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Abstract—This paper introduces the vision for an Active In-
Memory Storage System (AIMSS), a novel architecture that
shifts data movement responsibilities, such as source handling,
sink management, and data shuffling, from applications like
training large language models (LLMs) and big data streaming
engines, directly to AIMSS. AIMSS will operate on a log-
structured in-memory storage framework, leveraging immutable
data access patterns, facilitating efficient real-time data move-
ment. The AIMSS architecture deploys on CPU and GPU nodes,
harnessing their memories and ensures efficient and transparent
communication with disk-based file storage systems. We propose
a push-based stream programming execution model that allows
AIMSS to cost-effectively harness application-specific data (such
as consumer offsets and data access patterns including read,
write, and shuffle) and thereby enable a set of data-based
optimizations. These include scalable data movement partitioning
algorithms, faster stream storage recovery (speeding up applica-
tion restarts), easy identification of application stragglers, and
mitigation of power fluctuation issues during large-scale LLM
training (e.g., by efficiently leveraging idle GPU resources for
other computing tasks). Furthermore, AIMSS will minimize I/O
interference in multi-CPU-GPU setups for multiple applications
sharing a high-performance computing infrastructure, including
CPUs, GPUs, and advanced interconnects. AIMSS promises
significant performance improvements by actively handling data
movement for data-intensive applications and by combining in-
memory processing with a novel push-based stream programming
model suitable for exascale computing.

Index Terms—in-memory systems, streaming, ml/ai applica-
tions, hpc infrastructure, unified storage and compute, push-
based streaming model

I. INTRODUCTION: MOTIVATION, VISION AND
OBJECTIVES

In today’s data-driven world, exemplified by recent ad-
vancements in large language models (LLMs, e.g., OpenAI’s
GPT 4, Google Gemini) and new Cloud-HPC services (e.g.,
HPC federated learning [1]), the rapid growth of machine
learning/artificial intelligence (ML/AI) and big data applica-
tions has generated an unprecedented demand for scalable,
energy-efficient and fault-tolerant, data-intensive, and Active
In-Memory Storage Systems (AIMSS) in support of ML/AI
over large-scale HPC infrastructure including many-core CPU-
GPU nodes, large memory clusters (TBs/node) and advanced
interconnects (e.g., NVIDIA Infiniband).

Scaling AIMSS (as depicted in Figure 1) across the memory
hierarchy of CPUs and GPUs [2] at HPC exascale (encompass-

ing thousands of compute nodes with millions of CPU/GPU
cores and hundreds of TBs of memory) presents a significant
challenge. For example, GPUs can spend up to 70% of their
time idle, waiting for data [3]. This inefficiency highlights
the need for a more effective data management approach.
Our primary focus is to enable the efficient execution of
data-intensive workloads by introducing a novel programming
model that allows applications to delegate data movement
responsibilities to AIMSS. This delegation, achieved through
a push-based streaming execution programming model, al-
lows AIMSS to leverage application-specific data access (such
as consumer offsets and read/write patterns) for optimizing
data movement and execution across the HPC storage and
computing infrastructure. As we argue in the next sections, this
includes having application workloads completely delegate
data movement tasks such as ingestion, output writing, and
data shuffling.

Fault tolerance, a critical challenge at exascale, can lead
to significant wasted compute capacity (20% or more) due to
failures and recovery, as highlighted by the European strategic
research agenda for HPC [4] [pages 79-82]. Addressing this
challenge is a core focus of our research. Our second goal
is to develop a fault-tolerant in-memory storage system for
HPC exascale. AIMSS will achieve this through an immutable
log-structured design and its novel push-based streaming pro-
gramming model. Our envisioned approach enables valuable
application insights into data access patterns, facilitating faster
recovery, as detailed in the following sections.

Extreme power jitter [5], arising from the synchronization
of tasks like checkpointing [6], collective communication [7],
and training computations during large-scale LLM training,
presents a significant challenge. As highlighted in [5] [The
Llama 3 Herd of Models, section 3.3], synchronized power
fluctuations across tens of thousands of GPUs can strain data
center power grids, potentially reaching tens of megawatts. To
address this, our third goal is to mitigate, and potentially elimi-
nate, this power jitter through a unified AIMSS and computing
engine enabled by our proposed push-based streaming execu-
tion model. By leveraging AIMSS’s awareness of remaining
computations, derived from hints within data streams, we can
efficiently utilize idle GPU resources during synchronization
tasks such as checkpointing, which often takes tens of seconds.



Fig. 1. The scalability challenge and hardware overview of main HPC MeluXina
modules and how they fit various ML pipeline components.

