)

where Eαβα′β′ is the tensor of static elastic moduli. (Here and below, the Einstein con-
vention for summation over repeated indices is assumed). For systems (liquids) with no
orientational order, the stress tensor is always symmetric, leading to

Eαβα′β′ = Eβαα′β′ (3)

To exclude a rotation of the system as a whole (which does not cost any energy), we can
consider the symmetric part of γ,

ϵαβ =
1
2
(
γαβ + γβα

)
(4)

The symmetric ϵαβ will be referred to as the classical strain. Then, Equation (2) transforms
into the classical relation

∆σαβ = Eαβα′β′ ϵα′β′ (5)

The reason for the equivalence of the two equations, (2) and (5), is the minor symmetry of
the E-tensor:

Eαβα′β′ = Eαββ′α′ (6)

coming from the assumed isotropy of the system demanding that E must be an isotropic
tensor [44], which, together with the symmetry relation (3), leads to a well-known equation

Eαβα′β′ = λδαβδα′β′ + µ
(

δαα′δββ′ + δαβ′δα′β

)
(7)

with λ and µ being the Lamé coefficients [20,44,49]. (Note that Equation (6) also comes
directly from Equation (2) since rotations of the body as a whole (corresponding to an
anti-symmetric γ) must not lead to any change in the mean (ensemble-averaged) stress.
The usefulness (convenience) of Equation (2) is also clarified in Section 5.3 in relation to the
wave-vector- dependent elasticity).

The free energy increment ∆F associated with a small strain ϵ is

∆F ≃ V
2

Eαβα′β′ϵαβϵα′β′ (8)

where V is the system volume and the higher-order terms in ϵ are omitted. (Note that
Equation (8) remains valid also if ϵαβ is replaced with γαβ). Suppose the elastic body
has a free surface, so it can be deformed by a thermal fluctuation. Then, by virtue of
the Boltzmann equipartition principle Equation (8), it leads to the following correlation
properties for thermal fluctuations of the classical strain, ϵ:

〈
ϵαβϵα′β′

〉
=

T
4µV

[
δαα′δββ′ + δαβ′δα′β −

2λ

2µ + λd
δαβδα′β′

]
(9)

where ϵαβ and ϵα′β′ are strain components taken at the same time, the brackets ⟨..⟩ mean the
complete ensemble- and time-averaging, d is the space dimension, and T is the temperature
in energy units.
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It is also possible to relate stress fluctuations with the E-tensor. Here, it is useful to
recall that the latter tensor reflects the long-time (static) stress response (cf Equation (2));
hence, the relevant stress correlation function

Cαβα′β′ ≡
V
T

〈
δσαβδσα′β′

〉
, δσαβ ≡ σαβ −

〈
σαβ

〉
must involve a quasi-static (rather than instantaneous) stress σαβ (note that

〈
σαβ

〉
= σ

(0)
αβ ). To

define it, one has to assume that the strain fluctuations are sufficiently slow (cf refs. [50,51])
as compared to the internal structural relaxation of the system (with terminal relaxation
time τ); the characteristic time of the strain fluctuations, τstrain, must be much longer than
τ [50]. Therefore, σαβ (involved in the definition of the C-tensor) must be considered as
the stress component coarse-grained over a time interval ∆t such that τ ≪ ∆t ≪ τstrain. In
this case,

δσαβ ≃ Eαβα′β′ ϵα′β′

(note that ϵ is a slow strain fluctuation, hence δσ, being a stress response to ϵ, cf Equation (5),
is a fluctuation as well; that is why we use the notation δσ instead of ∆σ here) so that using
Equations (7) and (9), we obtain

Cαβα′β′ ≃ Eαβα′β′ (10)

Equation (9) can be obtained in a different way using the classical fluctuation-dissipation
theorem (FDT) [52,53]. As before, one can define the mean strain, γαβ = (1/V)

∫
γαβ(r)ddr

(cf Equation (1)) based on the coarse-grained displacement field. The strain γαβ can be
considered as a tensorial variable conjugate to the external ‘force’, σex

αβ, such that the external
potential energy (the contribution of the ‘force’ to the free energy of the system) is

Uext = −Vγαβσex
αβ (11)

Obviously, the ‘force’ tensor σex
αβ is the external stress applied to the system [20]. The

symmetric part of the deformation, ϵαβ, induced by a weak external stress can be ob-
tained by minimization of the total free energy Ftot = ∆F + Uext, where ∆F is defined in
Equation (8). As a result, we obtain a relation between the mean deformation,

〈
ϵαβ

〉
, and

σex
αβ (cf Equation (2)):

Eαβα′β′

〈
ϵα′β′

〉
= σex

αβ (12)

According to the classical FDT [52,53], the correlation tensor
〈

ϵαβϵα′β′

〉
must be propor-

tional to the susceptibility, ∂
〈

ϵα′β′

〉
/∂σex

αβ:

〈
ϵαβϵα′β′

〉
=

T
V

∂
〈

ϵα′β′

〉
/∂σex

αβ (13)

Equation (9) can then be deduced from Equations (7), (12) and (13).

3. Classical Viscoelasticity

Let us turn to viscoelastic systems, including polymer melts and solutions and glass-
forming supercooled liquids, but also, in principle, glassy amorphous solids below the glass
transition temperature Tg. Such systems are characterized by time-dependent relaxation
moduli, like the shear relaxation modulus G(t). The goal is to find relations between the
stress-correlation functions and the relaxation moduli. Obviously, the argument leading
to Equation (10) is not applicable in this case due to its static nature. By contrast, it is
well-known that the classical FDT can be applied to relaxation processes [52,53]. There
is, however, a fundamental problem with its application to flows of liquids using the
deformation tensor as a variable, which is based on the concept of a necessarily continuous
(coarse-grained) displacement field u(r), cf Equation (1). The point is that during long



Polymers 2024, 16, 2336 5 of 33

relaxation times characteristic of most viscoelastic liquids, the initially neighboring particles
can go far away from each other (by self-diffusion), which means that u(r) becomes ill-
defined (virtually discontinuous). In other words, here, we arrive at a contradiction
between continuum-field and corpuscular views on the fluid dynamics [20]. To avoid such
problems, another version of the FDT [32,34,37] should be employed here. It is outlined
below. (Note that this approach is applicable more generally also for networks with
transient or permanent bonds and solid amorphous systems where u(r) is well defined).

(i) We use a more precise definition of the elastic moduli. The tensor of relaxation mod-
uli Eαβα′β′(t) is defined via the stress tensor response, ∆σαβ(t), to a small but instantaneous
deformation of the system, γαβ, at t = 0:

∆σαβ(t) = Eαβα′β′(t)γα′β′ (14)

(cf Equation (2); note that ∆σαβ(t) is the mean, ensemble-averaged, stress increment at
time t). This deformation must be affine-canonical [54–56]. (The transformation is necessarily
canonical since we assume that the system dynamics remains Hamiltonian also with the
perturbation), which implies changes of both the coordinates (r) and the velocities (v) of
all particles:

rα → rα + γαβrβ, vα → vα − γβαvβ at t = 0 (15)

(ii) We assume that before the perturbation (at t < 0), the system was at equilibrium,
being characterized by an isothermal-isobaric distribution in the phase space:

P(Γ) = P0(Γ) = const e−H(Γ)/T (16)

where P is the probability density, and Γ stands for the microstate in the phase space
(coordinates and velocities of all particles), H(Γ) = H0(Γ) + p0V, H0(Γ) is the system
Hamiltonian, V = V(Γ), its volume, and p0, the imposed pressure. (Note the normalization
condition:

∫
Γ P0(Γ) = 1.) Importantly, we consider a liquid or a fully equilibrated amor-

phous system here, so that their shape variations, which are allowed, do not bring about
any correction to the Hamiltonian; the external stress corresponds solely to an isotropic
pressure p0.

Right after the instantaneous deformation (at t = 0+), the distribution changes to

P(Γ) = P0(Γ) + ∆P(Γ) (17)

The microscopic definition of the stress tensor reads [57]

σαβ(Γ) =
1
V ∑

i>j
u′

ij(r)
rαrβ

r
− 1

V ∑
i

miviαviβ (18)

where uij(r) is the interaction energy of a pair of interacting particles (i, j), r is the distance
between them, r is the corresponding displacement vector (from i to j), mi is the mass of
particle i, and viα is the α-component of its velocity. Using Equation (18), we find that the
change in H(Γ) generated by the transformation of Equation (15) (for a system initially in
microstate Γ) is

∆H = Vδσαβ(Γ)γαβ (19)

where δσαβ(Γ) = σαβ(Γ)−
〈
σαβ

〉
= σαβ(Γ) + p0δαβ is the stress fluctuation, and

〈
σαβ

〉
is the

equilibrium ensemble-averaged stress,
〈
σαβ

〉
= −p0δαβ. Taking also into account that the

transformation conserves the phase space, we obtain

∆P(Γ)/P0(Γ) =
∆H
T

=
V
T

δσαβ(Γ)γαβ (20)
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(iii) From the above equations, it immediately follows that

∆σαβ(t) =
∫

Γ
σαβ(t|Γ)∆P(Γ) = γα′β′

∫
Γ

V
T

σαβ(t|Γ)P0(Γ)δσα′β′(Γ) (21)

where σαβ(t|Γ) is the stress at time t under the condition that at t = 0 the system was in the
microstate Γ, and ∆σαβ(t) =

〈
σαβ(t)− σαβ(0−)

〉
is the ensemble-averaged stress increment

due to the deformation (recall that at t < 0, the system was assumed to be fully equilibrated;
hence,

〈
σαβ(0−)

〉
= −p0δαβ). Note that after the deformation, at t > 0, the volume and

shape of a system are not allowed to vary. Thus, e.g., the volume varies only within the
ensemble, but not in time.

The last integral in Equation (21) is obviously equal to the stress correlation function

Cαβα′β′(t) ≡
V
T

〈
δσαβ(t)δσα′β′(0)

〉
(22)

where ‘0’ means t = 0. On using the above equation and Equations (14) and (21), we find
the FDT relation:

Eαβα′β′(t) = Cαβα′β′(t) (23)

It is important to note that, strictly speaking, Equation (23) is valid for a perfectly equi-
librated isothermal-isobaric ensemble (as reflected in its probability distribution in the
phase space at any instant before the perturbation) of either liquid or fully equilibrated
amorphous solid systems whose equilibrium shear modulus Ge is vanishing, Ge = 0. (Note
that Ge = 0 does not exclude that the static modulus µ is positive since, in the case of an
amorphous glassy system, µ corresponds to the long-time glassy plateau of G(t), which,
however, eventually relaxes to 0 at t → ∞.)

It is also noteworthy that the condition of perfect equilibration still allows for dy-
namical fluctuations of energy for each individual system, including the case of no such
fluctuations, ie an energy-conserving and isochoric dynamics for each system (perhaps
also involving periodic boundary conditions useful for simulations) [58,59]. In the general
case, including isotropic liquids in the canonical or microcanonical isochoric ensembles,
systems with canonical (Nosé–Hoover) or non-canonical (Gaussian isokinetic) thermostats,
and amorphous systems equilibrated in a glassy state (a metabasin), a constant (time-
independent) tensor must be added on the rhs of Equation (23) [51,58,59].

