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Abstract—Today’s passive (on-disk and/or in-memory, employ-
ing a pull-based data access approach) storage architectures are
performance- and energy- insufficient for handling the data-
intensive demands of tomorrow’s exascale machine learning and
artificial intelligence (ML/AI) workloads. Industry projections
forecast beyond-exascale clusters consuming energy between 500
MW and 1 TW, highlighting the need for a paradigm shift
in data movement and processing, necessitating novel solutions
that can improve performance, reduce energy consumption, and
simplify application development and deployment. We believe
exascale computing will require in-memory storage systems
with a global perspective on I/O and processing, strategically
positioned between traditional disk-based storage systems and
CPU-GPU compute engines. We present the vision for an Active
In-Memory Storage System (AIMSS), a novel architecture that
shifts data movement management, such as source/sink handling
and data shuffling, from ML/AI applications and big data
streaming engines, directly to AIMSS. Operating on a log-
structured in-memory storage framework, leveraging immutable
data access patterns, and facilitating efficient real-time data
movement, the AIMSS architecture will be deployed on tens of
thousands of large many-core CPU-GPU nodes, harnessing their
memory and ensuring efficient and transparent communication
with traditional disk-based file storage systems. We propose
a push-based streaming execution model enabling AIMSS to
cost-effectively harness application-specific data (such as con-
sumer/producer offsets and data access patterns including read,
write, and shuffle) and thereby enable a set of optimizations
such as scalable data movement partitioning algorithms, faster
stream storage recovery, mitigation of application stragglers,
mitigating power fluctuation issues during large-scale ML/AI
training by efficiently leveraging idle GPU resources for other
computing tasks, and minimizing I/O interference in multi-CPU-
GPU setups for multiple applications sharing an exascale high-
performance computing infrastructure. Through its global view
of I/O enabled by a push-based in-memory computing approach,
AIMSS promises significant performance improvements for data-
intensive applications by actively handling data movement,
while eliminating the need for manual tuning and inefficient
application-based data management.

Index Terms—in-memory active storage systems, streaming,
ML/AI, HPC CPU-GPU, unified storage and compute, push-
based streaming model

I. INTRODUCTION: MOTIVATION, VISION AND
OBJECTIVES

In today’s data-driven world, exemplified by recent ad-
vancements in large language models (LLMs, e.g., OpenAI’s
GPT 4, Google Gemini) and new Cloud-HPC services (e.g.,

HPC federated learning [1]), the rapid growth of machine
learning/artificial intelligence (ML/AI) and big data applica-
tions has generated an unprecedented demand for scalable,
energy-efficient and fault-tolerant, data-intensive, and Active
In-Memory Storage Systems (AIMSS) in support of ML/AI
over large-scale HPC infrastructure including many-core CPU-
GPU nodes, large memory clusters (TBs/node) and advanced
interconnects (e.g., NVIDIA Infiniband).

Scaling AIMSS (as depicted in Figure 1) across the memory
hierarchy of CPUs and GPUs [2] at HPC exascale (encompass-
ing thousands of compute nodes with millions of CPU/GPU
cores and hundreds of TBs of memory) presents a significant
challenge. For example, GPUs can spend up to 70% of their
time idle, waiting for data [3]. This inefficiency highlights
the need for a more effective data management approach.
Our primary focus is to enable the efficient execution of
data-intensive workloads by introducing a novel programming
model that allows applications to delegate data movement
responsibilities to AIMSS. This delegation, achieved through
a push-based streaming execution programming model, al-
lows AIMSS to leverage application-specific data access (such
as consumer offsets and read/write patterns) for optimizing
data movement and execution across the HPC storage and
computing infrastructure. As we argue in the next sections, this
includes having application workloads completely delegate
data movement tasks such as ingestion, output writing, and
data shuffling.