Fig. 2. The AIMSS active push-based storage approach versus passive pull-
based state of the art (SOTA) storage approach. AIMSS manages resources
depicted in blue in Figure 1 and integrates with LLM-engines for training
through the push-based streaming execution model.

This active resource management, facilitated by AIMSS’s in-
memory storage capabilities, promises to reduce power jitter
by dynamically scheduling other tasks on otherwise idle GPUs.

Therefore, the central research question driving our envi-
sioned AIMSS is: How can we efficiently (in terms of en-
ergy, performance, and developer transparency to exascale
deployments) scale in and scale out large-scale ML/AI
pipelines on HPC infrastructure in a fault-tolerant man-
ner? This paper is structured as follows: Section II introduces
the architecture and design principles of AIMSS. Section III
presents a novel push-based stream-based programming model
for AIMSS. Section IV explores the architectural optimizations
enabled by AIMSS. Section V discusses related work and
highlights AIMSS’s vision for optimization contributions.

II. THE AIMSS APPROACH

Our key insight is that closely integrating (in-memory)
storage and processing for ML by delegating data movement
control from the application to the storage layer, as our AIMSS
proposes, will lead to various optimizations (explained later).
Our global vision for AIMSS is a unified storage and compute
architecture for ML/AI processing on HPC infrastructure,
powered by a push-based streaming execution model with
the following key benefits:

• Unified CPU-GPU Deployment and Optimized Per-
formance: AIMSS will be deployed across CPU-GPU
HPC infrastructure, leveraging their combined memory
resources to support a push-based stream-based pro-
gramming model (as depicted in Figure 2). This unified
approach will facilitate efficient data movement and pro-
cessing at HPC exascale.

• Transparent Scalability and Resiliency: AIMSS will
provide users with transparency and resiliency while au-
tomatically scaling ML pipelines on HPC infrastructure.
This will empower users to focus on their core research
and development tasks without being burdened by the
complexities of manual scaling and fault tolerance storage
management.

AIMSS manages various data movement operations in sup-
port of processing engines that typically deploy pipelines
of operators, including source and sink operators. Source
operators fetch input data from a distributed storage system
(e.g., disk-based file or caching systems) using a pull-based
approach. Sink operators, on the other hand, write data to
the storage system using a push-based approach. In addition,
shuffle operators are responsible for redistributing data based
on partitioning methods, such as key-based partitioning. Tra-
ditionally, the storage system plays a passive role, respond-
ing to read/write requests, while the shuffle mechanism is
implemented at the application level. Managing source, sink
and shuffle data movement, AIMSS will have a global I/O
overview advantage over current approaches.

Recognizing that data-intensive applications (e.g., real-time
streaming, LLM training) require continuous data movement
(input, output, and shuffling), we propose the AIMSS strategy
to delegate these operations to the AIMSS itself. Our strat-
egy works as follows: Source operators register their input
stream requirements (including any filtering functions) with
AIMSS, which then proactively fills input buffers using a
push-based approach. Sink operators operate on pre-registered
stream buffers and notify AIMSS when data is ready to be
written, triggering asynchronous persistence to disk and buffer
reuse. Shuffle operations function similarly, allowing AIMSS



Fig. 3. The novel AIMSS architecture for scalable, unified storage and
ML processing comprises coordinators (managing metadata and system com-
ponents), CPU-based Storage Brokers (e.g., [8] interacting with file/cache
systems to fill the CPU-GPU-based Application Cache components that are
managing host and kernel memory for the application through push-based
stream buffers (e.g., [9].

Fig. 4. Our novel approach to fast crash recovery for unified in-memory log-
structured storage (e.g., [10]) and ML processing simplifies fault tolerance by
enabling recovery from the last recorded application consumer/producer offsets
already available to AIMSS.

to reorganize input stream buffers asynchronously.
Our vision for separating data movement operations from

processing operators is realized through the AIMSS middle-
ware layer that sits between the disk-based file storage system
and application engines deployed on, for example, CPU-
GPU nodes. Furthermore, AIMSS manages both CPU and
GPU host memory and integrates with GPU device memory
through native code (e.g., CUDA streams), using a push-
based approach. Garbage memory collection is managed at the
AIMSS level. All stream metadata is registered with AIMSS
before and during deployment when Source, Sink, and Shuffle
operations are delegated. When an application crashes or shuts
down, AIMSS automatically cleans up its associated active
streams.

Optimizing data movement for enhanced scalability, better
performance, faster data and application recovery, and reduced
power jitter at exascale is significantly more efficient when
managed at the AIMSS data system level. This contrasts with
today’s approach, where this burden often falls on application
developers and their engines, leading to sub-optimal perfor-
mance and increased complexity.

