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Phoretic colloids self-propel thanks to surface flows generated in response to surface gradients 
(thermal, electrical, or chemical), that are self-induced and/or generated by other particles. Here 
we present a scalable and versatile framework to model chemical and hydrodynamic interactions 
in large suspensions of arbitrarily shaped phoretic particles, accounting for thermal fluctuations 
at all Damkholer numbers. Our approach, inspired by the Boundary Element Method (BEM), 
employs second-layer formulations, regularized kernels and a grid optimization strategy to solve 
the coupled Laplace-Stokes equations with reasonable accuracy at a fraction of the computational 
cost associated with BEM. As demonstrated by our large-scale simulations, the capabilities of our 
method enable the exploration of new physical phenomena that, to our knowledge, have not been 
previously addressed by numerical simulations.
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1. Introduction

The individual and collective dynamics of self-propelled phoretic particles have attracted significant attention in recent decades 
[1–5]. These particles move with phoretic flows generated on their surface in response to surface gradients (thermal, electrical, or 
chemical), which are self-induced and/or generated by other particles [6]. The most common realizations of such systems involve 
spherical and rod-like particles, for which a plethora of individual and collective phenomena have been documented both theoret-

ically and experimentally. Examples include rheotaxis [7–11], gravitaxis [12–14], dynamical clustering and self-assembly [15–22]. 
Recent studies have explored particles with more intricate shapes, such as fore-aft asymmetric catalytic particles [23,24] used for the 
collection and degradation of microplastics [25], rotating chiral particle [26,27] and stirrers [28,29], phoretic wind turbines [30] and 
pumps [31,32], shaped-programmed microtori for particle transport [33], L-shaped swimmers following circular orbits [34], tadpole-

shaped catalytic swimmers with shape-programmed trajectories [35,36], phoretic fibers and sheets whose motion is modulated by 
dynamic deformations [37–40], and diamond-like photocatalytic particles [41].

The emerging motion and patterns reported in these works result from the interplay between phoretic and hydrodynamic in-

teractions between the suspended particles and the bounding walls. In the following we will mainly focus on self-diffusiophoretic 
motion, i.e. due to concentration gradients of solute particles that result from surface chemical reactions. Nonetheless, the framework 
presented below also applies to thermophoresis (temperature gradients), dielectrophoresis or induced-charge electrophoresis (electric 
potentials). Owing to the small particle size (𝑂(1𝜇m)) and the magnitude of the phoretic flows on their surface, the Péclet number 
characterizing the motion of the solute particles is small enough to neglect advection and consider only the diffusive part. The corre-

sponding Reynolds number is also small enough to neglect inertial and unsteady terms in the Navier-Stokes equations governing the 
flow around the particles. As a result, modeling the hydrochemical interactions at play in these systems requires solving sequentially 
two problems: a Laplace problem for the solute concentration field, subject to boundary conditions dictated by the chemical reactions 
on the particle and wall surfaces, and then a Stokes problem for the particle velocities, subject to phoretic slip surface velocities 
induced by the solute gradients obtained from the Laplace problem.

Both problems, being elliptic, have an integral representation from which a multipolar expansion can be derived. Low order 
multipolar expansions are typically used in far-field models, where the particle is represented by a series of singularities distributed 
at its center. The magnitude of the singularities is obtained from the boundary conditions on the particle surface. In the simplest 
models, only the slowest decaying singularities are accounted for and their strength is assumed to be constant, as if the particle was 
isolated [20,42,43]. Mutual interactions can be accounted for when computing the magnitude of these singularities, which is the 
case of the method of reflections [44]. These methods are mostly reliable in the far-field and do not account for the particle finite 
size and geometry. For spherical objects, the finite size of particles can be accounted for in truncated multipolar expansions by using 
Faxen’s laws, to obtain the singularity strengths, and including higher order moments which involve the particle radius, as done in 
Stokesian Dynamics [45], Laplacian Dynamics [46] and tensorial spherical harmonics [19,47]. Alternatively, the finite particle size 
can be accounted for with regularized kernels whose size is related to the particle radius, as in the Method of Regularized Stokeslets 
[48], the Force Coupling Method [49,50] or Immersed Boundary Methods [51]. The Method of Regularized Stokeslets is based on 
the Green’s functions of the Stokes problem, while Immersed Boundary Methods interpolate the flow computed on a grid. The Force 
Coupling Method works with both approaches [52,50,53].