For isotropic systems, the general structure of Eαβα′β′(t) is analogous to the static Equation (7):

Eαβα′β′(t) = M(t)δαβδα′β′ + G(t)
(

δαα′δββ′ + δαβ′δα′β

)
(24)

where M(t) and G(t) are the generalized Lamé coefficients, λ and µ, respectively. At long
times, in the quasi-static regime, t > τs, where the relaxation moduli change weakly or
vanish (note that at T < Tg, this regime corresponds to the glassy plateau), Equation (24)
provides the static response in agreement with Equation (7): M(t > τs) ≈ λ, G(t > τs) ≈ µ.

Note that in the general case, the stress response depends on whether the deforma-
tion was isothermic, adiabatic or, else, an imperfect control of temperature is involved (in
numerical studies, it may correspond to an isokinetic thermostat, energy-conserving micro-
canonical simulation, and Nose–Hoover thermostatting, respectively). The thermostatting
issues do not affect the shear modulus G(t), but can be important for M(t) [32,60]. Note
also that the instantaneous response reflected in the affine moduli, G(0) and M(0), is
always adiabatic (unless a perfect thermostatting of the system is provided) [58].

The above approach can be used to find an increment of any variable X = X(Γ) upon
the affine-canonical deformation. The result is

∆X(t) =
1
T
⟨X(t)∆H⟩ = V

T
γαβ

〈
X(t)δσαβ(0)

〉
, t > 0. (25)
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The variable X(t) in the rhs of the above equation can be replaced with δX(t) since〈
δσαβ(0)

〉
= 0 by definition (δσαβ = σαβ −

〈
σαβ

〉
, see text below Equation (19)).

4. Space-Resolved Viscoelasticity

In the previous section, we considered classical relaxation moduli related to a response
of the volume-averaged stress to a perturbative affine deformation. Let us turn to the
space-resolved viscoelasticity providing, in particular, a position-dependent response to
a (possibly) localized perturbation. Inspired by the Boltzmann superposition principle [61],
one can regard a weak continuous deformation of the system (e.g., in the course of its slow
flow) as a superposition of small strains dγαβ = γ̇αβdt, where (cf Equation (1))

γ̇αβ =
∂vα

∂rβ
(26)

is the strain rate and v is the flow velocity. Thus, generalizing Equation (14) (considering
the stress field σαβ(r, t) [20,62], instead of the volume-averaged stress, σαβ(t)), we can write
(based on the superposition principle due to the adopted linear response approximation
and recalling the space-time uniformity of the equilibrium macroscopically homogeneous
systems we consider)

∆σαβ(r, t) =
∫ t

0−
Ẽαβα′β′(r − r′, t − t′)γ̇α′β′(r

′, t′)dt′ddr′ (27)

where ∆σαβ(r, t) is the ensemble-averaged stress response to the flow (which was absent
at t < 0). (A canonical ensemble is assumed by default in this section focused on space-
resolved viscoelasticity for an arbitrary but finite wave-vector, q ̸= 0. By contrast to q = 0,
which is sensitive to the thermodynamic boundary conditions (fixed volume or fixed
pressure), all fluctuations at a finite q are disentangled from fluctuations of global variables
like total energy or volume.) Note that the response relation, Equation (27), is different in
nature from Equation (21) since the condition of no deformation (no flow) at t > 0 was
assumed in the relevant part of Section 3. Note that the response relation, Equation (27), is
also different in nature from Equation (72) since in the latter case (of Equation (72)), the
flow at t > 0 is not prescribed in contrast to Equation (27), where γ̇α′β′(r′, t′) is considered
as a known field.

It is now instructive to provide a microscopic definition of the velocity field:

v(r, t) = ρ−1
0

N

∑
i=1

miviδ(r − ri) (28)

where ρ0 = M/V is the mean mass density (M is the total mass of the system and N
is the total number of particles), and ri = ri(t), vi = vi(t) are the position and velocity
of particle i. Equation (27) can be rewritten in terms of Fourier transforms (FT) of the
position-dependent functions. For example, the FT of Ẽ is the wave-vector (q)-dependent
tensor of relaxation moduli:

Eαβα′β′(q, t) ≡
∫

Ẽαβα′β′(r, t) exp
(
−iq · r

)
ddr (29)

The FT of any other relevant function, f (r) (where f may stay for a component of σ or γ̇

tensors) is generically defined as

f (q) =
1
V

∫
f (r) exp

(
−iq · r

)
ddr (30)
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This way, f (q) and f (r) have the same physical dimension (note that here and below, we
distinguish the original function from its FT by the argument only, q or r). The inverse
Fourier transform is given by

f (r) = ∑
q

f (q) exp
(

iq · r
)

(31)

where the sum runs over all q-modes defined by the system size. In particular, the strain
rate in Equation (27) is

γ̇αβ(r, t) = ∑
q

γ̇αβ(q, t) exp
(

iq · r
)

where (cf Equation (26))
γ̇αβ(q, t) = ivα(q, t)qβ (32)

Thus, Equation (27) leads to

∆σαβ(q, t) =
∫ t

0−
Eαβα′β′(q, t − t′)γ̇α′β′(q, t′)dt′ (33)

The kernel Eαβα′β′ here is the tensor of the generalized (q-dependent) relaxation moduli.
Equation (33) can be considered as a (q, t)-dependent generalization of Equation (2). As to
why we use here the γ-strain instead of the classical symmetrized ϵ-strain, see Section 5.3.

Since physical variables like ra, va, σαβ(r) are necessarily real, changing q to −q
always leads to complex conjugation of a q-dependent variable. Hence, for example,
σαβ(−q, t) = σ∗

αβ(q, t), where star (∗) means complex conjugate (cf Equation (30)). Also,
obviously, the tensor Ẽαβα′β′(r, t) must be real and for all isotropic achiral systems, it is an
isotropic tensor field [44], which (being a 4th-rank tensor) must be even in r:

Ẽαβα′β′(r, t) = Ẽαβα′β′(−r, t)

Hence, by virtue of Equation (29), the same must be true for its Fourier transform:

Eαβα′β′(q, t) = Eαβα′β′(−q, t) = E∗
αβα′β′(q, t) (34)

Thus, the tensor Eαβα′β′(q, t) is real; it is also obviously symmetric with respect to permuta-
tion of α and β (cf Equation (3)).

Note that for q = 0 and γ̇αβ(0, t′) = γαβδ(t) corresponding to instantaneous affine
deformation γαβ, Equation (33) becomes identical to Equation (14). It is also obvious that
the velocity v(q, t) is proportional to the ‘current’ (momentum density) J:

v(q, t) = J(q, t)/ρ0 (35)

where

J(q, t) = V−1
N

∑
i=1

mivi(t) exp
(
−iq · ri(t)

)
(36)

The current in the real space is

J(r, t) = ∑
i

mivi(t)δ(r − ri(t)) (37)

Our next step will be to accept Equation (33) (which is equivalent to Equation (27))
and to try and find a relation of its kernel E with the stress correlation functions. To this
end, consider a system which was at equilibrium at t < 0 (with no flow on the average)

v = 0 at t < 0
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but where the flow was generated at t ≥ 0 by a perturbative external force field such that
the force on particle i is

Fi(t) = mi A(ri(t), t)

where A = A(r, t) is a continuous vector field. Such forces Fi provide a coherent acceleration
A(r, t) of all particles. The external force density, therefore, is

f (r, t) = A(r, t)ρ(r, t) (38)

where

ρ(r, t) = ∑
i

miδ(r − ri(t)), ρ(q, t) =
1
V

N

∑
i=1

mi exp
(
−iq · ri(t)

)
(39)

is the microscopic mass density.
To simplify the argument, let us consider a very short perturbation,

A(r, t) = V(r)δ(t) (40)

where V(r) is the coherent velocity increment at position r. Just like the rapid deformation
considered in the previous section, this perturbation, v → v + V(r), must lead to a change
in the distribution P(Γ) in the phase space, from the canonical P0(Γ) to P0(Γ) + ∆P(Γ).
As before, this transformation conserves the phase-space measure and leads (for a given
initial microstate Γ) to the energy (H) increment

∆H = ∑
i

mivi · V(ri) =
∫

J(r, 0) · V(r)ddr (41)

Hence, the transformation leads to the following increment of a variable X at t > 0 (cf
Equation (25)):

∆X(t) =
1
T
⟨X(t)∆H⟩ = 1

T

∫ 〈
X(t)J(r, 0)

〉
· V(r)ddr (42)

where J(r, t) is defined in Equation (37). At this point, it is convenient to focus on just a
single wave-vector q setting

V(r) = V(q) exp(iq · r) (43)

and choosing X(t) = σαβ(q, t). (Note that V(q) here is a constant vector.) Then, Equation (41)
transforms to

∆H = V J
(
−q, 0

)
· V(q) (44)

while Equation (42) reduces to

∆σαβ(q, t) = CσJ
αβα′(q, t)Vα′(q) (45)

where
CσJ

αβα′(q, t) ≡ V
T

〈
σαβ(q, t + t′)Jα′(−q, t′)

〉
(46)

is the cross-correlation function of the stress and current, which does not depend on t′ since
time is uniform (and we consider a stationary well-equilibrated system). Note that

CσJ
αβα′(q, 0) = 0, ∆σαβ(q, 0) = 0 (47)

due to time reversibility.
The function CσJ

αβα′(q, t) is related to the generalized stress-correlation function (cf
Equation (22))

Cαβα′β′(q, t) ≡ V
T

〈
δσαβ(q, t + t′)δσα′β′(−q, t′)

〉
(48)
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To establish this relation, we employ the fundamental momentum equation [21,37]

∂Jα

∂t
=

∂σαβ

∂rβ

which reads in Fourier space:

∂Jα(q, t)
∂t

= iqβσαβ(q, t) (49)

Note that Equation (49) does not assume an ensemble averaging; it is valid microscopically
for each system. On using Equations (46) and (48), it leads to

∂

∂t
CσJ

αβα′(q, t) = iCαβα′β′(q, t)qβ′ (50)

It is now convenient to deal with time-dependent functions, f (t), in terms of their modified
Laplace transform (s-transform) [32,44]

f (s) ≡ s
∫ ∞

0−
f (t)e−stdt (51)

The transformed Equation (50) reads

CσJ
αβα′(q, s) =

i
s

Cαβα′β′(q, s)qβ′ (52)

so that Equation (45) leads to

∆σαβ(q, s) =
i
s

Cαβα′β′(q, s)qβ′Vα′(q) (53)

(Note that Equation (47) was taken into account here). Setting X(t) = Jα(q, t) in the general
Equation, we obtain the response

∆Jα(q, s) = C J J
αα′(q, s)Vα′(q) (54)

where
C J J

αα′(q, t) =
V
T

〈
Jα(q, t + t′)Jα′(−q, t′)

〉
(55)

is the current correlation function [21,57] whose s-transform, C J J
αα′(q, s), is related to the

stress correlation function [37]:

C J J
αα′(q, s) = ρ0δαα′ − Cαβα′β′(q, s)qβqβ′/s2 (56)

The above equation can be derived using the momentum equation just like Equation (52)
(with the only difference that C J J

αα′(q, t = 0) = ρ0δαα′ is nonzero since, as follows from
Equations (36), (40) and (43), ∆J(q, t = 0+) = ρ0V(q)).