Fault tolerance, a critical challenge at exascale, can lead
to significant wasted compute capacity (20% or more) due to
failures and recovery, as highlighted by the European strategic
research agenda for HPC [4] [pages 79-82]. Addressing this
challenge is a core focus of our research. Our second goal
is to develop a fault-tolerant in-memory storage system for
HPC exascale. AIMSS will achieve this through an immutable
log-structured design and its novel push-based streaming pro-
gramming model. Our envisioned approach enables valuable
application insights into data access patterns, facilitating faster
recovery, as detailed in the following sections.

Extreme power jitter [5] [section 3.3], arising from the
synchronization of tasks like checkpointing [6], collective
communication [7], and training computations during large-
scale LLM training, presents a significant challenge (synchro-



Fig. 1. The scalability challenge and hardware overview of main HPC
MeluXina modules and how they fit various ML pipeline components.

Fig. 2. The AIMSS active push-based storage approach versus passive pull-
based state of the art (SOTA) storage approach. AIMSS manages resources
depicted in blue in Figure 1 and integrates with LLM-engines for training
through the push-based streaming execution model.

nized power fluctuations across tens of thousands of GPUs
can strain data center power grids, potentially reaching tens
of megawatts). To address this, our third goal is to mitigate,
and potentially eliminate, this power jitter through a unified
AIMSS and computing engine enabled by our proposed push-
based streaming execution model. By leveraging AIMSS’s
awareness of remaining computations, derived from hints
within data streams, we can efficiently utilize idle GPU
resources during synchronization tasks such as checkpointing,
which often takes tens of seconds. This active resource man-
agement, enabled by AIMSS’s in-memory storage capabilities,
promises to reduce power jitter by dynamically scheduling
other tasks on otherwise idle GPUs.

Therefore, the central research question driving our envi-
sioned AIMSS is: How can we efficiently (in terms of en-
ergy, performance, and developer transparency to exascale
deployments) scale in and scale out large-scale ML/AI
pipelines on HPC infrastructure in a fault-tolerant man-
ner? This paper is structured as follows: Section II introduces
the architecture and design principles of AIMSS. Section III
presents a novel push-based stream-based programming model
for AIMSS. Section IV explores the architectural optimizations
enabled by AIMSS. Section V discusses related work and
highlights AIMSS’s vision for optimization contributions.

II. THE AIMSS APPROACH

Our key insight is that closely integrating (in-memory)
storage and processing for ML by delegating data movement
control from the application to the storage layer, as our AIMSS
proposes, will lead to various optimizations (explained later).
Our global vision for AIMSS is a unified storage and compute
architecture for ML/AI processing on HPC infrastructure,

powered by a push-based streaming execution model with
the following key benefits:

• Unified CPU-GPU Deployment and Optimized Per-
formance: AIMSS will be deployed across CPU-GPU
HPC infrastructure, leveraging their combined memory
resources to support a push-based stream-based pro-
gramming model (as depicted in Figure 2). This unified
approach will facilitate efficient data movement and pro-
cessing at HPC exascale.

• Transparent Scalability and Resiliency: AIMSS will
provide users with transparency and resiliency while au-
tomatically scaling ML pipelines on HPC infrastructure.
This will empower users to focus on their core research
and development tasks without being burdened by the
complexities of manual scaling and fault tolerance storage
management.

AIMSS manages various data movement operations in sup-
port of processing engines that typically deploy pipelines
of operators, including source and sink operators. Source
operators fetch input data from a distributed storage system
(e.g., disk-based file or caching systems) using a pull-based
approach. Sink operators, on the other hand, write data to
the storage system using a push-based approach. In addition,
shuffle operators are responsible for redistributing data based
on partitioning methods, such as key-based partitioning. Tra-
ditionally, the storage system plays a passive role, respond-
ing to read/write requests, while the shuffle mechanism is
implemented at the application level. Managing source, sink
and shuffle data movement, AIMSS will have a global I/O
overview advantage over current approaches.