At the other side of the spectrum, the Boundary Element Method (BEM) uses a direct discretization of the integral formulation 
of the Laplace and Stokes problems [54,55]. Thanks to its high accuracy, this method has been widely used to study the motion 
of isolated diffusio-phoretic particles with various shapes [56–58]. However, despite recent efforts to improve its scalability, BEM 
remains costly and cannot include thermal fluctuations in 3D. It also faces several numerical challenges due to the singular nature 
of the boundary integral operators (BIO). In the case of spherical particles, [59,60] diagonalized the BIO on the sphere surface with 
spherical harmonics, which allows to circumvent the discretization of singular integrals and efficiently evaluate self and near-field 
2

interactions [61]. In order to avoid handling singularities in the self and near-field interactions [62] used the regularized Stokeslet 
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kernel in the BIO. This allowed them to simulate phoretic particles with various shapes in conjunction with experiments [33] and 
theory [37,18].

While quite a few methods exist to solve the hydrochemical interactions between spherical particles in an efficient and scalable 
way, the current techniques at hand for non-spherical objects are expensive and limited to one or less than ten particles in dynamic 
simulations. Moreover none of these methods currently include thermal fluctuations, which might be important in these colloidal 
systems. It also worth noting that many of the cited studies focused on simplified models where the surface fluxes are assumed to be 
independent of the solute concentration (which might not be relevant at finite or zero Damkholer numbers).

In this work we propose a simple and flexible framework to model hydrochemical and steric interactions in large suspensions 
of phoretic particles with arbitrary shapes accounting for thermal fluctuations at all Damkholer numbers. Our method is directly 
inspired from BEM for the Laplace problem, and utilizes the rigidmultiblob (RMB) framework [63] for the hydrodynamic part. In 
order to optimize the performances of the method, we develop a grid optimization algorithm, inspired from [64], which matches the 
exact hydrodynamic response of slip-driven particles with coarse grids. These optimized coarse grids provide a 2-3 digits accuracy at 
a very small cost compared to BEM, which permits the simulation of large collections of phoretic particles of arbitrary shapes. Our 
approach therefore offers a novel alternative bridging the gap between far-field models and BEM. Far-field models are cost-effective 
but lack accuracy at moderate and short distances, whereas BEM is accurate across all distances but incurs high costs, even in the 
far-field. Our method achieves accuracy at moderate and short distances, all at a fraction of the cost associated with BEM.

We first introduce the equations that govern the solute concentration, the flow field and the motion of the suspended particles 
in Section 2. Then we write their integral forms and detail our method to discretize them with the RMB method, including thermal 
fluctuations. In addition, we improve the current RMB to better account for slip flows on the particle surfaces using a double layer 
formulation [65]. In Section 3 we propose a grid optimization procedure to match the exact hydrodynamic response of a single rigid 
particle of arbitrary shape with surface slip. We validate our method in Section 4 against analytical and numerical reference solutions 
from the literature. We find that even with a low resolution, as low as 42 nodes on the particle surface, our method with optimized 
grids matches reference solutions for isolated particles, and achieves close agreement in the near field.

Using the capacities offered by our new framework, we turn to the simulation of larger and more complex systems in Section 5. 
First we study the collective swimming of phoretic and Brownian Janus rods on an incline. It has been shown that a single par-

ticle can exhibit gravitaxis by tilting against the incline and swimming uphill against very steep slopes [14]. Here we investigate 
the effect of hydrochemical interactions on a whole suspension. We find that hydrochemical attraction suppresses gravitaxis and 
observes the emergence of small clusters that rearrange dynamically due to thermal fluctuations. These clusters rotate, translate 
or remain still, while sedimenting along the incline. The second simulation consists of a large collection of chiral particles with 
uniform surface properties confined by a harmonic potential above a no-slip wall. Thanks to its chirality, a single particle rotates 
by itself due to self-phoresis [26]. We show that a large collection of such particles exhibit nontrivial collective behaviors, such as 
the coexistence of an outer rim and an inner crystal rotating in opposite directions. Our framework can readily incorporate other 
types of phoresis, such as thermophoresis and electrophoresis. It has been implemented in a collaborative code on GitHub (https://

github .com /stochasticHydroTools /RigidMultiblobsWall) which is user-friendly and publicly available.

2. Governing equations and model

2.1. Governing equations

In this work we consider a fluid domain with a dissolved solute with concentration 𝑐 = 𝑐(𝒓) and, additionally, 𝑀 rigid colloids, 
{𝑚}𝑀𝑚=1, immersed in the fluid. We assume that the dynamics of the solute is dominated by diffusion, i.e. zero Péclet number. Thus, 
in the fluid domain the concentration diffuses according to the Laplace equation

𝐷𝛁2𝑐 = 0, (1)

with diffusion coefficient 𝐷.