The s-transform of Equation (33) reads:

∆σαβ(q, s) = Eαβα′β′(q, s)γα′β′(q, s) (57)

where
γα′β′(q, s) =

1
s

γ̇α′β′(q, s) =
i
s

1
ρ0

∆Jα′(q, s)qβ′ (58)
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since γ̇α′β′(q, t) = (i/ρ0)Jα′(q, t)qβ′ , as follows from Equations (32) and (35). Using Equa-
tions (53), (54) and (56)–(58) and taking into account that V(q) is an arbitrary vector,
we obtain

Cαβα′β′(q, s)qβ′ = Eαβα′β′(q, s)qβ′ −
Eαβµβ′(q, s)qβ′

ρ0s2 Cµδα′δ′(q, s)qδqδ′ (59)

The above equation provides the general FDT relation between the stress correlation
function C and the tensor E of the viscoelastic relaxation moduli. It can be simplified using
the naturally rotated coordinate frame (NRC) [37,44] with axis 1 parallel to wave-vector q:

Cαβγ1(q, s) = Eαβγ1(q, s)− q2

ρ0s2 Eαβµ1(q, s)Cµ1γ1(q, s) (60)

Equation (60) can be solved for Cαβγ1(q, s) with a given Eαβγ1(q, s) by first setting
β = 1 and then treating it as a standard matrix equation. Once Cα1γ1(q, s) is known,
Cαβγ1(q, s) can be obtained directly from Equation (60). As follows from the (αβ) symmetry
of the tensor Eαβγ1 (which is obviously also applicable to the tensor Cαβγ1 [37]) and their
invariance with respect to rotations around the main axis 1, there are only three independent
components (involved in Equation (60)) in each tensor, Eαβγ1(q, s) and Cαβγ1(q, s). For the
elasticity tensor, these components are

L(q, s) ≡ E1111, G(q, s) ≡ E2121 and M(q, s) ≡ E2211 (61)

known as the longitudinal, shear and mixed (transverse) modulus, respectively (cf ref. [37]).
(Another way to identify the three material functions, L, G and M, is expressed by
Equation (79) in the next section.) Note that the functions L, G and M are all real and
do not depend on the orientation of q (cf Equation (34) and ref. [37]). The relevant three
general relations derived from Equation (60) (for q ̸= 0) in the NRC are:

CG(q, s) ≡ C2121(q, s) =
G(q, s)

1 + G(q, s)q2/(ρ0s2)
(62)

CL(q, s) ≡ C1111(q, s) =
L(q, s)

1 + L(q, s)q2/(ρ0s2)
(63)

CM(q, s) ≡ C2211(q, s) =
M(q, s)

1 + L(q, s)q2/(ρ0s2)
(64)

These relations have already been stated in refs. [32,34,37,59]. The first Equation (62) is
rather well known [57,63,64]. Noteworthily, the above relations are valid both for liquid
systems (above the glass transition) and for amorphous solids (vitrified liquids), provided
that they are completely equilibrated thermodynamically. Still, they are also valid for
metastable glassy systems (trapped in a metabasin), provided that the lifetime of the
metastable state is much longer than 1/s [32].

The three basic relations (62)–(64) allow to obtain all the three GRMs, G(q, t), L(q, t)
and M(q, t), based on the stress-correlation functions. However, the reverse (to obtain all
components of Cαβα′β′(q, t) based on the moduli) is, strictly speaking, impossible. Never-
theless, it is still possible to approximately find the undefined components of Cαβα′β′ for
small q using the three material functions. This is performed in Section 6.4. Furthermore,
the basic Equation (59) is rederived and generalized in Section 6 using a different method
(the mesoscopic approach involving the concept of stress noise). This way, we both demon-
strate the consistency of our approaches and provide a framework for the approximate
hydrodynamic theory.

The main results obtained above are discussed in the next section.
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5. Preliminary Discussion
5.1. Applied Strain vs. External Force

Equation (33) can be converted to a rather standard definition of Eαβγδ

(
q, t

)
as a stress

response, ∆σ = ∆σ(r), to a small instantaneous q-dependent canonical strain γ applied to
the system at t = 0 under the condition of no flow at t > 0 (ie no further strain is allowed,
γ̇ = 0 at t > 0) indicated with the superscript ‘(r)’: [34,37]

∆σ
(r)
αβ

(
q, t

)
= Eαβγδ

(
q, t

)
γγδ(q) (65)

Here, γ(r) = γ(q)eiq·r is defined by the particle displacement field (a particle located at r
instantly moves to position r + u(r) at t = 0)

u(r) = u(q)eiq·r (66)

Note that q is fixed here, so u(q) and γ(q) are just a constant vector and tensor, respectively.
Obviously (cf Equation (1)),

γ(q) ≡ iu(q)q (67)

To make the whole transformation canonical, a particle velocity v must also be changed as [37]

v → v − v · γ (68)

The whole transformation, being canonical, conserves the phase space measure dΓ, and
leads to the energy increment (cf Equation (19))

∆H(Γ) = Vσαβ(−q)γαβ(q) (69)

Note that Equation (69) applies to each microstate Γ (the argument Γ being omitted in the
rhs). The above equation can be verified, for example, using the microscopic definition of
the q-dependent stress [57]

σαβ(q) =
1
V

∫
σαβ(r)e

−iq·r ddr =

=
1
V ∑

i>j
u′

ij(r)
rαrβ

iq · r
1
r

(
e−iq·ri − e−iq·rj

)
− 1

V ∑
i

miviαviβe−iq·ri (70)

where the first sum includes all disordered pairs i, j of interacting particles (with positions

ri, rj), uij(r) is their interaction energy, u′
ij(r) =

duij(r)
dr , r = rj − ri, and viα is component α

of the velocity of particle i. In the limit, q → 0, Equation (70) agrees with Equation (18).
The first Equation (20), which is generally valid for transformations conserving dΓ, reads

∆P(Γ)/P0(Γ) =
∆H(Γ)

T
(71)

Using it with Equation (69), we find that the perturbation of the system distribution in the
phase space (due to the deformation, Equation (66)) is proportional to σαβ(−q).

Furthermore, from Equations (69) and (71), we deduce that if no external force is
applied to the system at t > 0 (ie the internal flow is allowed at t > 0), the stress response
∆σ (to a weak instantaneous strain γ at t = 0) is provided by the stress correlation function
defined in Equation (48):

∆σαβ

(
q, t

)
= Cαβγδ

(
q, t

)
γγδ(q), t > 0 (72)
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(cf Equation (65)). The above equation was obtained in ref. [37] using slightly different
notations (see Equations (6) and (7) there).

Importantly, exactly the same perturbation of P(Γ) can be achieved by application of
an external force field, Equation (38), corresponding to the coherent acceleration field (cf
Equations (40) and (43)) [32]

A(r, t) = A(t)eiq·r, A(t) = u(q)δ̇(t) (73)

where δ̇(t) = dδ(t)/dt is the first derivative of Dirac’s δ:

δ̇(t) = lim
∆t→0

δ(t)− δ(t − ∆t)
∆t

It is instructive to consider a finite ∆t. Then, the effect of the external field can be viewed as
a combination of a push (on each particle) at t = 0 and the opposite push at t = ∆t:

A(r, t) = V(q)(δ(t)− δ(t − ∆t))eiq·r, V(q) ≡ u(q)/∆t (74)

The velocity increment due to the first push is ∆v =
(

u(q)/∆t
)

eiq·r, which leads to

additional displacement ∆r = (∆v)∆t = u(q)eiq·r before braking, which agrees with
Equation (66). Since without external forces, the dynamics is energy conserving, the energy
change, ∆H = ∆H(Γ), comes solely from the two pushes, Equation (74). By virtue of
Equation (44), the effect of the first push is

∆H1 = V J
(
−q, 0

)
· V(q)

while the second (negative) push must lead to

∆H2 = −V J
(
−q, ∆t

)
· V(q)

Taking into account both pushes, using Equation (49) and taking the limit ∆t → 0, we obtain

∆H = ∆H1 + ∆H2 = Vuα(q)iqβσαβ(−q) (75)

which coincides with Equation (69). Hence, the effects of an instantaneous deformation
(Equations (66) and (68)) and of an appropriate external acceleration (Equation (73)) for
any ensemble-averaged quantity are exactly the same. (Note, however, that the parti-
cle velocity perturbations, ∆v, are different in the two cases: Equation (68) implies that
∆vα = −ivβuβ(q)qαeiq·r, while from Equation (73), it follows that ∆vα = −ivβuα(q)qβeiq·r).
This applies in particular to the stress response. The definitions of the elastic moduli in terms
of the instantaneous canonical deformation and via the external force field (Equation (38))
are, therefore, totally equivalent. The latter definition can be applied also for an arbitrary
time-dependence of the external acceleration field, A(r, t) (defining the external force,
f (r, t), cf Equation (38)). Therefore, using the external force field as a perturbation appears
to be a more versatile approach than that of Section 4.

Noteworthily, the above results are consistent with Equations (53) and (54) of ref. [37],
providing another illustration of a close relationship between responses to a canonical
deformation and to an external force of the type defined in Equation (38).

5.2. The Reduced Elasticity Tensor

Equation (59) looks like a general relationship between the C- and E-tensors of the
forth rank. However, in fact it yields only three relations between the components of the
two tensors. The main reason for this is that there are only three independent components of
the elasticity tensor E for q ̸= 0, while some of its components simply cannot be determined
based on the standard definition (see Equation (65) or Equation (33)): the structure of the
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deformation tensor γαβ(q) = uα(q)qβ (cf Equation (67)) is such that Eαβγδ

(
q, t

)
always

comes in combination with qδ, ie as

Eαβγ

(
q, t

)
= Eαβγδ

(
q, t

)
qδ (76)

which is a third-rank tensor. That is why, for example, the component E2222 (in the NRC)
cannot be obtained. This is in contrast with the bulk case, q = 0, where all components
of the elasticity tensor Eαβγδ have physical significance and can be measured. It is natural

to expect that the tensor Eαβγδ

(
q, t

)
at q → 0 must coincide with the classical adiabatic

moduli of the whole system (because the diffusive transport of heat, whose rate scales as
q2, vanishes for q → 0) [32,58]:

Eαβγδ(q → 0, t) = E(A)
αβγδ(t)

On using Equations (24) and (61), we, therefore, find:

M(q, t) → MA(t), G(q, t) → G(t), L(q, t) → MA(t) + 2G(t) as q → 0 (77)

where the subscript ‘A’ (and the superscript ‘(A)’) stand for ‘adiabatic’ (which is irrelevant
for G, see text below Equation (24)).

