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Abstract:
The desire to enhance cyber-physical systems (CPS) with cognitive capabilities represents a 
significant step forward in the evolution of robotics and intelligent automation. This paper 
focuses on the application of cognitive architectures to create cognitive CPS with the ability to 
perceive, reason and learn autonomously and also capable of interacting with the environment 
and human users in a meaningful and adaptive way. The analysis compares various cognitive 
architectures, highlighting their strengths and limitations for integrating cognitive functions into CPS. 
It examines how each framework supports cognitive processes such as sensory integration, 
attention management, action selection, memory recall, learning mechanisms and reasoning 
abilities.
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1. INTRODUCTION

In the rapidly evolving field of Cyber-Physical Systems 
(CPS), we are facing a technological revolution driven by 
advances in sensing, computing, communication and actu-
ation. These systems, which include innovations such as 
self-driving cars and driverless vehicles, aren’t just about 
automation; they’re redefining the way we interact with 
the world Bogdan and Pedram (2018). However, the real 
challenge for CPS is not just to operate autonomously, but 
also to operate intelligently in the complex and uncertain 
world we live in. Thus, the concept of human-like intelli-
gent machines is based on the idea that these machines can 
offer considerable benefits through their ability to interact 
and cooperate closely with humans. This derives from the 
idea that a machine endowed with human-like intelligence, 
or cognitive machine, will be better able to communicate 
with humans, not only through language, but also through 
various forms of interaction, both explicit and implicit Sun 
(2020). One of the main reasons for developing human-
like intelligent machines is their ability to act as effective 
partners to humans. A machine with human-like charac-
teristics is easier to understand and use. Another critical 
aspect is the establishment of trust between humans and 
machines. True social trust, the kind we feel between our 
fellow human beings, is based on shared motivations and 
experiences. For machines to gain this level of trust, they 
need to demonstrate intrinsically human behaviors and 
motivations. This includes understanding and responding to 
human emotions and motivations Sun (2006).

Cobots (collaborative robots) as a CPS have become in-
creasingly popular in recent years. Although cobots are de-
signed to work safely with humans, there are still concerns 
about their ability to make decisions autonomously. To

realize these potentials, we need a deeper computational 
understanding of the human mind. The human mind and its 
higher cognitive functions (e.g. learning, memory, lan-guage 
and complex problem solving) provide the basis for the 
creativity and ingenuity needed to flexibly meet new 
challenges Bocklisch et al. (2022). Consequently, social 
and technical developments should be harmonized - if 
possible at an early conceptual stage - on the basis of thor-
ough technology assessments and a holistic understanding of 
systems. Such developments could lead to augmented 
cognitive systems and symbiotic cognitive-cyber systems, 
where human attributes of machines significantly enhance 
their usefulness in various domains Sun (2020). To this 
end, transdisciplinary cooperation between the humani-
ties/social sciences and science and technology is required 
Madni (2018).

At present, most CPS are designed for specific tasks and 
lack the ability to reflect on their actions or adapt to new 
situations. The future of CPS depends on their ability not 
only to perform tasks, but also to discover and learn new 
ones, to understand and adapt to their environment, and to 
make informed decisions in scenarios for which they have 
not been explicitly programmed Bogdan and Pedram (2018). 
This reality requires a level of cognition - the ability to 
understand complex situations, make proactive decisions 
and learn from new experiences. It’s not enough for these 
systems to follow pre-established instructions; they must 
have the ability to think, adapt and evolve. A crucial 
dimension of this evolution concerns the devel-opment of 
cognitive architectures that promote interop-erability 
between human-centered systems and cognitive CPS 
Gaffinet et al. (2023), emphasizing the importance of 
designing systems that are not only technically advanced 
but also deeply integrated into the social and human fab-



ric. These architectures play a pivotal role in the advent of
Cyber-Physical Social Systems (CPSS) Yilma et al. (2021)
and Cyber-Physical Human Systems (CPHS) Netto and
Spurgeon (2017), where the human and social dimension
is at the heart of technological design Annaswamy et al.
(2023).
In this article, we will examine in detail the importance of
cognitive architectures and the benefits they bring to the
implementation of cognitive capabilities within CPS. We
will analyze various cognitive architectures, evaluating and
comparing their functionalities for each cognitive function.
The aim is to identify the key differences between these
architectures in order to select the one that corresponds
most effectively to our specific criteria for making CPS
cognitive. This comparison process will help us understand
which architecture can most effectively integrate cognitive
capabilities into CPS, thus ensuring enhanced performance
and autonomy for these systems, and better collaboration
between these systems and with humans too. The discus-
sion will be developed in the following sections, where we
will examine cognitive aspects from a psychological and
technological perspective (section 2), explore the role of
cognitive architectures in the development of cognitive
systems (section 3), compare various architectures and
their abilities to support cognitive CPS (section 4), and
present our final selection (section 5). We conclude with
the main results of our research, and look ahead to future
developments (section 6).