The immersed colloids activate chemical reactions on their surfaces to produce or consume solute. Such reactions are introduced as 
boundary conditions of the Laplace equation. The boundary conditions are imposed on the concentration fluxes, i.e. Robin boundary 
conditions, and to simplify the mathematical problem we only consider linear boundary conditions. In particular, we consider sinks 
that consume solute at a rate proportional to the local concentration, sources that produce solute at a constant flux or a linear 
combination of both [66,67,50]

𝐷𝒏 ⋅𝛁𝑐 = 𝑘𝑐 − 𝛼 on 𝜕𝑚, (2)

where 𝒏 = 𝒏(𝒓) is the surface normal on the colloids, 𝑘 = 𝑘(𝒓) the surface reaction rate and 𝛼 = 𝛼(𝒓) the surface production flux, both 
of which can vary over the colloidal surface. The minus sign on front of the production flux is included for convenience so positive 
values of 𝛼 indicate production of solute. Since the reaction flux is proportional to the local concentration while the concentration 
diffuses with a finite diffusion coefficient 𝐷, this boundary condition allows to model either diffusive-limited or reaction-limited 
systems. The balance between diffusion and reaction is characterized by the Damköhler number, Da = 𝑘𝑅∕𝐷, which represents the 
ratio between the diffusive time over one colloidal radius, 𝑅2∕𝐷, and the reaction time scale 𝑅∕𝑘. Thus, the Damköhler number 
is large for diffusive-limited systems and small for reaction limited systems [51]. We verify in Sec. 4.3.1 that our approach works 
3

for arbitrary Damköhler numbers. Additional boundary conditions at infinity must be included. In general, we will consider two 
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scenarios: an unbounded domain and a half-space above an infinite plane wall. In the first case we will use the boundary condition 
𝑐 ←←←←←←←←←←←←←←←←←←←←→
𝑟→∞

𝑐∞. In the second case we will also assume a zero flux of concentration through the wall.

The fluid domain not only diffuses the solute but also carries the hydrodynamic interactions between colloids. The fluid flows are 
modeled as viscous dominated, and thus governed by the Stokes equations [55]

−∇𝑝+ 𝜂∇2𝒗 = 𝛁 ⋅, (3)

∇ ⋅ 𝒗 = 0, (4)

where 𝒗 and 𝑝 are the flow velocity and pressure and 𝜂 the fluid viscosity. The right hand side in (3) includes the divergence of a 
stochastic stress tensor  responsible for the thermal fluctuations or Brownian motion [68,69]. The stochastic stress tensor is delta 
correlated in space and time

⟨𝑖𝑗 (𝒙, 𝑡)𝑘𝑙(𝒙′, 𝑡′)⟩ = 2𝜂𝑘𝐵𝑇
(
𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘

)
𝛿(𝒙− 𝒙′)𝛿(𝑡− 𝑡′), (5)

and the correlations magnitude depends on the thermal energy 𝑘𝐵𝑇 .

On the colloidal surfaces the fluid obeys a slip condition [70,50]

𝒗(𝒓) = 𝒖𝑚 +𝝎𝑚 × (𝒓− 𝒒𝑚) + 𝒖𝑠(𝒓) on 𝜕𝑚. (6)

The first two terms in the right hand side of (6) represent the rigid motion of colloid 𝑚 with linear and angular velocities 𝒖𝑚 and 𝝎𝑚
with respect to its tracking point (e.g. its center) 𝒒𝑚. The last term in (6) represents the slip introduced by the phoretic effects of the 
concentration near the colloid surface. The slip velocity is proportional to the surface concentration gradient [71,6]

𝒖𝑠 = 𝜇𝛁∥𝑐 = 𝜇
(
𝑰 − 𝒏𝒏𝑇

)
𝛁𝑐 on 𝜕𝑚, (7)

where 𝜇 = 𝜇(𝒓) is the surface mobility and 𝛁∥ the surface gradient, i.e. the gradient projected to the surface tangent plane.

The equations are closed with the balance of force and torque: the hydrodynamic stress on the colloids equates the rest of external 
forces and torques, 𝒇𝑚 and 𝝉𝑚, acting on them [54]

∫
𝜕𝑚

𝝀(𝒓) d𝑆𝒓 = 𝒇𝑚, (8)

∫
𝜕𝑚

(𝒓− 𝒒𝑚) × 𝝀(𝒓) d𝑆𝒓 = 𝝉𝑚, (9)

where 𝝀 is a single layer potential that enforce the slip condition and the balance of force and torque. The equations (1) and (2) form 
a linear system for the concentration. Once the surface slip is known through (7) the equations (3), (6), (8) and (9) form a linear 
system for the single layer potential 𝝀 and the colloidal velocities {𝒖𝑚, 𝝎𝑚}𝑀𝑚=1.