Equation (65) can be written in terms of the tensor E as

∆σαβ

(
q, t

)
= iEαβγ

(
q, t

)
uγ(q) (78)

Since the displacement uγ can take any value (independently of q), the above equation

unambiguously define all components of the reduced elasticity tensor Eαβγ

(
q, t

)
. Recalling

the definitions of the material functions G, L, M (cf Equation (61)) and taking into account
that Eαβγ

(
q, t

)
= Eβαγ

(
q, t

)
is an isotropic tensor field, we find its unique expression in

terms of the GRMs (cp Equation (11) of ref. [37]):

Eαβγ(q, s) = G(q, s)
(
qαδβγ + qβδαγ

)
+ M(q, s)δαβqγ

+(L(q, s)− M(q, s)− 2G(q, s))qαqβqγ/q2 (79)

Furthermore, Equation (59) can be rewritten in terms of the third-rank tensors as

Cαβγ(q, s) = Eαβγ(q, s)−
qβ′

ρ0s2 Eαβα′(q, s)Cα′β′γ(q, s) (80)

where
Cαβγ(q, s) ≡ Cαβγδ(q, s)qδ (81)

Equation (80) allows to obtain all components of Cαβγ in terms of s-transforms of three VMFs
(relaxation moduli): longitudinal, L(q, t), mixed/transverse, M(q, t), and shear, G(q, t).

To sum up, the elasticity tensor Eαβγδ

(
q, t

)
at q ̸= 0 shows a sort of gauge invariance;

its components can be varied without changing the material properties of the system,
provided that the related (reduced) tensor Eαβγ

(
q, t

)
(cf Equation (76)) remains unchanged.

The inverse Fourier transform of iEαβγ

(
q, t

)
is

Ẽαβγ(r, t) =
∂

∂rδ
Ẽαβγδ(r, t) (82)
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Indeed, Equation (29) implies that

iEαβγ

(
q, t

)
=

∫
Ẽαβγ(r, t) exp

(
−iq · r

)
ddr

and, hence, Equation (78) in real space becomes

∆σαβ(r, t) =
∫

Ẽαβγ(r − r′, t)uγ(r′)ddr′ (83)

For systems with short-range interactions, we consider (with interaction range ∼ b, the
molecular size) the function Ẽαβγ(r, t) must be localized within r ≲ b at t = 0. For any
t > 0, the localization size increases in time, but remains finite. Hence, any integral over
the real space involving Ẽαβγ(r, t) must converge. In particular, we obtain (recalling that a
translation of the system as a whole does not lead to any stress):∫

Ẽαβγ(r, t)ddr = 0 (84)

Moreover, taking into account that for affine deformations, u is a linear function of r, we find∫
Ẽαβγ(r, t)rδddr = −Eαβγδ(q = 0, t) = −E(A)

αβγδ(t) (85)

ie the linear moments of Ẽαβγ(r, t) are related to the bulk relaxation moduli.

5.3. Why Asymmetric Strain?

Suppose the minor (γδ) symmetry of the elastic tensor holds: Eαβγδ

(
q, t

)
= Eαβδγ

(
q, t

)
.

Then, the classical form of response (to the generalized q-dependent canonical deformation)
involving symmetrized strain ϵαβ =

(
γαβ + γβα

)
/2,

∆σαβ(q, t) = Eαβγδ(q, t)ϵγδ (86)

must give exactly the same stress response, ∆σαβ

(
q, t

)
, as that given in Equation (65).

However, while the (γδ) symmetry of E is guaranteed for q = 0 (affine deformations), this
generally may not be the case for nonzero q. Noteworthily, if the elasticity tensor shows
a physically meaningful asymmetry, Eαβγδ − Eαβδγ ̸= 0, then Equation (65) would capture
the effect of this asymmetry, while Equation (86) would certainly miss it.

In fact, in terms of the classical affine deformation, a small shear along x with gradient
along y is equivalent to a similar shear along y with gradient along x simply because the
difference of these two shears is equivalent to a rotation of the system as a whole. The tensor
Eαβγδ must, therefore, be symmetric with respect to permutation of γ and δ. However,
such symmetry is not guaranteed in the case of q-dependent deformations, where (for q,
say, parallel to the x-axis) a shear along y is possible, while a shear along x is not. Hence,
the xy and yx shears at q ̸= 0 can not be physically equivalent any more, and the strain
symmetrization does not make sense.

The definition of the E-tensor with Equation (65) (and strain with Equation (1)) is,
therefore, more general, and that is why it is used in the present paper.

6. Alternative Derivation of the C-E Relations Using the Concept of Stress Noise
6.1. Stress Noise and Flow-Induced Deterministic Stress

Following ref. [37], we split the instantaneous stress into two parts:

σαβ(q, t) = σn
αβ(q, t) + σd

αβ(q, t) (87)
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where σd is the flow-induced deterministic stress defined by the strain history (as in
Equation (33)), while σn is the ‘stress noise’ collecting all contributions to stress other than
those caused by the strain history. The noise term σn is omnipresent; it can be considered
as a genuine stress fluctuation inherent in a system (or a system element) kept at zero
strain. Such ‘random’ stress (σn) can be present even in an ideal gas due to temperature
fluctuations, but can also stem from (possibly frozen) structural fluctuations (of local
molecular packing) in the case of liquids and amorphous solids.

6.2. Deterministic and Noise Stresses with No Flow

Let us consider an ensemble of systems where the flow is arrested at all times. In what
follows, we focus on a given (arbitrarily selected) wave-vector q. So, the condition to be
satisfied is ‘no flow’ at wave-vector q:

J(q, t) = 0 (88)

How to impose this condition given that the stress noise always tends to generate a fluctuative
flow? The natural solution is to apply an appropriate external force field to the system (cf
Equation (38)). The relevant external force must be harmonic in space:

Fi(t) = mi A(t)eiq·ri(t) + c.c. (89)

where Fi is applied to particle i and c.c. stands for complex conjugate. (Note that the c.c. term
is generally needed to keep the force real. It was omitted in Sections 4 and 5 dealing with lin-
ear response since linearity implies additivity allowing to consider complex perturbations).
The function A(t) provides a coherent ‘external’ acceleration of all particles. It must be
chosen in such a way as to suppress the current J(q, t) in order to satisfy the condition (88)
(cf Equation (36)) and thus suppressing also the strain rate (cf Equations (32) and (35)).
Importantly, in this case, the total energy stays conserved in spite of the external force
field, Equation (89).

The no-flow condition (88) does not imply that the deterministic stress σd is absent,
rather it ensures that σd is time-independent for each system in the ensemble. In fact, the
condition J(q, t) = 0 means (by virtue of mass conservation) that the mass density field at
wave-vector q is frozen: ρ(q, t) = ρ(q) (cf Equation (39)). This frozen density fluctuation
may be considered as having been created long ago as a result of a longitudinal deformation
γαβ(q) = −ρ(q)q̂α q̂β/ρ0 at t → −∞, where q̂α = qα/q is a unit vector in the direction of q.
(Naturally, one has to demand that just before the constraint, Equation (88), was imposed at
t = −∞, the ensemble of systems was fully equilibrated to reach the canonical distribution
in the phase space. Hence, the distribution of ρ(q), being frozen, must remain canonical at
all times). Such an initial deformation leads to a time-independent deterministic stress (for
a given system)

σd
αβ(q, t) = σd

αβ(q) = −Ee
αβγδ q̂γ q̂δρ(q)/ρ0 (90)

where Ee is the tensor of perfectly static (equilibrium) elastic moduli. As we consider
a conceptually liquid regime (where all relaxation times are finite, albeit some of them may
be extremely long), the equilibrium shear modulus (Ge) is zero, and (cf Equation (79))

Ee
αβγδ(q)q̂δ = (Le(q)− Me(q))q̂α q̂β q̂γ + Me(q)δαβ q̂γ (91)

where Le(q) is the equilibrium longitudinal modulus (which is close to the bulk compression
modulus in the liquid regime at low q), and Me(q) is the analogous mixed (transverse)
modulus. The above equations lead to

σd
αβ(q) = −καβρ(q)/ρ0 (92)

where
καβ ≡ (Le(q)− Me(q))q̂α q̂β + Me(q)δαβ (93)
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Note that since the time-averaged stress noise, σn, is always zero, σd
αβ(q) can also be

interpreted as the time-averaged total stress, σαβ(q, t), for a given system with restricted
dynamics, where Equation (88) is imposed for any t. In the above equation, we allow for
a q-dependence of the equilibrium elastic moduli, although it is weak at low q, so that
Le(q) ≃ Le(0), and Me(q) ≃ Me(0) (note also that Me(0) = Le(0) and they both are equal
to the equilibrium (static) bulk compression modulus since Ge = 0 [37]). Therefore, taking
also into account that all the material functions are even in q,

Le(q)− Me(q) ∝ q2 (94)

The time-independent correlation function of σd,

Cd(r)
αβγδ(q) ≡

V
T

〈
σd

αβ(q)σ
d
γδ(−q)

〉
r

(95)

is then simply defined by the density fluctuation and, hence, eventually by the equilibrium
elastic moduli (the superscript ‘(r)’ and subscript ‘r’ mean with restricted dynamics). Using
the generalized compressibility equation [57]〈∣∣∣ρ(q)∣∣∣2〉/ρ2

0 = T/(VLe(q))

we then find that
Cd(r)

αβγδ(q) = καβκγδ/Le(q) (96)

because
〈

ρ(q)ρ(−q)
〉

r
=

〈
ρ(q)ρ(−q)

〉
since density fluctuations (with restricted dynam-

ics) are frozen in at their value at t → −∞ when the system was fully equilibrated before
the no-flow condition (88) was turned on.

By the concept introduced in ref. [37], the total stress is always a sum of the de-
terministic stress and noise, Equation (87), including the case of restricted dynamics,
Equation (88). In the latter case σd is constant (independent of time, cf Equation (90)),
while the time-averaged stress noise, σn

αβ(q, t), must vanish for each system (by virtue of its
stochastic nature):

σn
αβ(q, t) = 0

This means that σn and σd are never correlated:〈
σd

αβ(q)σ
n
γδ(−q, t)

〉
≡ 0 (97)

and that the stress–noise correlation function

Cn
αβγδ(q, t) ≡ V

T

〈
σn

αβ(q, t + t′)σn
γδ(−q, t′)

〉
(98)

must vanish at t → ∞. As a result, the correlation function of the total stress, σαβ(q, t) =
σd

αβ(q, t) + σn
αβ(q, t),

C(r)
αβγδ(q, t) ≡ V

T

〈
σαβ(q, t + t′)σγδ(−q, t′)

〉
r

(99)

where ‘r’ indicates the restricted dynamics, becomes a sum of the deterministic (cf Equation (96))
and noise terms:

C(r)
αβγδ(q, t) = Cd(r)

αβγδ(q) + Cn
αβγδ(q, t)
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On the other hand, the total stress correlation function C(r) can be related to the stress-to-
strain response using FDT just as is done in Section 5.1, so that Equation (72) becomes

∆σαβ

(
q, t

)
= C(r)

αβγδ

(
q, t

)
γγδ(q), t > 0 (100)

Moreover, as the restricted dynamics do not allow for any further deformation (at wave-
vector q) for t > 0, Equation (65) must be valid together with Equation (100):

∆σαβ

(
q, t

)
= Eαβγδ

(
q, t

)
γγδ(q), t > 0 (101)

The above two equations lead to

C(r)
αβγδ

(
q, t

)
qδ = Eαβγδ

(
q, t

)
qδ, t > 0 (102)

Equation (102), together with Equations (76) and (79), allow to obtain all the three mate-
rial functions, G(q, t), L(q, t), M(q, t) from the stress correlation function C(r). Moreover,
using simple properties of the stress-correlation functions stated above, we also obtain
from Equation (102):

Cd(r)
αβγδ

(
q
)

qδ = Ee
αβγδ

(
q
)

qδ (103)

(as follows from Equations (91), (93) and (96)) and

Cn
αβγδ

(
q, t

)
qδ =

[
Eαβγδ

(
q, |t|

)
− Ee

αβγδ

(
q
)]

qδ (104)

Note that |t| in the rhs renders the above equation valid also for t < 0 due to time-
reversibility of the restricted dynamics. A relation equivalent to Equation (104) was es-
tablished (in a different form and using a different argument unrelated to the restricted
dynamics) in ref. [37] (see Equation (51) there).