2. COGNITIVE SYSTEMS

In the industrial field, cognition, when applied to tech-
nological systems, is at the heart of the interaction be-
tween these entities for the execution of tasks and the
understanding of information, from basic knowledge to
complex concepts Angulo et al. (2023). Existing cognitive
systems are designed to observe, adapt and constantly
improve through experience. The interest in developing
cognitive CPS lies in the objective of taking this capacity
for adaptation and automatic learning even further, in
order to meet specific and complex needs. Based on our
systematic literature review Ali et al. (2024), which exam-
ines definitions of cognition, explores cognitive functions
and the technologies used to integrate these functions
in industrial systems, CPS and digital twins, we define
a cognitive system as a system that integrates cognitive
functions inspired by the functioning of the human brain,
capable of learning, reasoning and decision-making. They
can interact naturally with humans and continuously im-
prove through their ability to adapt. Cognitive functions
are mental processes involved in knowledge acquisition, in-
formation manipulation and reasoning Kiely (2014). These
functions include perception, memory, learning, attention,
reasoning, decision-making, problem-solving and linguistic
abilities Vernon et al. (2007). They can be implemented in
CPS that enable them to process and understand complex
information, making it easier to solve a variety of problems
and perform complex tasks. In our review Ali et al. (2024),
it has been found that to build cognitive systems, we
can refer to cognitive architectures as one of the enabling
technologies, which are essential for the design of entities
capable of emulating the complexity of the human mind
for computational implementation Naudet et al. (2023).

The following section presents cognitive architectures that
support the implementation of machine cognition into
technological industrial systems, here reduced to CPS, in
a way that is close to human cognition.

3. OVERVIEW OF COGNITIVE ARCHITECTURES

Cognitive architecture is a theory of the fixed mechanism
and structures that underlie human cognition Lehman
et al. (1998). In automation, the term cognitive is used
at a higher level than in cognitive science Bunte et al.
(2019). A cognitive architecture in the automation field
autonomously adapts the process to new situations, for ex-
ample by creating an adjusted production plan in the event
of a module failure. Secondly, these cognitive architectures
are essential to the creation of cognitive machines because
of their fundamental role in the design of more intuitive,
adaptive and efficient AI systems, capable of problem-
solving, decision-making and learning. They are essential
because they enable complex and prolonged interaction
with the environment, going beyond simple instantaneous
reactions to include complex reasoning and continuous
learning. Inspired by biological cognition, they facilitate
a more natural imitation of information processing and
intelligent behavior. By focusing design efforts on content,
such as the selection of relevant knowledge and problem-
solving strategies, they enable automatic management of
the learning and application of this knowledge Kurup and
Lebiere (2012). This is advantageous for several reasons:
(1) Adaptability: Cognitive architectures enable systems

not only to learn from experience, but also to rea-
son, understand and make decisions autonomously,
reflecting the complexity and flexibility of the human
brain.

(2) Efficient processing: They are oriented towards fast
cognitive processes, minimizing the need for intensive
calculations or large amounts of memory.

(3) Multi-functionality: Capable of handling general-
purpose tasks in multiple domains, these architec-
tures support the collaboration of heterogeneous soft-
ware systems to solve a variety of problems.

(4) Artificial agent control: Designed to direct agents,
whether operating in virtual worlds or as physical
robots in the real world, they provide a solid founda-
tion for artificial intelligence Thórisson and Helgasson
(2012).

Architectures also target a diverse set of cognitive func-
tions, although learning, reasoning, planning and memory
seem to be more common than others.
In our research work, we explore the integration of cog-
nitive architectures within CPS to develop cognitive in-
teroperability Naudet et al. (2023). We aim to equip the
CPS with cognitive capabilities, enabling them to perceive
their environment, understand the intentions of their col-
laboration partners (whether humans or machines such as
robots) and make intelligent decisions that promote effec-
tive collaboration. Cognitive architectures are investigated
as the computing component to bring such human-like
cognitive functions. To do this, several criteria need to be
taken into account. Listed below are the key requirements:



• Ability to perceive and understand the environment:
The architecture must enable cobots to analyze sen-
sory data to understand their environment in real
time.