2.2. Integral formulation of the Laplace equation

Since both the Stokes and the Laplace equation are elliptic partial differential equations it is possible to solve them without 
discretizing the whole fluid domain but only its boundaries, i.e. the colloid surfaces, by using an integral formulation [62]. Before we 
present the integral formulation we introduce the Laplace Green’s function and its derivatives in an unbounded domain. The Green’s 
function of the Laplace equation is

𝐺(𝒙,𝒚) = 1
4𝜋

1
𝑟
, (10)

where 𝒚 and 𝒙 are the source and target (observation point) respectively and 𝑟 = |𝒓| = |𝒙− 𝒚|. Taking the derivative with respect to 
the source, 𝒚, we get the dipole kernel

𝑇𝑖(𝒙,𝒚) =
𝜕

𝜕𝑦𝑖
𝐺(𝒙,𝒚) = 1

4𝜋
𝑟𝑖
𝑟3
. (11)

Taking the derivative of 𝑇𝑖(𝒙, 𝒚) with respect to the target, 𝒙, we get the quadrupole

𝐿𝑖𝑗 (𝒙,𝒚) =
𝜕

𝜕𝑥𝑗
𝑇𝑖(𝒙,𝒚) =

1
4𝜋
𝛿𝑖𝑗

𝑟3
− 3

4𝜋
𝑟𝑖𝑟𝑗

𝑟5
. (12)

Using these kernels we introduce the single layer and double layer operators

[𝑐](𝒙) = ∫
𝜕
𝐺(𝒙− 𝒚)𝑐(𝒚) d𝑆𝑦, (13)

[𝑐](𝒙) = ∫ 𝑇𝑖(𝒙− 𝒚)𝑛𝑖(𝒚)𝑐(𝒚) d𝑆𝑦, (14)
4

𝜕
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where the integral is over all the colloidal surfaces: 𝜕 =
⋃𝑀
𝑚=1 𝜕𝑚. We also introduce two auxiliary operators

𝑖[𝑐](𝒙) = ∫
𝜕
𝐿𝑖𝑗 (𝒙− 𝒚)𝑛𝑗 (𝒚)𝑐(𝒚) d𝑆𝑦, (15)

 𝑖[𝑐](𝒙) = ∫
𝜕
𝑇𝑖(𝒙− 𝒚)𝑐(𝒚) d𝑆𝑦. (16)

The integral formulation for the Laplace equation can be written as [62][1
2
 −

]
𝑐 = −

[
𝜕𝑐

𝜕𝒏

]
+ 𝑐∞ on 𝜕, (17)

where the double layer operator  acts in the principal value sense and  is the identity operator [54]. The normal derivative of the 
concentration, 𝜕𝑐∕𝜕𝒏, on the right hand side can be replaced with the boundary conditions on the colloids, Eq. (2), to rewrite the 
equation as[1

2
 − +

[
𝑘

𝐷

]]
𝑐 = 

[
𝛼

𝐷

]
+ 𝑐∞. (18)

Since the surface parameters 𝑘 = 𝑘(𝒓) and 𝛼 = 𝛼(𝒓) define the boundary conditions, we have absorbing boundary conditions for 
(𝑘 > 0, 𝛼 = 0) and emitting boundary conditions for (𝑘 = 0, 𝛼 > 0). In general, it is possible to use 𝑘, 𝛼 > 0 to model a colloidal 
suspension of mixed sources and sinks.

Once the concentration is known, its gradient at the surfaces can be computed with the derivative of (18), i.e.

1
2
𝛁𝑐 = 𝛁𝑐∞ +[𝑐] − 

[
− 𝑘
𝐷
𝑐 + 𝛼
𝐷

]
, (19)

and then, we can use (7) to compute the active slip and solve the Stokes equations. Additionally, we can compute the concentration 
anywhere in the fluid domain with

𝑐(𝒙) = 𝑐∞ +[𝑐] −
[
𝑘

𝐷
𝑐 − 𝛼
𝐷

]
. (20)

2.3. Integral formulation of the Stokes equations

The Stokes equations also admit an integral formulation. We start with the second layer formulation [54,65](1
2
 +St

)
𝒗(𝒓) + 𝒖th = (St𝝀)(𝒓) for 𝒓 on 𝜕𝑚, (21)

where St is the single layer operator of the Stokes equation acting on the single layer potential 𝝀 and St is the Stokes double layer 
operator [54]. In an unbounded domain(

St𝝀
)
𝑖
(𝒙) = ∫

𝜕
1

8𝜋𝜂𝑟

(
𝛿𝑖𝑗 +

𝑟𝑖𝑟𝑗

𝑟2

)
𝜆𝑗 (𝒚) d𝑆𝑦, (22)

(
St𝒗

)
𝑖
(𝒙) = ∫

𝜕
− 3
4𝜋
𝑟𝑖𝑟𝑗𝑟𝑘

𝑟5
𝑛𝑘(𝒚)𝑣𝑗 (𝒚) d𝑆𝑦, (23)

where 𝒓 = 𝒙 − 𝒚 and 𝒏 = 𝒏(𝒚) is the surface normal. The new term in (21), 𝒖th(𝒓), represents the thermal fluctuations introduced 
by the stochastic stress. Replacing the slip condition on the particle surface, 𝒗(𝒓) = 𝒖𝑚 + 𝝎𝑚 × (𝒓 − 𝒒𝑚) + 𝒖𝑠(𝒓), in (21) we get the 
formulation