It is important that Equation (104) is general—the correlation properties of stress
noise are the same no matter if external force is applied or not. Using Equation (104),
together with the momentum equation for the classical (unconstrained) dynamics, one can
(following the approach developed in ref. [37]) derive again Equation (59) for the stress
correlation tensor and the three exact relations for its components, Equations (62)–(64). It
shows that the concept of stress noise is consistent with the FDT-based approach developed
in Section 4.

In the general case, Equation (59) can serve as a basis of the method to obtain all elastic
moduli E in terms of stress correlation functions. Furthermore, due to Equation (102), this
task become trivial with the constrained dynamics once C(r) is known. How about the
reverse task: to obtain all components of C based on material functions? It may seem impos-
sible since C generally involves five unknown invariant scalar functions (cf Equation (A16)
in Appendix B), while E is characterized by only three well-defined functions, which nat-
urally define just three independent components of the C-tensor (cf Equations (62)–(64)).
Nevertheless, below (in Section 6.4), we consider an approximate way to obtain the remain-
ing two equations in order to completely define the stress correlation tensor field C.

The fact that only three independent components of the E-tensor can be defined for
q > 0 based on the stress-to-strain response, Equation (65) (cf Section 5.2), means that
we have some freedom in defining the other components of the E-tensor. The situation
here is similar to the classical electrodynamics, where the electric and magnetic fields are
measurable and are, therefore, unambiguously defined for a given system, while the scalar
and vector (A) potentials (whose derivatives do define the physical fields) are not uniquely
defined themselves, so there is a certain freedom of choosing A, which is known as gauge
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invariance. In this regard, an appropriate definition of the whole E-tensor can be based on
a straightforward generalization of Equations (102)–(104) by postulating that

Eαβγδ

(
q, t

)
≡ C(r)

αβγδ

(
q, t

)
= Cn

αβγδ

(
q, t

)
+ Ee

αβγδ(q) (105)

where
Ee

αβγδ(q) ≡ Cd(r)
αβγδ(q) = καβκγδ/Le(q) (106)

(cf Equation (96)) and καβ is defined in Equation (93). Obviously, this definition is consistent
with Equations (102)–(104), and, therefore, it provides correct values of already defined
components (like E2121 = G(q, t)). Moreover, Eαβγδ according to Equation (105) correctly
tends to an isotropic tensor in the limit q → 0 (cf Equation (7)) since (i) Cn

αβγδ always shows
a finite correlation range and, therefore, must tend to an isotropic tensor for q → 0 in Fourier
space, and (ii) the factor καβ becomes isotropic as well, καβ → Meδαβ (cf Equation (93))
as Le(q) − Me(q) → 0 at q → 0 (cf Equation (94)). Recall that all components of the
E-tensor become measurable at q → 0 and its general definition given above is necessarily
correct in this limit (cf Equation (23) and note that C = C(r) at q = 0). It is also obvious
that Eαβγδ defined in Equation (105) must show all minor and major symmetries with
respect to index permutations just like the bulk elasticity tensor (cf Equation (7)) because
Equation (105) identifies Eαβγδ with the stress correlation function C(r) that does show
all these symmetries for equilibrium isotropic systems (cf ref. [37]) since the restricted
dynamics are time-reversible just like the classical dynamics.

6.3. No Flow at T < 0: A Route to New Relations

For the purpose of argument, it is now convenient to consider the system where the
flow at wave-vector q is arrested at t < 0 (cf Equation (88)), but this constraint is released
at t > 0. In this case, σd = const at t < 0. After the constraint is released (external force
suppressed at t > 0), the system rapidly equilibrates to arrive at the genuine equilibrium
distribution (with proper fluctuations of the current J). It may seem, therefore, that at short
times, t > 0, the stress correlation function defined as

Cr0
αβα′β′(q, t) ≡ V

T

〈
σαβ(q, t)σα′β′(−q, 0)

〉
r0

(107)

with the constraint, J(q, t) = 0 at t < 0 (indicated by the superscript ‘r0’) may be different
from the genuine equilibrium correlation function of the total stress σ (obtained with the
classical unconstrained dynamics)

Cαβα′β′(q, t) ≡ V
T

〈
σαβ(q, t + t′)σα′β′(−q, t′)

〉
(108)

The latter function does not depend on t′ since the equilibrium state is obviously stationary.
We show, however, that in fact

Cr0
αβα′β′(q, t) = Cαβα′β′(q, t), t > 0 (109)

(see Appendix A).
The total stress is always a sum of the deterministic stress σd and the noise, σn,

Equation (87). The deterministic stress at t = 0, σd
αβ(q, 0), is never correlated with σn:〈

σd
αβ(q, 0)σn

γδ(−q, t)
〉
= 0 (110)

Indeed, for t ≤ 0, the above equation simply follows from the results of the previous
section (Equation (97)) since the release of the constraint (Equation (88)) at t = 0 does not
affect the system dynamics at t < 0. On the other hand, the validity of Equation (110) at
t > 0 is hinged on the stochastic nature of the noise, σn

αβ(q, t) (its independence of a weak
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flow in the linear regime). Recall now that the stress noise is omnipresent (both at t < 0
and t > 0) and its autocorrelation function is always related to the elasticity tensor, cf
Equations (105) and (106):

Cn
αβγδ

(
q, t

)
= Eαβγδ

(
q, |t|

)
− Ee

αβγδ(q) (111)

The autocorrelation function of the deterministic stress at t = 0, σd
αβ(q, 0), is defined by the

rhs of Equation (96) (cf also Equations (92) and (93)) leading to (on recalling Equation (106)):

(V/T)
〈

σd
αβ(q, 0)σd

γδ(−q, 0)
〉
= Ee

αβγδ(q) (112)

Turning to σd
αβ(q, t) at t > 0, based on the Boltzmann superposition principle, it must

be a sum of σd
αβ(q, t = 0) and the contributions due to the flow at t > 0. Thus, the total

stress at t > 0 is

σαβ(q, t) = σn
αβ(q, t) + σd

αβ(q, 0) +
∫ t

0
Eαβγδ(q, t − t′)ivγ(q, t′)qδdt′ (113)

where v = J/ρ0 is the flow velocity (J is the mass current), and ivγ(q, t′)qδ is the relevant
strain rate at t′ corresponding to ∂vγ/∂rδ (cf Equation (33)). Note that the last term in
Equation (113) is the time-dependent part of the deterministic stress, which is defined by
the flow field history and the generalized elasticity tensor (cf Equations (27) and (33)).

Doing the s-transform (cf Equation (51)) of the above relation and taking into account
the equation of motion (cf Equation (49))

∂vγ

∂t
=

iqγ′

ρ0
σγγ′

we find
σαβ(q, s) = σn

αβ(q, s) + σd
αβ(q, t = 0)−

qδqγ′

ρ0s2 Eαβγδ(q, s)σγγ′(q, s) (114)

Note that the term
iqδ

s
Eαβγδ(q, s)vγ(q, t = 0)

is omitted in the above equation since vγ(q, t = 0) = 0 by preparation of the system. Next,
multiplying Equation (114) with σα′β′(−q, t = 0) = σd

α′β′(−q, t = 0) + σn
α′β′(−q, t = 0), we

obtain using Equations (109)–(112):

Cαβα′β′(q, s) = Eαβα′β′(q, s)−
qδqγ′

ρ0s2 Eαβγδ(q, s)Cγγ′α′β′(q, s) (115)

The above equation can be compared with Equation (45) of ref. [65]. The latter paper
deals with overdamped systems of identical particles (with concentration n), where the
friction forces overwhelm the inertia. In the overdamped regime, the term ρ0s2 must be
replaced with ζ0ns. With this and other trivial reductions, Equation (115) becomes similar
in structure to Equation (45) of ref. [65], suggesting that the irreducible memory kernel
Mαβγδ (defined in Equation (22) of ref. [65]) is likely to correspond to the elasticity tensor
Eαβγδ. However, any rigorous proof of such a correspondence is missing at present (not to
mention a significant effect of the overdamped dynamics on the relaxation moduli). This
issue could be an interesting point for further study.

Noteworthily, the FDT relation, Equation (59), simply comes from Equation (115)
after multiplying it by qβ′ . We tend to view Equation (115) as exact, just like Equation (59).
Equation (115) allows to predict all components of the correlation tensor C based on the elas-
ticity tensor E. First, obviously, Equation (115) leads to the already stated relations (62)–(64)
defining three independent components of the C-tensor (CG, CL, CM) in terms of measur-
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able material functions (G, L, M) since these relations follow from Equation (59), which, in
turn, follows from Equation (115). Second, Equation (115) also defines the remaining two
independent components CN and CP (see Appendix B):

CN(q, s) = N(q, s)− M(q, s)2

ρ0s2/q2 + L(q, s)
, CP(q, s) = P(q, s)− M(q, s)2

ρ0s2/q2 + L(q, s)
(116)

where N(q, s) = E2222(q, s), P(q, s) = E2233(q, s) using NRC.
We emphasize that the new functions N(q, s) and P(q, s) cannot be ‘measured’ directly

based on the stress-to-strain response. Of course, they can be obtained (for example, in
simulations) using their relation to the correlation function of stress noise, Equation (105).
However, it would be better to try and obtain as much as possible from the measurable
quantities (in particular, the G, L and M functions). This is performed in the next section,
where we derive approximate versions of Equation (116) involving only the latter three
material functions.