III. OUR PROPOSAL: A PUSH-BASED STREAMING
PROGRAMMING MODEL FOR ENABLING AIMSS

The core concept of our vision is integrating stream phases
for both read and write I/O-intensive operations, including
shuffling. This integration provides valuable insights into
application data access behavior, enabling the stream storage
layer (i.e, AIMSS) to optimize I/O performance, minimize
I/O interference, and enhance both checkpointing efficiency
and recovery speed. By replacing traditional passive storage
approaches with the AIMSS framework, application develop-
ers can unlock significant performance gains and benefit from
transparent data management workflows (e.g., avoid tuning ef-
forts). Storage system techniques can more efficiently develop
better data movement optimizations compared to letting this
effort on developers.

Execution Model APIs. The following listing outlines the
essential APIs for the AIMSS push-based streaming execution
model. Compute engine’s consumers and producers operators
(e.g., GPU kernel tasks) create streams to interact with shared
in-memory buffers managed by AIMSS through these APIs.
Source, sink and shuffle operators delegate their read and write
IO actions to AIMSS that is responsible to manage these push-
based shared stream buffers.

1 C r e a t e S t r e a m ( P a r e n t S t r e a m I d , I n p u t S o u r c e ,
P a r t i t i o n I d , K e r n e l R e a d W r i t e A t t r i b u t e s ) : r e t u r n
s t r e a m I d # I n i t i a l i z e a new s t r e a m on AIMSS .
Usage f o r r e a d or w r i t e s p e c i f i e d . R e t u r n s a
un iq ue s t r e a m I d .

2 ReadFrom ( S t r e a m I d ) # P r o v i d e s a s e t o f s h a r e d
S t r e a m B u f f e r s t o i t e r a t e ove r

3 WriteTo ( St reamId , S t r e a m B u f f e r ) # Wr i t e s t r e a m B u f f e r
’ s c o n t e n t t o a s p e c i f i e d s t r e a m .

4 S h u f f l e S t r e a m ( S t r e a m I d ) # S i g n a l s h u f f l e r e a d y .
5 S h u f f l e S t r e a m s ( P a r e n t S t r e a m I d ) # S h u f f l e s t a r t s when

a l l s t r e a m I d s o f P a r e n t S t r e a m I d a r e r e a d y
6 D e s t r o y S t r e a m ( S t r e a m I d )

Passive Storage Consumption Model APIs. The following
listing offers a simplified overview of the typical file-based
storage model, where the application compute engine, unlike
with AIMSS, handles memory buffers and data movement.

1 C r e a t e F i l e ( FileName )
2 ReadFrom ( FileName )
3 WriteTo ( FileName , Data )
4 S h u f f l e ( F i l e s , P a r t i t i o n F u n c t i o n )
5 D e l e t e F i l e ( F i l ename )

IV. DATA-BASED ARCHITECTURAL OPTIMIZATIONS
ENABLED BY AIMSS

The rationale behind a push-based streaming model, in
addition to its low-latency processing advantages (see [9]),
stems from the continuous and bursty [5] data processing
requirements of use cases like LLM training, which often
involve petabytes of input data and checkpointing data with
tens of TB/s peak throughput. By proactively managing data



movement (input, output, and shuffling), a push-based stream
storage system minimizes GPU idle time, reduces costs, and
enables optimizations not easily achievable with a pull-based
model, such as reduced I/O interference, faster recovery, strag-
gler mitigation, and higher ingestion/checkpointing through-
put. Moreover, the application knowledge insights provided
by the push-based protocol’s offsets eliminate the need for
complex ML models and monitoring infrastructure to predict
access patterns, simplifying the optimization process.

Traditionally, research engineers manually tune data par-
titioning, chunking, shuffling, checkpointing, and recovery
during LLM training iterations. AIMSS, through the push-
based model interactions, transparently manages these data
movement operations on both consumer (input processing and
recovery) and producer (shuffling, checkpointing) processes.
Shifting data movement control from the application to the
storage layer enables better optimization of ingestion and
recovery due to its inherent application knowledge provided
by stream access patterns available now to AIMSS.

Given the cost-effectiveness of CPU memory compared
to expensive high-end GPUs, we advocate for aggressively
optimizing data movement into and out of GPUs, leveraging
AIMSS as a smart cache that provides needed storage features
like availability and durability. Moreover, hardware trends
(better interconnects [11], faster memory) will support our
radical data movement approach. Beyond fast, scalable and
dynamic data access, AIMSS provides two additional benefits:
simplified fault tolerance implementation and the ability to
detect stragglers easier (Application Cache nodes provide
metadata of application compute tasks that may exhibit slower
progress during training iterations).