𝒖𝑚 +𝝎𝑚 × (𝒓− 𝒒𝑚) +
(1
2
 +St

)
𝒖𝑠(𝒓) + 𝒖th(𝒓) = (St𝝀)(𝒓) for 𝒓 on 𝜕𝑚, (24)

where we have used the fact that the double layer operator acting on rigid body velocities is equivalent to half the identity operator 
[54,65].

This equation can be simplified further. Since the flow rate of the prescribed boundary velocity (6) across the particle surfaces is 
zero, i.e. ∫𝜕 𝒗(𝒓) ⋅ 𝒏(𝒓)d𝑆 = 0, then one can extend the incompressible flow continuously inside the bodies and eliminate the double 
layer potential [54,65]. The double layer (DL) formulation can therefore be simplified to a single layer (SL) formulation where the 
expression 

(
1
2 +St

)
𝒖𝑠(𝒓) in (24) is replaced by 𝒖𝑠. With the SL formulation, the single layer potential 𝝀(𝒓) does not correspond 

to the hydrodynamic tractions, but to a potential that enforces the slip condition and the force and torque balance [63,65]. The 
difference between the DL and SL formulation therefore lies in the way the slip term is treated, 

(
1
2 +St

)
𝒖𝑠(𝒓) for DL vs. 𝒖𝑠(𝒓)

for SL, and in the interpretation of the single layer potential 𝝀. While these two formulations are strictly equivalent in the continuous 
setting, Smith et al. [65] have found that, in the discrete setting using Regularized Stokeslets, the DL formulation is 3 to 4 times more 
5

accurate than SL. As shown in Sec. 4.1, we also find that the error is reduced with DL.
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The stochastic slip is equivalent to including a stochastic stress tensor directly in the Stokes equations as in (3) provided it has the 
appropriate covariance [72,73]. In Sec. 2.5 we explain how to generate the fluctuations with the right covariance. The slip condition 
is supplemented with the balance of force and torque, Eqs. (8)-(9), to close the linear system.

One can use the same formalism to solve the hydrochemical problem above an infinite impermeable wall by using the Laplace 
and Stokes kernels in half-space. In Appendix C we provide the kernels of the Laplace equation in half space, i.e. above an infinite 
no-flux wall while the Stokes kernels can be found, for example, in Refs. [74,75].

2.4. Discretization of the Laplace problem

In these sections we discuss the discretization to solve the Laplace and Stokes problems. We use the same grid to solve both 
the Stokes and the Laplace equations. This way, the gradients on the particle surface can be used directly to compute the active 
slip appearing on the Stokes equations. First, we discretize the surface of the rigid bodies with nodes (also called blobs) located at 
positions 𝒓𝑖, 𝑖 = 1, ⋯ , 𝑁𝑏, where 𝑁𝑏 is the total number of nodes in the system. The optimal position for the nodes is discussed in 
Sec. 3. Then, using the nodes as collocation points to solve the discretization of (18), we obtain the linear system[1

2
𝑰𝒘−1 +𝑫 +𝑺

𝒌

𝐷

]
𝒘𝒄 = 𝑺

𝒘𝜶

𝐷
+ 𝒄∞, (25)

where 𝑰 , 𝑺 and 𝑫 are 𝑁𝑏 ×𝑁𝑏 matrices corresponding to the discrete versions of the continuous operators introduced in (18). 𝒄
and 𝜶 are 𝑁𝑏 × 1 vectors collecting the value of the concentration and the reaction flux at each node. Meanwhile, the reaction rate 
and the quadrature weights are arranged in the 𝑁𝑏 ×𝑁𝑏 diagonal matrices 𝒌 and 𝒘. The weight values 𝒘 represent the surface area 
covered by the nodes. Similarly, once the concentration vector 𝒄 is obtained, we compute the concentration gradient on the nodes 
with

1
2
𝛁𝒄 = 𝛁𝒄∞ +𝑳𝒘𝒄 + 𝑻

[
𝒘𝒌𝒄

𝐷
− 𝜶

𝐷

]
, (26)

where 𝑳 and 𝑻 are 3𝑁𝑏 ×𝑁𝑏 matrices corresponding to the discrete versions of the continuous operators introduced in (19). The 
Laplace kernels diverge when the source and target point coincide. We do not introduce any kernel regularization to deal with this 
divergence, instead, we set the kernels diagonal terms to zero in both (25) and (26). We will study the accuracy of this discretization 
in Section 4. To solve the linear system (25) we use an unpreconditioned GMRES solver, and we show that the GMRES convergence 
is robust and scales well with the number of colloids in Sec. 2.6.