Noteworthily, in ergodic systems, all the stress correlation functions must vanish at
t → ∞; hence, in particular, CN(q, s → 0) = 0, CP(q, s → 0) = 0, leading to

N(q, s)L(q, s) = M(q, s)2, N(q, s) = P(q, s), s → 0

The above equations are valid in the liquid state (T > Tg). However, they are not valid any
more in the glassy regime (T < Tg), unless we treat the condition s → 0 literally (ie allowing
for astronomical times t). In the glassy case, the transiently frozen stresses, σ22(q), σ33(q),
σ23(q), are generally present in the system for the experimentally accessible time-scales (cf
ref. [32]). It is noteworthy, however, that other stress components, like σ11 and σ12 = σ21,
never include any frozen part (see Discussion point 9 in ref. [32]), which is in line with
the fact that the correlation functions CG, CL and CM are all tending to 0 at low s even in
glassy systems (cf Equations (62)–(64)). By contrast, the correlation functions involving
only the ‘transverse’ stress components (σ22(q), σ33(q), σ23(q)) are generally nonzero in
vitrified (amorphous) systems:

CN(q, s) > 0, CP(q, s) ̸= 0, C2323(q, s) > 0, s ≪ 1/τs

where the ‘2323’ component refers to the NRC, and s ≪ 1/τs actually means the glassy
plateau regime. The last condition also implies that CN(q, s) > CP(q, s), as follows from the
relation 2C2323(q, s) = CN(q, s)− CP(q, s) = N(q, s)− P(q, s), which, in turn, comes from
the general ‘isotropy’ relation, Equation (A16). The above inequalities reflect the presence
of frozen stress fields in amorphous systems [44].

6.4. Approximate Relations between C and E Tensors

Let us consider the low-q regime, qb ≪ 1. At the end of Section 6.2, we already argued
that Eαβγδ(q, t) must become isotropic at q → 0. To expand on this point now, let us turn to
the last term, Ee in Equation (105) defining Eαβγδ(q, t). According to Equation (106)

Ee
αβγδ(q) = e0(q)δαβδγδ + e2(q)

(
qαqβδγδ + qγqδδαβ

)
+ e4(q)qαqβqγqδ (117)

where

e0(q) =
Me(q)2

Le(q)
, e2(q) =

Le(q)− Me(q)
q2

Me(q)
Le(q)

, e4(q) =
(Le(q)− Me(q))

2

q4Le(q)
(118)

The equilibrium (perfectly static) material functions Le(q), Me(q) must be continuous and
analytical (at least near q = 0) and, moreover, equal at q = 0: Le(0) = Me(0) since a liquid
does not show any shear elasticity in the static regime (Ge(q) = 0); in other words, its static
stress response must be isotropic. As the characteristic length-scale of static elasticity is
expected to be structural in nature (cf the paragraph below Equation (123)), it should be
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typically defined by the molecular size ∼ b and/or the interaction range (assumed to be
similar). Taking also into account that the material functions are even in q, we, therefore,
expect that (cf Equation (94))

Le(q)− Me(q) ∼ Le(0)(qb)2, qb ≪ 1

The above relation shows that all the prefactor functions (e0, e2, e4) in Equation (117) are
continuous and finite at q = 0 and, hence, Ee

αβγδ(q) is analytical as a function of vector q.
The main isotropic e0-term in Equation (117) is ∼ Le(0), while the other two terms provide
small corrections (for qb ≪ 1): e2-term is ∝ (qb)2, e4-term is ∝ (qb)4.

A similar argument works for the stress noise correlation tensor Cn
αβγδ

(
q, t

)
involved

in Equation (105). Considering the stress noise σn, it is convenient to assume that the flow
is arrested (cf Equation (88)), so that the elements of the system are not deformed. Then,
variations of σn are primarily due to structural (molecular packing) fluctuations in the
system, which are expected to be short-range (with correlation length ∼ b). In this case, the
correlation tensor Cn

αβγδ

(
q, t

)
would be nearly q-independent and, therefore, isotropic for

qb ≪ 1. There is, however, one complication—apart from structural fluctuations, σn is also
affected by fluctuations of conserved fields, like energy density and composition (in the
widely encountered case of multi-component polydisperse systems) [32,66]. Importantly,
these fields are scalar and, therefore, they mainly contribute to the isotropic part of σn

αβ

corresponding to pressure: δσn
αβ = −(δp)δαβ, where δp is the pressure fluctuation due

to temperature or composition variations. The eventual contribution of scalar fields to
Cn

αβγδ

(
q, t

)
is, therefore, also mainly isotropic (proportional to δαβδγδ). Anisotropic con-

tributions come from the gradients of the conserved fields, which are small for qb ≪ 1.
The resultant structure of the correlation tensor Cn

αβγδ

(
q, t

)
(and of the elasticity tensor

Eαβγδ(q, t) in view of Equation (105)) must, therefore, be similar to the rhs of Equation (117)
involving the main isotropic term plus some quadratic and quartic terms of order of
(qb)2 and (qb)4, respectively. Neglecting the latter terms (depending on the wave-vector
orientation q̂), we arrive to the main approximation for the E-tensor at small qb:

Eαβγδ(q, t) ≃ aE(q, t)δαβδγδ + bE(q, t)
(
δαγδβδ + δαδδβγ

)
, qb ≪ 1 (119)

(cf Equation (7)), where aE and bE must be identified as

aE(q, t) = L(q, t)− 2G(q, t), bE(q, t) = G(q, t) (120)

in order to provide exact results for the shear and longitudinal moduli, E2121(q, t) = G(q, t)
(note that G(q, t) ≃ G(t), the bulk shear relaxation modulus) and E1111(q, t) = L(q, t) using
the NRC, cf Equation (61). Generally Equation (119) is valid up to a correction of O(q2b2).
In particular, for the transverse modulus M, it gives:

M(q, t) = L(q, t)− 2G(q, t) +O(q2b2) (121)

as already noted in ref. [32] (see also ref. [37]). Importantly, Equation (119) also yields the
remaining two independent functions N and P (see text below Equation (116)):

N(q, t) = L(q, t) +O(q2b2), P(q, t) = M(q, t) +O(q2b2) (122)

All the components of the correlation tensor C can then be obtained based on G(q, t) and
L(q, t) using Equations (62)–(64) and Equations (116). In particular, the above approxima-
tion, N(q, t) ≃ L(q, t), leads to

CN(q, s) ≃ L(q, s)− M(q, s)2

ρ0s2/q2 + L(q, s)
(123)
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which agrees with Equation (23) of ref. [37] (an equivalent equation was also stated as
Equation (75) in ref. [32]). Note that Equation (23) was derived in ref. [37] for monodisperse
systems with infinite thermal conductivity. However, as demonstrated above, it remains
valid also for polydisperse systems with any thermal conductivity. Equation (123) was
verified at qb ≲ 0.5 in simulation studies on two-dimensional (2D) systems of polydisperse
LJ particles [32,44]. In particular, Figures 3 and 4 of ref. [44] show that well below the
glass transition temperature (Tg), the stress correlation function CN(q, t) is nearly constant
for qb ≲ 0.5 at long times t. In this regime, it is independent of q and t, CN ≈ L −
M2/L ≈ 4G(1 − G/L), and is close to the Young’s modulus eY = 4G(1 − G/L) for glassy
2D systems, cf refs. [37,44] (here, G, L and M are the long-time plateau values of the
bulk moduli).

In a similar way, we obtain

CP(q, s) ≃ M(q, s)− M(q, s)2

ρ0s2/q2 + L(q, s)
(124)

Note that Equation (124) is useful for three-dimensional systems, but is irrelevant in two
dimensions, where CP(q, s) = C2233(q, s) is not defined (cf Equation (A19)).

Noteworthily, at q → 0 and t → 0, the function CN(q, t) is related to the affine moduli,
G(0) and M(0):

CN(0, 0) = M(0) + 2G(0)

as follows from Equations (121), (122) and (116), which also lead to CN(0, 0) = N(0, 0) =
L(0, 0) = CL(0, 0).

At long t, the response of conserved fields to a local strain must relax; hence, the
q-dependence of aE and bE at t → ∞ should come solely from structural correlations
(of molecular packing), which are short-range in liquids and glasses. As a result, the
q-dependence of the elastic response (cf Equation (119)) can be neglected for qb ≪ 1, ie the
elastic response is expected to be essentially local at t → ∞. This conclusion supports the
argument presented below Equation (118).

Is it possible to improve on Equation (119) for the generalized elasticity tensor by
obtaining, for example, the quadratic correction ∼ O(q2b2)? This problem is tackled below,
but only for 2D systems (d = 2). In this case, the general expression for Eαβγδ(q, t) is given
in Equation (A21) (see Appendix B). As discussed above, the terms depending on the
wave-vector orientation q̂ must be small there:

cE(q, t) ∝ (qb)2, eE(q, t) ∝ (qb)4

Therefore, in the quadratic approximation, we can neglect the last eE-term:

Eαβγδ(q, t) ≃ aE(q, t)δαβδγδ + bE(q, t)
(
δαγδβδ + δαδδβγ

)
+cE(q, t)

(
q̂α q̂βδγδ + q̂γ q̂δδαβ

)
Next, we can express the unknown functions aE, bE and cE in terms of the measurable
material functions G, L and M using Equations (61):

aE(q, t) = M(q, t)− ∆L(q, t), bE(q, t) = G(q, t), cE(q, t) = ∆L(q, t) (125)

where
∆L(q, t) ≡ L(q, t)− M(q, t)− 2G(q, t) (126)

Therefore, we obtain
N(q, t) ≃ L(q, t)− 2∆L(q, t) (127)
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which must be valid up to the ‘quartic’ correction ∼ O(q4b4). Equation (127) is in agree-
ment with the first Equation (122) (improving it) since ∆L(q, t) ∝ (qb)2, as follows from
Equations (121) and (126). Interestingly, Equation (127) is also in agreement with equation

Ne(q) =
Me(q)2

Le(q)
(128)

coming from Equations (117) and (118). Indeed, using Equations (126) and (127), tak-
ing into account that Ge(q) = G(q, t → ∞) = 0 and neglecting the O(q4b4) correction,
we obtainNe(q) = N(q, t → ∞) = Le(q) − 2(Le(q)− Me(q)) = 2Me(q) − Le(q), which
coincides (to O(q4b4)) with Equation (128) since Le(q)− Me(q) ∝ (qb)2 (cf Equation (121)).

Noteworthily, Equation (128) can be written as

Ne(q) = Le(q)− 2∆Le(q) + (∆Le(q))
2/Le(q) (129)

where ∆Le(q) is defined by Equation (126) for t → ∞. The last term in the above
equation comes from the quartic term in Equation (117), which is proportional to q4

since generally ∆L(q, t) ∝ q2. Generalizing Equation (129), we propose the following
heuristic approximation

N(q, s) ≃ L(q, s)− 2∆L(q, s) +
(∆L(q, s))2

L(q, s)
≡ [M(q, s) + 2G(q, s)]2

L(q, s)
(130)

which is supposed to include not only the quadratic (q2) but also the quartic correction
(∝ q4) to the main approximation, Equation (122). The correlation function CN(q, t) can
then be obtained more precisely using the first Equation (116), with N defined either in
Equation (127) or Equation (130).