• Interpretation of intentions: It must provide the tools
to interpret the intentions and actions of collabora-
tion partners, whether human or CPS, to enable fluid
interaction.

• Intelligent decision-making: It should facilitate au-
tonomous decision-making based on perceived and
interpreted data, enabling cobots to choose the most
appropriate actions to achieve the common goal.

• Computational efficiency: It must offer sufficient com-
putational efficiency to enable rapid information pro-
cessing, essential for real-time interactions in a dy-
namic environments.

• Flexibility: It should be flexible enough to adapt to
different scenarios.

To identify the architecture that satisfies these require-
ments, the following section (4) proposes a detailed com-
parison between different cognitive architectures.

4. COMPARISON BETWEEN COGNITIVE
ARCHITECTURES

Here we review architectures that have been developed
with the aim of integrating cognitive functions into CPS.
According to Schaat et al. (2015), cognitive architectures
can be classified into three categories. Symbolic archi-
tectures, like SOAR, ICARUS and NARS, use high-level
symbols representing objects or concepts to deduce courses
of action, focusing on structured reasoning and decision-
making processes. Emergent architectures, like IPCA and
NOMAD, , work by propagating low-level activation sig-
nals in networks, focusing on self-organization and adapt-
ability, with a variety of neural network models. Hybrid
architectures, like ACT-R, CLARION, LIDA and DUAL,
combine the characteristics of symbolic and emergent ar-
chitectures.
Based on this article Kotseruba and Tsotsos (2020), which
compares several cognitive architectures through their cog-
nitive skills such as perception, attention mechanisms,
action selection, memory, learning, reasoning and metar-
easoning, we have selected four cognitive architectures:
SOAR, ACT-R, LIDA, and CLARION. This selection is
not only based on their reputation, but on concrete evi-
dence of their adaptability to constantly changing environ-
ments, their ability to handle complex information, their
versatility in a multitude of functions, and their proven
experience in enhancing interactions between humans and
CPS. In what follows, we present a detailed comparison of
these four architectures, focusing on their performance in
each cognitive function.

4.1 Perception

Regardless of its design and purpose, an intelligent system
cannot exist in isolation and needs input to produce behav-
ior. Although historically all major cognitive architectures
have focused on high-level reasoning, it is becoming clear
that perception and action also play an important role
in human cognition Anderson et al. (2004). Perception

is a process that transforms raw data into an internal
representation of the system, enabling cognitive tasks to
be performed. In the following, we compare the selected
cognitive architectures according to two main sensory
modalities: vision and multimodal perception.

Vision Table 1 represents a systematic comparison of
the visual processing capabilities of key cognitive archi-
tectures, providing an overview of their performance in
different sensory modalities. Real Vision refers to the ar-
chitecture’s ability to process visual data from physical
sensors. Simulated Vision refers to how the architecture
handles visual data in a simulated environment. Stages
of Visual Processing represents the number of visual pro-
cessing steps the architecture can perform: 1. Feature
detection. 2. Grouping into objects. 3. Object labeling.
4. Building spatial relationships. 5. Contextualization. 6.
deep scene interpretation.

Table 1. Comparison of Visual Processing Ca-
pabilities in Different Architectures

Archi-
tecture

Real
Vision

Simulated
Vision

Stages
of visual
processing

SOAR Partial Basic 1-2
ACT-R Partial Advanced 1-4
LIDA Advanced Advanced 1-6
CLARION Partial Basic 1-3

For ACT-R, advanced visual processing covers from initial
detection of visual features to contextual interpretation,
spanning four process steps. This indicates a thorough
integration of visual perception, from the recognition of
edges and colors to the contextualization of objects in
their spatial environment. SOAR and CLARION, while
also processing visual information, are limited to initial
stages, focusing more on identifying and grouping features
into objects without reaching the complexity of spatial
relationships or contextual interpretation. LIDA stands
out for its ability to perform complete visual processing, in-
cluding additional steps such as the construction of spatial
relationships and advanced contextualization, enabling a
rich and nuanced understanding of the visual scene.

Multi-modal perception Table 2 highlights the multi-
modal perceptual processing capabilities of different cogni-
tive architectures. Integration of sensory modalities mea-
sures the architecture’s ability to combine information
from different sensory modalities, such as sight and hear-
ing, to create a unified perception. Cross-modal interaction
evaluates whether the architecture can handle interactions
between different sensory modalities.