2.5. Discretization of the Stokes problem

To solve the Stokes equations we use the rigid multiblob method with the same grid used to solve the Laplace equation [63]. The 
rigid multiblob method uses simple quadrature rules to discretize the integrals over the bodies’ surfaces. Thus, the balance of force 
and torque become sums over the forces acting on each node∑

𝑖∈𝑚
𝝀𝑖 = 𝒇𝑚, (27)

∑
𝑖∈𝑚

(𝒓𝑖 − 𝒒𝑚) × 𝝀𝑖 = 𝝉𝑚. (28)

Note that here the quadrature weights are included in the values of 𝝀𝑖 which now represent finite forces and not density forces as in 
the continuum formulation. The slip condition, as in collocation methods [54], is evaluated at each node

𝑁𝑏∑
𝑗=1

𝑴 𝑖𝑗𝝀𝑗 = 𝒖𝑚 +𝝎𝑚 × (𝒓𝑖 − 𝒒𝑚) +
𝑁𝑏∑
𝑗=1

(1
2
𝑰 𝑖𝑗 +𝑫St,𝑖𝑗

)
𝒖𝑠,𝑗 + 𝒖th,𝑖 for 𝑖 ∈𝑚, (29)

where the discretized, 3𝑁𝑏 × 3𝑁𝑏, mobility matrix 𝑴 mediates the hydrodynamic interactions between nodes.

The rigid multiblob method uses a regularized version of the Stokes Green’s function. The regularization is done by a double 
convolution of the Stokes Green’s function, 𝑮St(𝒓, 𝒓′), with Dirac delta functions defined on the surface of a sphere of radius 𝑎

𝑴 𝑖𝑗 =𝑴(𝒓𝑖, 𝒓𝑗 ) =
1

(4𝜋𝑎2)2 ∫ 𝛿(|𝒓′ − 𝒓𝑖|− 𝑎)𝑮St(𝒓′, 𝒓′′)𝛿(|𝒓′′ − 𝒓𝑗 |− 𝑎)d3𝑟′′d3𝑟′. (30)

This regularization is known as the Rotne-Prager or RPY approximation [76,77]. The advantage of the RPY mobility matrix is that it 
never diverges and is always positive definite, even when spheres overlap. Thus, the numerical method is quite robust and easy to 
implement as it is not necessary to consider sophisticated quadrature rules to deal with the divergence of the Stokes kernel. Moreover, 
the positive definiteness of the mobility simplifies the generation of the stochastic noise as we show shortly. The same regularization 
is applied to the second-layer operator 𝑫St.

The active slip is evaluated independently on each node( ) (
𝑇
)

6

𝒖𝑠,𝑖 = 𝜇𝑖 𝛁∥𝑐 𝑖 = 𝜇𝑖 𝑰 − 𝒏𝑖𝒏𝑖 (𝛁𝑐)𝑖 for all 𝑖 ∈𝑚, (31)
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where 𝜇𝑖 and 𝒏𝑖 are the phoretic mobility and the surface normal defined at the node 𝑖.
The stochastic slip is generated with the right covariance to correctly reproduce the Brownian motion. We prove hereafter that 

one can use the stochastic slip

𝒖th =
√
2𝑘𝐵𝑇𝑴1∕2𝒁, (32)

where 𝑴1∕2 is the square root of the mobility matrix, i.e. 𝑴1∕2 (𝑴1∕2)𝑇 =𝑴 , and 𝒁 is a white noise vector defined on the nodes 
with covariance ⟨𝒁(𝑡)𝒁𝑇 (𝑡′)⟩ = 𝑰𝛿(𝑡 − 𝑡′). This form of the noise term is equivalent to include a stochastic stress directly into the 
Stokes equation as in (3) [72,73]. Since the mobility is positive definite, the stochastic velocity (32) is well defined. Additionally, the 
action of the square root of the mobility can be computed with the Lanczos scheme, a matrix free iterative method that only requires 
the action of the mobility [78].