To verify the above predictions for N(q, t), we performed a simple test for t = 0
(corresponding to s → ∞) using simulation data for a 2D system of polydisperse LJ
particles. This glass-forming system involving a weak polydispersity of the particle size
(rather than mass) has been described elsewhere [32,58,60,66]. For s → ∞, the basic
Equation (115) gives:

Cαβα′β′(q, t = 0) = Eαβα′β′(q, t = 0)

leading to (the time argument t = 0 is omitted):

G(q) = CG(q), L(q) = CL(q), M(q) = CM(q), N(q) = CN(q),

(Note that G, L, M here are the adiabatic moduli corresponding to the instantaneous stress
response to an appropriate strain.) Thus, all the elastic material functions (G(q),. . . , N(q))
can be obtained directly based on the stress-correlation data from simulations. Figure 1
shows a comparison of the simulated N(q) with its approximations: 0th, Na0(q) based on
N(q) = L(q), cf Equation (122); 1st, Na1(q) based on Equation (127); and second, Na2(q), from
Equation (130). One can observe that the 0th approximation, Na0, works well at qb < 0.5, while
Na1(q) and Na2(q) show excellent agreement with the simulated N(q) for qb < 1.5 and qb < 3,
respectively (see Figure 1a). Thus, the second approximation allows to widen the q-region of
applicability of the theory by a factor of 6. Moreover, the second approximation is also reason-
able for larger q (qb > 3), where it reproduces the peak of N(q) at qb ∼ 6 in a qualitatively
correct fashion, while the other two approximations show a qualitatively incorrect behavior at
qb ≳ 6 with Na0(q), showing a minimum instead of a peak there (cf Figure 1b).
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Figure 1. The wave-number (q) dependence of the instantaneous (adiabatic) elastic modulus
N(q) ≡ N(q, t = 0), black curve, and its three approximations based on the shear (G(q)), longi-
tudinal (L(q)) and transverse (M(q)) elastic moduli: Na0(q), Equation (122) (red curve), Na1(q),
Equation (127) (blue curve), and Na2(q), Equation (130) (green curve). All the moduli (N, G, L,
M) are based on the stress correlation functions CN(q), CG(q), ... obtained by MD simulations for
a polydisperse system of LJ particles [32,58,60,66]. Panel (a) highlights the range 0 < q < 5, while
panel (b) shows a wider range, 0 < q < 10, including the main structural peak at q ≈ 6.3. Temperature
T = 0.4 (in LJ energy units) and the mean particle size b = 1.
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7. Summary

1. In the present paper, we established and discussed a number of general relations
between the 4th-rank tensor fields of stress correlations, Cαβα′β′(q, t), cf Equation (48), and
the tensor of generalized (viscoelastic) relaxation moduli, Eαβα′β′(q, t), cf Equation (33).
The C-tensor field is generally characterized by, at most, five independent components
(invariant correlation functions, see Equation (A16) in Appendix B) as long as the minor and
major symmetries of Cαβα′β′ are taken into account (cf Equations (A17)) [37]. By contrast, the
E-tensor involves only three material functions, the generalized relaxation moduli (GRMs),
G(q, t), L(q, t) and M(q, t) (cf Equations (61) and (79)), that can be measured according
to their definition via stress response to a weak strain as given in Equation (33). It is,
therefore, not surprising that there exist only three exact relationships (Equations (62)–(64))
linking the independent components of the C-tensor with the three material functions
(since obviously five independent correlation functions cannot be expressed using only
three material functions). Noteworthily, all the three GRMs can be obtained based on the
correlation tensor using Equations (62)–(64) (which follow from the exact tensorial relation,
Equation (59)). These three equations are rigorously derived in Section 4 based on the
FDT. Equations (62) and (63) have been established before (cf refs. [34,37,57,59,63,64]. The
last relation, Equation (64), was presented in ref. [37] and verified numerically in ref. [32].
It is also noteworthy that Equations (62) and (63) have been recently derived using the
Zwanzig–Mori formalism [35].

2. In the case of affine deformations, the strain tensor is normally defined as the sym-
metric part of the tensor γαβ of particle displacement gradients (cf Equations (1) and (4)).
However, in the more general case of inhomogeneous deformations (which can be con-
sidered as a superposition of harmonic waves), the nonsymmetrized definition of strain,
Equation (1), is more appropriate, as argued in Section 5.3.

3. We considered two definitions of the viscoelastic memory functions (VMFs): in
terms of the stress response to a harmonic canonical strain (Equations (66)–(68)) and as a
response to a coherent external acceleration field (Equations (73) and (38)). Importantly, it
is demonstrated (see Section 5.1) that the two definitions lead to exactly the same response
functions (G(q, t), L(q, t), M(q, t)). Remarkably, the approach involving the external
force, Equation (38), appears to be more general than imposing a q-dependent canonical
deformation: the latter can be reproduced with a singularity time-dependence of the
external field, Equation (73).

4. It is also remarkable that the stress response to an arbitrary prescribed deformation
of an amorphous system can be completely defined in terms of the reduced elasticity tensor,
Eαβγ(q, t), introduced in Section 5.2 (cf Equation (76)). All components of this tensor can
be obtained based on just three GRMs (= VMFs), G(q, t), L(q, t), M(q, t), cf Equation (79).
The isotropic nature of the system dictates that these material functions are real and do
not depend on the orientation of q (cf Equations (34), (76) and (79)). Moreover, as we
argue in Section 6.4, these functions must be generally continuous and, moreover, analytical
functions of q2. At t = 0, the elastic response is local. It is also likely that the same is virtually
true at t → ∞ (cf Section 6.4), so that, for example, L(q, t → ∞) ≃ L(0, t → ∞) = Me + 2Ge
at qb ≪ 1 (with relative error ∼ q2b2, where b is the particle interaction range). Importantly,
at low q (qb ≪ 1), the three GRMs are related for any time t (cf Equation (121) and
refs. [32,37]).

5. As mentioned above, in this study, we consider the elasticity tensor in terms of
the stress response to a prescribed small strain or to an external force perturbation (in the
latter case, the force generally depends on the particle position). Noteworthily, considering
another type of perturbation by changing the system Hamiltonian from H0 to H = H0 +∆H
with ∆H = −ϵαβ(t)σαβ(q, t), involving a prescribed weak ‘deformation’ function ϵαβ(t),
does not make much sense: On the one hand, it allows to employ the classical FDT [52],
but on the other hand, it is unclear how the prescribed ϵαβ(t) can be possibly linked with
the physical strain in the system given that the introduction of ∆H changes the classical
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relations between particle velocities and momenta leading to an anisotropic and position-
dependent particle mass.

6. To uncover new relationships between the stress correlations and the elasticity tensor
(cf Section 6), we employ the concept of the stress noise, σn, proposed in our previous
paper [37]. It is defined as σn(q, t) = σ(q, t) − σd(q, t), where σd is the deterministic
stress due to the flow history in the system (cf Equation (87)). The stress noise σn can,
thus, be considered as a genuine stress fluctuation unrelated to deformation and flow.
This concept opened up the possibility to define all components of the generalized (q-
dependent) elasticity tensor, Eαβγδ(q, t), in terms of the stress noise correlation function
(cf Equations (98) and (105)). It is important that the new definition is totally consistent
with the classical linear response way to introduce the elasticity tensor, Equation (33), and,
therefore, leads to exactly the same GRMs, G(q, t), L(q, t), M(q, t). The latter statement
is valid since Equations (59) and (62)–(64) trivially follow from Equation (115). On the
other hand, the new definition, Equation (105), implies both minor and major symmetries
of Eαβγδ(q, t), which are inherent in the classical bulk elasticity tensor. Moreover, the
bulk tensor coincides with Eαβγδ(q, t) at q = 0 since the latter tensor field is continuous
and analytical as a function of q (see end of Sections 6.2 and 6.4). The definition of the
generalized elasticity tensor, Equation (105), therefore, combines the best of both worlds (of
affine strains, q = 0, and harmonic deformations, q ̸= 0).

7. One may wonder how to obtain the correlation function of stress noise, Cn
αβγδ

(
q, t

)
.

The answer is given in Section 6.2: it can be done using simulations with arrested flow at
wave-vector q implying the condition, Equation (88). This condition can be imposed using
an external force field (cf Equation (89)) leading to an appropriate coherent harmonic acceler-
ation of particles. With the constrained dynamics, the deterministic stress is always constant
(time-independent); it is defined by the ‘quenched’ concentration fluctuation at q. Then,

Cn
αβγδ

(
q, t

)
= C(r)

αβγδ

(
q, t

)
− Const

where C(r)
αβγδ

(
q, t

)
is the total stress correlation function with restricted dynamics (cf

Equation (99)) and Const = Ee
αβγδ(q) = Cd(r)

αβγδ(q) is a time-independent tensor, which,
however, generally depends on q (cf Equations (96) and (106)). This tensor (Const) simply

equals to C(r)
αβγδ

(
q, t → ∞

)
; it is related to the equilibrium elastic moduli (at t → ∞), cf

Equations (92) and (95).
8. In Section 6.2, we introduced the equilibrium elasticity tensor Ee

αβγδ(q) defined in
Equation (106). In the liquid regime, Ee

αβγδ(q) coincides with the static elasticity tensor,
Ee

αβγδ(q) = Eαβγδ(q, t ≫ τs), so that Ee
αβγδ(q) can be considered as a generalization of

the classical static elasticity tensor (cf Section 2) for nonzero q. However, in the glassy
(amorphous solid) state, the two tensors, equilibrium and static, are different since even
a very long waiting time, t ≫ τs, may not ensure a complete equilibration of a vitrified
liquid (amorphous solid). In particular, the stress noise may include a virtually frozen
component leading to an incomplete relaxation. Therefore, the static shear modulus,
G(q, t ≫ τs), remains finite in this case, while the analogous equilibrium shear modulus
must vanish since a complete equilibration after a small shear deformation of a glassy system
must relax the shear stress due to the amorphous structure of the system [37]. (Note that we
do not consider here a permanently crosslinked network whose equilibrium shear modulus
is, of course, finite.) As a result, the equilibrium elasticity tensor can be expressed in terms
of just two material functions: the equilibrium longitudinal, Le(q), and transverse, Me(q),
elastic moduli (cf Equation (106)). These moduli, by their definition, provide a linear stress
response (after a complete relaxation of the system) to a weak imposed longitudinal strain.

9. The most general relation between the stress-correlation (C) and elasticity (E)
tensors is given in Equation (115). It is noteworthy that this equation was derived and
is valid at q ̸= 0. It cannot be generally applied for q = 0 since the stress-correlation
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function C is ensemble-dependent in this case [32,37]. It is also remarkable that, based on
Equation (115), we not only arrive at Equations (62)–(64) linking the shear, longitudinal
and transverse components of C- and E-tensors, but also obtain two additional exact
relations (116) involving other components of these tensors. The whole set of these relations
then allows to obtain all components of the correlation tensor in terms of the elasticity
tensor and vice versa. Strictly speaking, all the relations, Equations (62)–(64) and (116), are
valid both for liquid systems (above the glass transition) and for amorphous solids (vitrified
liquids), provided that they are completely equilibrated thermodynamically (this condition
refers to the fact that the derivation of these relations assumed an equilibrium ensemble).
Nevertheless, these relations are also valid for metastable glassy systems (trapped in a
metabasin), provided that the lifetime of the metastable state is much longer than 1/s [32]
and with the reservation that some q-dependent constants may have to be added in the rhs
of Equations (116), cf ref. [32]. These constants are due to the presence of frozen stresses in
glassy systems, reflecting their metastable nature (within a given metabasin); they must
disappear upon averaging over the full equilibrium ensemble of metastable states.