Recognizing that data-intensive applications (e.g., real-time
streaming, LLM training) require continuous data movement
(input, output, and shuffling), we propose the AIMSS strategy



Fig. 3. The novel AIMSS architecture for scalable, unified storage and ML
processing comprises coordinators (managing metadata and system com-
ponents), CPU-based Storage Brokers, e.g., [8], interacting with file/cache
systems to fill the CPU-GPU-based Application Cache components that
are managing host and kernel memory for the application through push-
based stream buffers, e.g., [9]. Unlike existing in-memory streaming storage
systems, AIMSS uniquely targets both CPU and CPU-GPU memory,
enabling optimized, unified data movement across heterogeneous compute
resources.

Fig. 4. Our novel approach to fast crash recovery for unified in-memory
log-structured storage, e.g., [10], builds on AIMSS’s push-based model,
enabling recovery from the last recorded application consumer/producer
offsets. This design allows for faster recovery compared to traditional
methods that require full log recovery. By focusing only on relevant
application stream offsets, AIMSS significantly reduces the overhead
associated with restoring large-scale applications after crashes.

to delegate these operations to the AIMSS itself. Our strat-
egy works as follows: Source operators register their input
stream requirements (including any filtering functions) with
AIMSS, which then proactively fills input buffers using a
push-based approach. Sink operators operate on pre-registered
stream buffers and notify AIMSS when data is ready to be
written, triggering asynchronous persistence to disk and buffer
reuse. Shuffle operations function similarly, allowing AIMSS
to reorganize input stream buffers asynchronously.

Our vision of decoupling data movement operations from
processing operators is realized through the AIMSS middle-
ware layer that sits between the disk-based file storage system
and application engines deployed on, for example, CPU-
GPU nodes. Furthermore, AIMSS manages both CPU and
GPU host memory and integrates with GPU device memory
through native code (e.g., CUDA streams), using a push-
based approach. Garbage memory collection is managed at the
AIMSS level. All stream metadata is registered with AIMSS
before and during deployment when Source, Sink, and Shuffle
operations are delegated. When an application crashes or shuts
down, AIMSS automatically cleans up its associated active
streams.

Optimizing data movement for enhanced scalability, better
performance, faster data and application recovery, and reduced
power jitter at exascale is significantly more efficient when
managed at the AIMSS data system level. While there are
potential challenges for efficiently managing metadata for a
massive number of streams, AIMSS contrasts with today’s
approach, where this burden often falls on application devel-
opers and their engines, leading to sub-optimal performance
and increased complexity.

III. OUR PROPOSAL: A PUSH-BASED STREAMING
PROGRAMMING MODEL FOR ENABLING AIMSS

The core concept of our vision is integrating stream phases
for both read and write I/O-intensive operations, including
shuffling. This integration provides valuable insights into
application data access behavior, enabling the stream storage
layer (i.e, AIMSS) to optimize I/O performance, minimize
I/O interference, and enhance both checkpointing efficiency
and recovery speed. By replacing traditional passive storage
approaches with the AIMSS framework, application develop-
ers can unlock significant performance gains and benefit from
transparent data management workflows (e.g., avoid tuning ef-
forts). Storage system techniques can more efficiently develop
better data movement optimizations compared to letting this
effort on developers.

Execution model APIs. The following listing outlines the
essential APIs for the AIMSS push-based streaming execution
model. Compute engine’s consumers and producers operators
(e.g., GPU kernel tasks) create streams to interact with shared
in-memory buffers managed by AIMSS through these APIs.
Source, sink and shuffle operators delegate their read and write
IO actions to AIMSS that is responsible to manage these push-
based shared stream buffers.

1 C r e a t e S t r e a m ( P a r e n t S t r e a m I d , I n p u t S o u r c e ,
P a r t i t i o n I d , K e r n e l R e a d W r i t e A t t r i b u t e s ) : r e t u r n
s t r e a m I d # I n i t i a l i z e a new s t r e a m on AIMSS .
Usage f o r r e a d or w r i t e s p e c i f i e d . R e t u r n s a
un iq ue s t r e a m I d .