Once the active and the stochastic slips are computed, the linear equations (27)-(29) can be solved to find the colloidal velocities. 
To display the structure of the linear system it is convenient to introduce the 3𝑁𝑏 × 6𝑀 block diagonal matrix 𝑲 (defined implicitly 
in (29)) with blocks

𝑲𝑚,𝑖 =

{[
𝑰3×3 − (𝒓𝑖 − 𝒒𝑚)×

]
if 𝑖 ∈𝑚,[

𝟎3×3 𝟎3×3
]

otherwise,
(33)

where 𝑰3×3 is the 3 ×3 identity matrix and (𝒓𝑖−𝒒𝑚)×𝒙 = (𝒓𝑖−𝒒𝑚)×𝒙 for any vector 𝒙. Then, the equations (27)-(29) can be rearranged 
as [

𝑴 −𝑲
−𝑲𝑇 𝟎

][
𝝀

𝑼

]
=

[(
1
2𝑰 +𝑫St

)
𝒖𝑠 + 𝒖th

−𝑭

]
, (34)

where the vectors 𝑼 = {𝒖𝑚, 𝝎𝑚}𝑀𝑚=1 and 𝑭 = {𝒇𝑚, 𝝉𝑚}𝑀𝑚=1 collect the rigid velocities and the forces and torques on the 𝑀 colloids. 
The geometric matrix 𝑲 transforms the rigid body velocities into surface velocities, and its transpose integrates the single layer 
potential to give the external force and torque on the bodies, Eqs. (27)-(28). The velocity solution of (34) is

𝑼 =𝑵𝑭 − 𝑵̃𝒖𝑠 − 𝑵̃ th𝒖th, (35)

where 𝑵 =
[
𝑲𝑇𝑴−1𝑲

]−1
is the colloidal mobility matrix, and 𝑵̃ = 𝑵𝑲𝑇𝑴−1

(
1
2𝑰 +𝑫𝑆𝑡

)
and 𝑵̃ th = 𝑵𝑲𝑇𝑴−1 are the slip 

mobility matrices that relate the particle velocities with their surface slip flows and thermal fluctuations respectively.

We can show that the covariance of the rigid body velocities generated by the stochastic slip obeys the fluctuation dissipation 
balance. Setting 𝑭 = 𝟎 and 𝒖𝑠 = 𝟎 and using the definition of the mobilities 𝑵 and 𝑵̃ th and the thermal noise, Eq. (32), one can 
compute the velocity covariance with a pure linear algebra derivation

⟨𝑼𝑼𝑇 ⟩ = 𝑵̃ th⟨𝒖th𝒖
𝑇
th
⟩𝑵̃𝑇

th

= (𝑵𝑲𝑇𝑴−1)
√
2𝑘𝐵𝑇𝑴1∕2⟨𝒁𝒁𝑇 ⟩𝑴1∕2√2𝑘𝐵𝑇 (𝑵𝑲𝑇𝑴−1)𝑇

= 2𝑘𝐵𝑇𝑵𝑲𝑇𝑴−1𝑴𝑴−1𝑲𝑵 𝛿(𝑡− 𝑡′)

= 2𝑘𝐵𝑇𝑵(𝑲𝑴−1𝑲𝑇 )𝑵 𝛿(𝑡− 𝑡′)

= 2𝑘𝐵𝑇𝑵 𝛿(𝑡− 𝑡′). (36)

Eq. (36) shows that the thermal noise is balanced by the viscous dissipation as required by the fluctuation dissipation balance, thus 
the slip (32) generates Brownian velocities consistent with the Stokes equation [72,73]. Once the velocities have been computed the 
orientation of the colloids, described by the unit quaternions 𝜽𝑚, and their positions, 𝒒𝑚, can be integrated in time

d𝒙 =𝑼 ∙ d𝑡, (37)

where 𝒙 = {𝒒𝑚, 𝜽𝑚}𝑀𝑚=1. We have introduced the abstract product notation ∙ to emphasize that the numerical integration should 
conserve the unit norm of the quaternions to correctly represent orientations and that, in the case of Brownian simulations, (37) is 
a multiplicative stochastic equation that should be integrated numerically with a stochastic integrator. Both issues are discussed in 
detail in Refs. [79,80].

To solve the linear system (34) we do not need to form the mobility matrices 𝑵 and 𝑵̃ , whose computational cost would scale 
as  

(
𝑁3
𝑏

)
. Instead, we use a block-diagonal preconditioned GMRES which converges in a number of iterations independent of the 

number of colloids [63]. Thus, all the methods that we employ to solve the hydrochemical problem with thermal fluctuations are 
matrix free and can use fast methods to compute the action of the Laplace and Stokes kernels, such as the Fast Multipole Method 
[81]. This approach allows to simulate system with a large number of colloids as we will show in Sec. 5.

One can see that we use essentially the same formalism to discretize both the Laplace and the Stokes equations. The main difference 
is that to solve the Stokes equation we use a regularized version of its Green’s function. Note that for non-overlapping nodes the RPY 
7

approximation, Eq. (30), obeys for any kernel 𝑮(𝒓, 𝒓′)
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Fig. 1. Linear solver convergence to solve the Laplace problem for reacting shells (𝑘 = 1, 𝜇 = 1 and 𝛼 = 0) forming a simple cubic lattice in a constant background 
field 𝑐∞ = 1. Panel a) shows the convergence versus the number of shells, 𝑀 , for lattice spacing 𝑑 = 4 shell radius. The main figure shows the GMRES residual while 
the inset shows the number o iterations to attain a tolerance of 10−8 versus the number of shells. Even without preconditioner the number of iterations grows slowly 
(∼𝑀1∕5) with the number of shells. Panel b) shows the convergence versus the lattice spacing, 𝑑, for a lattice with 𝑀 = 4096 shells. GMRES converges quickly except 
for touching spheres, 𝑑 = 2.