10. There is a subtle problem associated with the new Equations (116): they involve
two new memory functions, N(q, t) and P(q, t), which cannot be obtained based on the
stress response to a deformation, and, therefore, apparently cannot be measured experimen-
tally. One may wonder if these functions can be obtained based on the ‘classical’ relaxation
moduli, G(q, t), L(q, t), M(q, t). Our view is that while their exact prediction is generally
impossible, the new functions N and P can be still predicted approximately at low q. As
argued in Section 6 (see end of Section 6.2 and the beginning of Section 6.4), the elasticity
tensor becomes nearly isotropic at low q, so that N(q, t) ≃ L(q, t) and P(q, t) ≃ M(q, t)
at qb ≪ 1 (cf Equations (122)). Replacing N with L in the first Equation (116) leads to an
approximate equation, which was derived and rather thoroughly tested in refs. [32,37]
using simulation data for a 2D system of polydisperse LJ particles. A very good agreement
(with an accuracy of 1–2%) between CN and its approximate prediction was observed
at qb ≲ 0.5 (where b is the interaction range) [32]. Here, we devised two more precise
approximations for N(q, t) valid for 2D systems (see Equations (127) and (130)). All the
approximations have been tested at t = 0 for a wide range of q for the same system. The
comparison (between the exact and approximate N(q) = N(q, 0)) is shown in Figure 1. It
demonstrates that the basic (0th) approximations still work for qb < 0.5, while the new
approximations are accurate in much wider q-regions: the first one is valid at qb < 1.5, the
second at qb < 3.

11. To summarize, let us highlight the main new results presented in the paper:
(i) We provide a rigorous derivation of Equations (63) and (64) using FDT-based

arguments (cf Section 4). These equations have been previously stated in refs. [32,37], but
their detailed derivation was not worked out (note that Equation (63) was also stated in
ref. [59]). Importantly, in Section 4, we provide a derivation of the unique fully tensorial
equation (Equation (59)) from which the general FDT relations, Equation (62) (which is
well-known [57,63,64]) and Equations (63) and (64), simply follow in a trivial way.

(ii) We derived approximate Equations (123) and (124) (valid for qb ≪ 1) using FDT and
the concept of stress noise (cf Section 6.3). Note that the derivation of Equation (123) was only
hinted at previously (in ref. [37]), while the same equation was simply claimed in ref. [32].

(iii) Building upon the concept of stress noise, a key result of our work is Equation (115),
relating the tensor of stress correlations Cαβγδ (⃗q, t) with the tensor of elastic moduli
Eαβγδ (⃗q, t). Noteworthily, the form of Equation (115) agrees with Equation (45) of ref. [49],
which establishes a relation between the memory kernel Mαβγδ (⃗q, t) from the Zwanzig–
Mori projection operator formalism and Cαβγδ (⃗q, t) for monodisperse Brownian particles.
This suggests the intriguing possibility of a deeper connection between Mαβγδ (⃗q, t) and
Eαβγδ (⃗q, t), which is an interesting topic for future studies.

(iv) For 2D systems, we, for the first time, derived more precise equations (as com-
pared to Equation (123)) defining the stress correlation function CN(q, t) in terms of the
generalized relaxation moduli (cf the first Equation (116) and Equations (127) and (130)).



Polymers 2024, 16, 2336 29 of 33

Author Contributions: Conceptualization, A.S.; investigation, All authors; writing—original draft
preparation, All authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: Fruitful discussions with J.P.Wittmer are gratefully acknowledged. A grant
of computer time at the HPC computing cluster of the University of Strasbourg is acknowledged
as well. We also thank L.Klochko who produced simulation data used in Figure 1 during her PhD
studies with us.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Proof of Equation (109)

To simplify notations, let us define any component of the stress tensor at t = 0 (taking
either Re or Im part of it) as X, X = (ℜ|ℑ)σα′β′(q, 0), and similarly, Y corresponds to a later
moment t: Y = (ℜ|ℑ)σαβ(q, t), while Z is defined as a component of the current J at t = 0:
Z = (ℜ|ℑ)Jα(q, 0). More precisely, let us consider Z as a vector with 2d components,
Z = {Zi, i = 1.2d}, where d is the space dimension. Next, we observe that (i) X, Y and Zi
are collective variables (fluctuation amplitudes), so their joint distribution must be nearly
Gaussian (with high accuracy, relative error ∼ 1/N), (ii) for q ̸= 0

⟨X⟩ = ⟨Y⟩ = ⟨Zi⟩ = 0 (A1)

and (iii) X and Zi are uncorrelated at equilibrium,

⟨XZi⟩ = 0 (A2)

To justify the last statement, it is enough to recall the time reversibility of the dynamics and
to note that X is invariant, while Zi changes sign once the time is reversed, t → −t.

The correlation functions in Equations (107) and (108) can be considered as linear com-
binations of terms like ⟨XY⟩r (for Equation (107)) and ⟨XY⟩ (for Equation (108)). Therefore,
to prove the validity of Equation (109), it is enough to show that

⟨XY⟩r = ⟨XY⟩ (A3)

for all components X and Y. Here, ⟨XY⟩ means the unconstrained average of XY (with
totally equilibrium state at t = 0), and

⟨XY⟩r ≡ ⟨XY⟩Z=0 (A4)

implies the averaging under the condition that the initial state (at t = 0) was prepared with
the restricted dynamics, which boils down to the condition Z = 0.

Let us treat the rhs of Equation (A3). It is useful to represent the unconstrained joint
distribution density of (X, Y, Z) as

ρ(X, Y, Z) = ρ(X)ρ(Z|X)ρ(Y|X, Z) (A5)

where ρ(X) is the distribution density of X considered separately, ρ(Z|X) is the conditional
distribution of Z for a given value of the variable X, and ρ(Y|X, Z) is a similar condi-
tional distribution of Y for the given X and Z (note that the ρ-functions are distinguished
according to their variables). Thus, we obtain

⟨XY⟩ =
∫

XYρ(X, Y, Z)dXdYd2dZ =
∫

X⟨Y⟩Xρ(X)dX (A6)
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where
⟨Y⟩X =

∫
⟨Y⟩X,Zρ(Z|X)d2dZ, ⟨Y⟩X,Z =

∫
Yρ(Y|X, Z)dY (A7)

are the mean values of Y for a given X, and for the given X and Z, respectively. Introducing
ρ(X, Y|Z) as the conditional probability distribution of X, Y for a prescribed Z, and similarly
ρ(X|Z), one finds

⟨XY⟩r =
∫

XYρ(X, Y|Z = 0)dXdY =
∫

Xρ(X|Z = 0)⟨Y⟩X,Z=0dX (A8)

Here, all the probability distribution (ρ-) functions are Gaussian. The following obvious
relation is useful:

⟨Y⟩X,Z = αX + βiZi (A9)

as follows from Equation (A1) and the Gaussian nature of the distributions (α and βi are some
constants; the sum over i is assumed). In a similar way, we find (cf Equations (A7) and (A9)):

⟨Y⟩X = αX + βi⟨Zi⟩X (A10)

and
⟨Zi⟩X = γiX (A11)

Finally, noting that

⟨XZi⟩ ≡ ⟨X⟨Zi⟩X⟩ = γi

〈
X2

〉
(A12)

and using Equation (A2), we find γi = 0, so that ⟨Y⟩X = αX and

⟨XY⟩ = ⟨X⟨Y⟩X⟩ = α
〈

X2
〉

(A13)

Turning to the lhs of Equations (A3) and (A4), corresponding to the case with constraint
at t = 0, in order to obtain ⟨XY⟩r, we must impose the condition Z = 0 in Equation (A9)
leading immediately to ⟨Y⟩X,Z=0 = αX and, therefore, to (cf Equation (A8))

⟨XY⟩r =
〈

X⟨Y⟩X,Z=0

〉
r
= α

∫
X2ρ(X|Z = 0)dX (A14)

Now, we again take into account that X and Z are not correlated (Equation (A2)); hence,
ρ(X|Z) is independent of Z, ρ(X|Z) = ρ(X). Therefore, we obtain (cf (A14))

⟨XY⟩r = α
〈

X2
〉

(A15)

Equations (A13) and (A15) directly lead to Equation (A3) and, therefore, to Equation (109).

Appendix B. The Relevant Properties of Isotropic Tensor Fields

Tensor fields (like Cαβγδ(q, t)) characterizing isotropic systems are isotropic in the
sense that they are invariant with respect to a simultaneous rotation of the coordinate frame
and the vector argument q [44]. Such isotropic tensor functions can be written in the general

case as [35,37,41,44] (here q̂ ≡ q/q, q ≡
∣∣∣q∣∣∣ ̸= 0):

Cαβγδ(q, t) = a(q, t)δαβδγδ + b(q, t)
(
δαγδβδ + δαδδβγ

)
+ c(q, t)

(
q̂α q̂βδγδ + q̂γ q̂δδαβ

)
+d(q, t)

(
q̂α q̂γδβδ + q̂α q̂δδβγ + q̂β q̂γδαδ + q̂β q̂δδαγ

)
+ e(q, t)q̂α q̂β q̂γ q̂δ (A16)

provided that (for any q, t), the C-tensor obeys both minor and major symmetries:

Cαβγδ = Cβαγδ, Cαβγδ = Cαβδγ, Cαβγδ = Cγδαβ (A17)
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The first two (minor) symmetries obviously apply to the stress-correlation tensor (cf
Equation (48)): they come from the well-known symmetry of the stress tensor, σαβ = σβα.
The last (major) symmetry comes from the time-reversibility of the dynamics, the isotropy
of the tensor field Cαβγδ(q, t) and its minor symmetries (cf ref. [37]). The same symmetries
also apply to the tensor of generalized elastic constants (according to Equation (105)).

For q parallel to the x-axis, there is no need to rotate the coordinate frame: it is already
‘natural’ in this case (ie it coincides with the NRC frame). Then, using Equation (A16) for
such q, we obtain:

a(q, t) = CP(q, t), b(q, t) = (CN − CP)/2, c(q, t) = CM − CP,

d(q, t) = CG − (CN − CP)/2, e(q, t) = CL + CN − 2CM − 4CG (A18)

where
CN(q, t) = C2222(q, t), CP(q, t) = C2233(q, t) (A19)

and the arguments (q, t) are omitted in the rhs.
For 2D systems (d = 2), the a, b, c and d terms of the general Equation (A16) become

entangled due to the mathematical identity

q̂α q̂γδβδ + q̂α q̂δδβγ + q̂β q̂γδαδ + q̂β q̂δδαγ =

2
(
q̂α q̂βδγδ + q̂γ q̂δδαβ

)
− 2δαβδγδ +

(
δαγδβδ + δαδδβγ

)
, d = 2 (A20)

As a result, Equation (A16) can be simplified as

Eαβγδ(q, t) = aE(q, t)δαβδγδ + bE(q, t)
(
δαγδβδ + δαδδβγ

)
+cE(q, t)

(
q̂α q̂βδγδ + q̂γ q̂δδαβ

)
+ eE(q, t)q̂α q̂β q̂γ q̂δ, d = 2 (A21)

where we replaced C with E, a with aE, etc.
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