Table 2. Comparison of multi-modal percep-
tion capabilities in different architectures

Architecture Integration
of sensory
modalities

Cross-modal
interaction

SOAR Basic Limited
ACT-R Advanced Limited
LIDA Advanced Yes
CLARION Partial Limited



Table 2 shows that ACT-R and LIDA are advanced in the
integration of sensory modalities, with LIDA also distin-
guished by its ability to enable cross-modal interactions.
SOAR and CLARION offer basic sensory integration with
limited cross-modal interactions.

4.2 Attention

Perceptual attention enables the selection of relevant in-
formation and the filtering of irrelevant information from
incoming sensory data. ACT-R and LIDA stand out for
their advanced suppression, selection and restriction mech-
anisms, indicating a superior ability to handle information
overload and focus on relevant elements in complex vi-
sual scenes. These systems can implement these attention
mechanisms in both real and simulated vision contexts.
Conversely, SOAR and CLARION have basic capabilities
in these same areas.

4.3 Action selection

Action selection determines at any point in time “what to
do next”. ACT-R takes a moderate approach to decision
flexibility through rule-based assessment. SOAR, on the
other hand, shows great flexibility thanks to its hierar-
chical learning. LIDA and CLARION stand out for their
very high flexibility and the integration of emotions in
decision-making, with CLARION adding mixed symbolic-
connectionist learning.

4.4 Memory

Memory is an essential component of any cognitive model,
whether that model is used to study the human mind or to
solve engineering problems Kotseruba and Tsotsos (2020).
Thus, cognitive architectures have memory systems that
store intermediate results of computations, enabling learn-
ing and adaptation to the changing environment. Memory
is described in terms of duration (short and long term)
and type (procedural, declarative, semantic, etc.). Long-
term storage is subdivided into semantic, procedural and
episodic types, which respectively store factual knowledge,
information about actions to be taken under certain con-
ditions, and episodes of the system’s personal experience.
Short-term storage is divided into sensory and working
memory. Sensory or perceptual memory is a very short-
term buffer that stores many recent percepts. Working
memory is a temporary storage of percepts that also con-
tains other elements related to the current task, and is
often associated with the current focus of attention. ACT-
R and SOAR share a similar approach, relying on active
working memory and long-term memory that combines
declarative and procedural elements. LIDA stands out
with perceptual sensory memory and episodic working
memory, indicating an ability to maintain recent sen-
sory information for more complex processing. CLARION,
however, presents no sensory memory but focuses on a
working memory model integrating both bottom-up and
top-down processes, and a long-term memory that clearly
distinguishes between implicit and explicit components.

4.5 Learning

Learning is the ability of a system to improve its perfor-
mance over time Kotseruba and Tsotsos (2020). Learn-

ing is divided into two categories: declarative and non-
declarative knowledge acquisition, which includes percep-
tual, procedural, associative and non-associative types of
learning Squire (1992). ACT-R stands out for its multi-
functionality, with capabilities in declarative learning via
chunking and in procedural learning through the use of
Explanation-Based Learning (EBL) Minton et al. (1989),
as well as in associative learning for action adjustment.
SOAR, on the other hand, focuses primarily on procedural
learning by creating and managing rules via EBL, with no
specific indications for perceptual, declarative, associative
or priming learning. LIDA is unique in asserting a per-
ceptual learning capability and using an activation model
for priming, suggesting a facility for preparing the system
for efficient information processing. CLARION appears
to focus on declarative and procedural learning, with the
ability to extract and induce rules and knowledge, while
recognizing the importance of priming in the form of
positive and negative priming.

4.6 Reasoning

ACT-R relies on probabilistic and inductive reasoning,
using rule-based inference to simulate long-term declar-
ative memory that mirrors human behavior Kotseruba
and Tsotsos (2020). This approach enables ACT-R to
produce reasoning behaviors that closely match the results
observed in human experimental studies Nyamsuren and
Taatgen (2014). In contrast, CLARION encompasses a
broader spectrum of reasoning processes by integrating
symbolic and sub-symbolic mechanisms that enable it to
model deductive, inductive, analogical and heuristic rea-
soning. This gives it the ability to capture a diversity
of psychological phenomena beyond traditional reasoning
frameworks Hélie and Sun (2014).

4.7 Metacognition

Metacognition Flavell (1979), defined as thinking about
thinking, is a set of skills that enable us to monitor internal
processes and reason about them. Certain architectures
thus demonstrate a form of introspection and adaptation,
key aspects of metacognitive thinking. ACT-R applies a
theory of mind model to a mobile robot, enabling it to rec-
ognize and adapt its behavior to changes in human activ-
ities. SOAR focuses on improving learning by building on
previous experience and eliminating ineffective strategies.
CLARION, on the other hand, implements metacognition
by assessing confidence in task-related knowledge.