2 ReadFrom ( S t r e a m I d ) # P r o v i d e s a s e t o f s h a r e d
S t r e a m B u f f e r s t o i t e r a t e ove r

3 WriteTo ( St reamId , S t r e a m B u f f e r ) # Wr i t e s t r e a m B u f f e r
’ s c o n t e n t t o a s p e c i f i e d s t r e a m .

4 S h u f f l e S t r e a m ( S t r e a m I d ) # S i g n a l s h u f f l e r e a d y .
5 S h u f f l e S t r e a m s ( P a r e n t S t r e a m I d ) # S h u f f l e s t a r t s when

a l l s t r e a m I d s o f P a r e n t S t r e a m I d a r e r e a d y
6 D e s t r o y S t r e a m ( S t r e a m I d )



AIMSS replaces the passive storage consumption model
APIs. The traditional file-based storage model involves the
application compute engine directly managing memory buffers
and coordinating data movement. Unlike AIMSS, this ap-
proach requires the application to orchestrate tasks such as
creating and reading files, writing data, shuffling files based on
partition functions, and managing deletions. With AIMSS, the
resulting overhead, including stream buffer management and
data transfer coordination, can be minimized through strategies
such as asynchronous data movement and efficient buffer reuse
mechanisms.

IV. DATA-BASED ARCHITECTURAL OPTIMIZATIONS
ENABLED BY AIMSS

The rationale behind a push-based streaming model, in
addition to its low-latency processing advantages (see [9]),
stems from the continuous and bursty [5] data processing
requirements of use cases like LLM training and real-time
stream processing, which often involve petabytes of input data
and checkpointing data with tens of TB/s peak throughput.
By proactively managing data movement (input, output, and
shuffling), a push-based stream storage system minimizes GPU
idle time, reduces costs, and enables optimizations not easily
achievable with a pull-based model, such as reduced I/O
interference, faster recovery, straggler mitigation, and higher
ingestion/checkpointing throughput. Moreover, the application
knowledge insights provided by the push-based protocol’s
offsets eliminate the need for complex ML models and moni-
toring infrastructure to predict access patterns, simplifying the
optimization process.

Traditionally, research engineers manually tune data par-
titioning, chunking, shuffling, checkpointing, and recovery
during LLM training iterations. AIMSS, through the push-
based model interactions, transparently manages these data
movement operations on both consumer (input processing and
recovery) and producer (shuffling, checkpointing) processes.
Shifting data movement control from the application to the
storage layer enables better optimization of ingestion and
recovery due to its inherent application knowledge provided
by stream access patterns available now to AIMSS.

Given the cost-effectiveness of CPU memory compared
to expensive high-end GPUs, we advocate for aggressively
optimizing data movement into and out of GPUs, leveraging
AIMSS as a smart cache that provides needed storage features
like availability and durability. Moreover, hardware trends
(better interconnects [11], faster memory) will support our
radical data movement approach. Beyond fast, scalable and
dynamic data access, AIMSS provides two additional benefits:
simplified fault tolerance implementation and the ability to
detect stragglers easier (Application Cache nodes provide
metadata of application compute tasks that may exhibit slower
progress during training iterations).

As exemplified in Figure 3, AIMSS will address partial
recovery by leveraging log-structured in-memory storage [12]
and push-based data movement, potentially over RDMA tech-
nology [13].

A key technical implementation challenge lies in optimizing
the pipeline of GPU kernel computations and push-based data
feeding of GPUs. Leveraging dynamic stream partitioning and
push-based data movement for processing, AIMSS provides a
foundation for simplifying application scalability. GPU kernels
create and manage streams (see the previous section APIs) by
interacting with the colocated Application Cache.

