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scaleofhotQCD

Eamonn Weitz, SUBATECH, Nantes Université
with Jacopo Ghiglieri, Philipp Schicho, Niels Schlusser

Asymptotic mass
Consider hard parton propagating through
quark-gluon plasma.

Forward scattering with medium induces shift
in parton’s dispersion relation ⇒ m2

∞, known
as asymptotic mass.

In heavy-ion collisions, along with transverse
scattering rate, C(k⊥), serves as key input for
calculations of:

• jet modification (i.e, medium-induced
radiation and transverse momentum
broadening)

• thermalisation, transport

In hot QCD, take parton momentum
p+ = p0+pz

2 ≫ T , temperature of plasma
⇒ Can integrate out scale p+ to write m2

∞ [1]
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as sum of gluonic and fermionic condensates.

Classical Corrections
Zg given in terms of Wilson lines (representing
hard parton) and field strength insertions

Zg =
1

dRCR

∫ ∞

0

dx+ x+Tr⟨UR(−∞;x+) (2)

× F−⊥(x+)UR(x
+; 0)F−⊥(0)UR(0;−∞)⟩

Starting at O(g), Zg receives contribution from

with gluon soft ∼ gT .
Associated Bose–Einstein statistical function

nB(ω) =
1

e
ω
T − 1

≈ T

ω
≫ 1

⇒ Bose enhancement!

These are classical corrections:

• Originate from zero Matsubara mode

• For soft gluon exchange, corrections can
be computed using Hard Thermal Loop
Effective Theory (HTL) but
analytically difficult in practice

• Can also have ultrasoft gluon ∼ g2T
exchange – these corrections cannot be
studied perturbatively (Linde problem)
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Lattice Determination from EQCD
To go from hot QCD to electrostatic QCD (EQCD), integrate out all but zero Matsubara mode.
Arrive at static 3D EFT for Matsubara zero-mode (dimensional reduction):

• A0 field ⇒ −iΦ, adjoint scalar picks up Debye mass, mD ∼ gT

• g23d ∼ g2T , UR ⇒ ŨR

But why is this relevant here? Lightcone analyticity arguments allow us to compute classical
corrections to Zg with EQCD [2]
=⇒ Can bypass horrible HTL computation and more importantly, gain access to non-perturbative
evaluation of classical corrections by studying EQCD on the lattice!
Arrive at EQCD version of Eq. (2): Z3d

g = − 4T
dA

∫∞
0

dLL ⟨FF ⟩ defined through ŨR, DiΦ and Fij

Short-distance behavior: ⟨FF ⟩mDL≪1 = c0
L3 +

c2g
2
3d

L2 +
c4g

4
3d

L + ...
To obtain finite lattice determination, subtract off LO, UV power law divergence and separate
into pieces
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Lattice piece calculated and IR tail fitted in [3, 4]
At short distances, switch to perturbative NLO EQCD evaluation, calculated in [4]
⇒ additionally subtract off O(g2) logarithmic divergence ∼ c2
Motivation for our work [5], where we compute O(g2) thermal scale ∼ T contribution
from hot QCD:

• O(g2) EQCD logarithmic divergence still needs to be matched against corresponding one from
hot QCD to eliminate spurious Lmin-dependence

• Obtain all O(g2) corrections to Zg

Cutoff-independent results
We find that in Feynman gauge, only need to compute one diagram in hot QCD (left below)
Compare to its EQCD counterpart (right below)

K~T
Q~T Q~gT

K~gT

Isolate K zero-mode contribution Probe UV limit by taking K ≫ gT
Logarithmic divergences cancel ⇒ Finite cutoff-independent result for non-perturbative evaluation!

T
Znon-pert class only

g

T 2

Z
non-pert class + finite O(g2)
g

T 2

Z3d
g,LO

T 2
= − mD

2πT

250 MeV −0.513(138)(45)(7) −0.340(138)(45)(7) −0.376
500 MeV −0.619(99)(39)(3) −0.491(99)(39)(3) −0.324

1 GeV −0.462(71)(9)(7) −0.356(71)(9)(7) −0.305
100 GeV −0.327(16)(5)(2) −0.274(16)(5)(2) −0.223

Errors from statistical errors in lattice EQCD (first bracket), integration of IR tail (second bracket)
and quadrature of lattice data (third bracket)
First column contains non-perturbative evaluation. Second contains in addition finite part (see
outlook) of quantum O(g2) corrections from T scale ⇒ Larger in magnitude than ZLO

g for all
temperatures!

Outlook
• Find double-logarithmic divergence in region k+ ≳ T, k− ≲ g2T, k⊥ ∼ gT =⇒ K2 ∼ g2T 2

⇒ Collinear, hard divergence hints at sensitivity to regions where:

– LPM resummation in necessary

– Scale hierarchy assumed in Eq. (1) is no longer respected

⇒ Outstanding divergence implies our separation of non-perturbative classical corrections and
quantum O(g2) ones is somewhat ambiguous. Complete O(g2) evaluation of collinear and hard
contributions needed

• Looking farther forward, want to evaluate impact of non-perturbative corrections on medium-
induced radiation, similar to what was done in [6] for C(k⊥)