A key technical implementation challenge involves opti-
mizing the pipeline of computation with data feeding for
GPUs. As exemplified in Figure 3, we plan to evaluate push-
based RPC methods over RDMA technology [12]. Leveraging
dynamic stream partitioning and push-based data movement
for processing, AIMSS provides a foundation for simplify-
ing application scalability. GPU kernels create and manage
streams (see the previous section APIs) by interacting with
the colocated Application Cache.

Critical questions include determining suitable data dy-
namic partitioning and program parallelism mechanisms for
efficiently feeding multiple GPUs, and how to cache these
datasets to ensure applications are not delayed. Another aspect
is designing and developing a push-based approach for CPU
to CPU-GPU nodes integration and examining its trade-offs
in terms of availability, partitioning, performance, and fault
tolerance.

Given that current state-of-the-art storage and processing
systems handle recovery and fault tolerance independently, a
significant challenge is enabling prioritization of data recovery
without pipeline insights. The technical challenge involves
providing the storage system with insights to prioritize the
recovery of storage partitions essential to the application when
a storage node crashes. This concept is illustrated in Figure 4.
Assuming a log-structured storage [10] design with application

consumer offsets corresponding to the next records to be pro-
cessed in the stream, a rapid crash recovery mechanism should
prioritize recovering logs starting at these application offsets.
This is in contrast to current systems that begin expensive log
recovery from the first log record without application-specific
knowledge. The AIMSS stream-based recovery strategy allows
access to data immediately.

V. RELATED WORK

The following functional components are necessary to be
modified for enabling the unified AIMSS architecture:

• Data Ingestion [13] acquires, buffers, and temporarily
stores in-memory fast data streams and raw file data,
achieving potentially low latency and high throughput (as
implemented by KerA [14]).

• Data (Persistent and Caching) Storage [15] ensures dura-
bility, availability, and fault tolerance through multiple
data copies stored over multiple nodes.

• Big data processing [16] and ML analytics [17], [18] en-
able ML applications to efficiently consume data streams.

In practice, each component is typically implemented as
a dedicated solution independent of other layers, under the
assumption that specialization enables better optimization op-
portunities. In contrast to monolithic architectures, e.g., [19],
that can optimize data-related tasks more efficiently, these
decoupled layered architectures do not easily benefit from
data-related optimizations. While each specialized component
benefits from an open-source community, coupling these com-
ponents in complex architectures often results in a trade-off
between productivity and performance/cost efficiency.

While scalable, stream storage systems such as Apache
Kafka [20], [21] often require time-consuming and costly
manual data re-partitioning to achieve high throughput. Kafka
targets full stream log recovery, lacking support for partial
recovery. Our in-memory storage system, KerA [8]–[10], [14],
introduces dynamic partitioning to eliminate the need for
manual data re-partitioning. AIMSS can build upon KerA, co-
located with ML processing nodes, minimizing data migration
during storage auto-scaling. While fault-tolerant storage sys-
tems typically fully recover crashed nodes [22], they often
do so without considering application-specific needs [23] or
knowledge. This full recovery becomes inefficient as compute
node memory/storage increases; recovering terabytes of data
can waste minutes on large CPU/GPU clusters, forcing ap-
plications to stop and restart from checkpoints inefficiently.
AIMSS addresses this by leveraging log-structured in-memory
storage [24] and push-based data movement, potentially over
RDMA technology [12].

As we previously argued in [9] for a push-based streaming
model across the computing continuum, more recent research
on data flow in modern hardware [25] also supports the
concept of stream processing [26] across the entire archi-
tecture. However, while their focus is primarily on reducing
data movement, and thus orthogonal to ours, AIMSS takes
a distinct data movement approach to seamlessly integrate
with and enhance existing processing engines. By adopting a



holistic approach to AIMSS, and employing TLA+ [27], [28]
(a formal verification language for concurrent and distributed
systems) for addressing consistency issues (e.g., [29], we plan
to research and develop a unified model design specification.

VI. CONCLUSION

In conclusion, the envisioned AIMSS push-based streaming
execution model approach offers a compelling paradigm shift
in managing data for large-scale, data-intensive applications.
The key intuitions supporting this approach include leveraging:
data immutability, the storage knowledge of application access
patterns, the ability to more efficiently mitigate stragglers,
and the potential to minimize costly GPU wait times. By
adopting a system-level approach to data movement, AIMSS
alleviates the burden on application developers for data move-
ment tuning and enables optimizations not easily achievable
with traditional in-application-based methods. The design,
implementation and evaluation of AIMSS coupled with LLM-
engines through streaming integration will be the focus of our
future work.
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