Critical questions include determining suitable data dy-
namic partitioning and program parallelism mechanisms for
efficiently feeding multiple GPUs, and how to cache these
datasets to ensure applications are not delayed. Another aspect
is designing and developing a push-based approach for CPU
to CPU-GPU nodes integration and examining its trade-offs
in terms of availability, partitioning, performance, and fault
tolerance.

Current storage and processing systems often handle re-
covery independently, lacking the application-level insights
needed for efficient recovery prioritization. AIMSS addresses
this by leveraging stream offsets within its log-structured [10]
storage design (illustrated in Figure 4). Upon a crash, AIMSS
prioritizes recovering logs starting from the application’s last
consumed offsets, ensuring rapid access to the data needed for
immediate application restart. This contrasts with traditional
systems that perform full log recovery, incurring unnecessary
overhead and delaying application restart.

V. RELATED WORK

Enabling the unified AIMSS architecture requires the inte-
gration of several functional components. Data Ingestion [14]
acquires, buffers, and temporarily stores in-memory fast data
streams and raw file data. Data (persistent/caching) storage
[15] provides durability, availability, and fault tolerance. Fi-
nally, big data processing [16] and ML/AI analytics [17],
[18] enable ML/AI applications to efficiently consume data
streams.

In contrast to monolithic architectures, e.g., [19], which can
optimize data-related tasks more efficiently, these decoupled
layered architectures do not easily benefit from such cross-
layer optimizations. While each specialized component bene-
fits from an open-source community, coupling these compo-
nents in complex architectures often results in a trade-off be-
tween productivity and performance/cost efficiency. However,
emerging approaches like push-based streaming integration,
as demonstrated by KerA [20], offer a feasible path towards
achieving both modularity and optimized data movement in
unified architectures like AIMSS.

Apache Kafka [21], [22], a CPU-only cloud stream storage
solution, will not scale at HPC exascale and it requires time-
consuming and costly manual data re-partitioning, lacking
support for partial recovery. AIMSS could build over our in-
memory storage system KerA [8]–[10], [20], leveraging its
dynamic partitioning and push-based streaming integration,
although it currently lacks support for GPUs as argued in this
paper. While fault-tolerant storage systems typically fully re-
cover crashed nodes [23], they often do so without considering
application-specific needs [24].



Notably, no existing system fully embodies the AIMSS
active data movement approach. Consequently, efforts for
straggler mitigation and multi-application I/O interference mit-
igation typically rely on resource-intensive monitoring tools,
often introducing significant overhead. While AIMSS utilizes
CPU memory to manage metadata and orchestrate data move-
ment, the potential performance gains and reduced operational
costs associated with its active approach can outweigh the
expense of the additional CPU memory required.

As we previously argued in [9] for a push-based streaming
model across the computing continuum, more recent research
on data flow in modern hardware [25] also supports the
concept of stream processing [26] across the entire archi-
tecture. However, while their focus is primarily on reducing
data movement, and thus orthogonal to ours, AIMSS takes a
distinct data movement approach to seamlessly integrate with
and enhance existing processing engines. To ensure AIMSS’s
correctness and robustness (e.g., [27]), we plan to employ
a holistic design approach enabled by TLA+ [28], [29], a
language specifically designed for specifying and verifying
concurrent and distributed systems.

VI. CONCLUSION

Our envisioned AIMSS, with its push-based streaming exe-
cution model, offers a compelling paradigm shift for managing
data in exascale applications. By leveraging data immutability,
application access patterns, and system-storage-level control
over data movement, AIMSS promises to improve resource
utilization, minimize GPU idle time, and simplify fault toler-
ance, while trading off CPU memory. By removing the burden
of tuning data movement from application developers, AIMSS
enables optimizations not easily achievable with traditional
in-application-based methods. The design specification, im-
plementation and evaluation of a unified AIMSS and ML/AI
architecture will be the focus of our future work.
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