5. DISCUSSION

Unlike traditional automated systems that operate on
the basis of predefined responses, cognitive architectures
are distinguished by their ability to interact dynamically,
without relying on predefined scenarios or responses. They
provide a platform for integrating a variety of advanced
cognitive functions, including metacognition, enabling self-
assessment and self-improvement. These capabilities are
crucial for systems that must not only act, but also reflect
on their actions and decisions. Traditional automation
tools, such as fixed control algorithms or rule-based sys-
tems, lack this essential capacity for reflection and adap-
tation.



Subsequently, we can deduce the strengths and weaknesses
of each cognitive architecture. SOAR offers a generalist ca-
pability for modeling a variety of cognitive behaviors, with
a remarkable aptitude for reasoning. Nevertheless, SOAR
is less able to support continuous learning and perceptual
skills, although it is advantageous for solving complex,
structured problems. ACT-R stands out for its strong
symbolic component, and is highly effective in modeling
human cognitive tasks and rule-based decision-making.
However, it is less effective in changing environments and
in real-time perception, although it has significant poten-
tial for structured and symbolic tasks. LIDA is particu-
larly effective in modeling consciousness and perception,
adapting effectively to dynamic environments, despite its
notable implementation and calibration complexity, which
makes it particularly suitable for dynamic interaction with
the environment. Finally, CLARION strikes a balance
between symbolic and sub-symbolic elements, covering
both explicit and implicit learning, in addition to social
cognition and motivation. This complexity, which is an
integral part of its architecture, may pose challenges, but it
is well suited to social interaction and continuous learning,
crucial aspects for human-robot collaboration.
Taking into account the analysis presented in section 4,
which evaluates various architectures with regard to their
cognitive functions, the LIDA architecture proves to be
the ideal choice for CPS requiring cognitive integration, it
proves to be particularly suitable for a range of relevant
reasons. This architecture is distinguished by its deep sup-
port for complex perceptual processes, enabling efficient
analysis and synthesis of sensory information from multi-
ple sources. LIDA’s ability to simulate consciousness and
process information sequentially and in parallel aligns with
human cognitive processes, facilitating adaptive decisions
and reactions in dynamic environments. Its memory model
is particularly advanced, supporting not only the stor-
age and retrieval of information, but also the continuous
learning that is essential for the autonomous evolution of
CPS. LIDA’s flexibility in reasoning, incorporating both
inductive and deductive methods, enables it to solve a
variety of problems and model realistic scenarios, a cru-
cial feature for cognition in unpredictable contexts. Its
ability to integrate metacognition reinforces its potential
for self-improvement and self-supervision, key elements
for advanced cognition. Furthermore, LIDA, our selected
architecture, has been experimentally tested in this article
Lv et al. (2023) to perform autonomous maintenance of
machine tools via self-construction, self-assessment and
self-optimization, showing good results. All these advan-
tages meet our requirements set out in section 3: the
ability to perceive and adapt to the environment, interpret
intentions, make intelligent decisions, computer efficiency
and flexibility. They also validate our decision to choose
LIDA as the ideal cognitive architecture to equip CPS with
cognitive capabilities.

6. CONCLUSION AND PERSPECTIVES

Choosing a cognitive architecture as the foundation for
cognitive CPS is a necessity if we are to achieve a degree
of intelligence and interaction that is truly in tune with
human capabilities. In our analysis, LIDA appears to be
the cognitive architecture best suited to our objectives,

notably because of its advanced capabilities in multimodal
perception, memory and learning, flexibility in attention
and action selection, and its integrated approach to con-
sciousness and reasoning. These elements are fundamental
to realizing CPS that can interact naturally and intuitively
with humans, taking social interactions into account, and
to establishing true cognitive interoperability between ma-
chines and human beings.
As part of our future projects, we plan to implement this
cognitive architecture in a real-life scenario, by integrating
it into a cobot (collaborative robot) as a CPS. This prac-
tical implementation will aim to validate the effectiveness
of the LIDA architecture in an industrial context, by
observing how the cobot adapts and interacts with its
environment and with human operators. We expect that
the application of this architecture in a real-life case will
provide valuable insights into how cognitive CPS can im-
prove human-machine collaboration, enhance operational
efficiency and enrich workplace safety.
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