𝑴 𝑖𝑗 =
(
𝑰 + 𝑎

2

6
𝛁2
𝒓

)(
𝑰 + 𝑎

2

6
𝛁2
𝒓′

)
𝑮(𝒓, 𝒓′)||𝒓=𝒓𝑖𝒓′=𝒓𝑗

. (38)

For the Laplace kernels this regularization would not introduce any correction because, as the Laplace equation is harmonic, the 
Laplacian terms in (38) would vanish. The same argument applies to the derivatives of the Laplace kernel. Moreover, the positive 
definiteness of the mobility matrix, 𝑴 , is fundamental to generate the stochastic slip, while for the Laplace equation it is not such a 
fundamental property.

2.6. Convergence of the iterative solvers

The second layer formulation of the Laplace problem, Eq. (18), is well conditioned. Thus, the linear system (25) can be solved 
with an iterative solver, such as GMRES, without preconditioner even for large systems. To verify how robust is the convergence, we 
solve the Laplace problem for a set of uniform reactive shells (𝑘 = 1, 𝜇 = 1) forming a simple cubic lattice, immersed in a constant 
background concentration 𝑐∞(𝒓) = 1. We discretize the shells, of radius 𝑅 = 1, with 42 nodes and we vary the number of shells, 𝑀 , 
and the distance between first neighbors 𝑑. We show in Fig. 1a the GMRES convergence for moderately separated shells (𝑑 = 4) 
versus the system size. We observe that even for large systems, 4096 shells or 172032 nodes, the linear solver converges in a moderate 
number of iterations. In fact, the number of iterations grows weakly with the number of shells ∼𝑀1∕5. We show in Fig. 1b the 
convergence for a large system, 𝑀 = 4096, and different interparticle distances. Denser packings require more iteration as expected 
but, except for touching shells 𝑑 = 2, the solver converges to a residual < 10−8 in less than 50 iterations.

The linear system for the Stokes problem (34) is solved with a preconditioned GMRES algorithm that keeps the number of iterations 
independent of the number of colloids as shown and explained in Ref. [63].

3. Grid optimization

The goal of this section is to optimize the surface grid in order to match the hydrodynamic response of an ideal particle to external 
forces and torques, 𝑭 , and to slip surface flows, 𝒖𝑠, regardless of their origin. While the use of the regularized Green’s function 
(30) simplifies the generation of the Brownian noise, Eq. (32), and makes the rigid multiblob method robust, its error convergence 
rate is relatively slow with respect to the number of discretization nodes. In order to evaluate the effect of the regularization in the 
continuous setting, i.e. prior to discretization, one may consider the flow induced by a known force density on a body’s surface, 𝝀, 
with the regularized Green’s function (30)

𝒗(𝒙) = ∫ 𝑴(𝒙,𝒚)𝝀(𝒚) d𝑆𝑦 = ∫ 𝑮St(𝒙,𝒚)𝝀(𝒚) d𝑆𝑦 + ∫ Δ𝑴(𝒙,𝒚)𝝀(𝒚) d𝑆𝑦, (39)

where Δ𝑴(𝒙, 𝒚) =𝑴(𝒙, 𝒚) −𝑮St(𝒙, 𝒚) is the difference between the RPY mobility (30) and the Green’s function of the Stokes equation. 
The first term in the right hand side is the exact flow predicted by the Stokes equation. Thus, even before the discretization step, the 
8

method introduces a regularization error in the flow. The correction kernel scales with the node radius, 𝑎, as
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Δ𝑴(𝒙,𝒚) ∼

{
𝑎2 for |𝒙− 𝒚| > 2𝑎,
𝑎 for |𝒙− 𝒚| ≤ 2𝑎.

(40)

Accordingly, given that the discretization employs a number of blobs 𝑁𝑏 ∼ 1∕𝑎2, the convergence rate of the error scales as ∼𝑁−1∕2
𝑏

for self interactions, i.e. for the self-mobility matrices of the bodies.

Despite this regularization error, it is possible to enhance the numerical accuracy for a given resolution through a grid optimization 
procedure, the details of which are outlined below.

In the absence of thermal fluctuations, the hydrodynamic response of the particle is given by the solution of the mobility problem:

𝑼 =𝑵𝑭 − 𝑵̃𝒖𝑠 (41)

where 𝑵̃ =𝑵𝑲𝑇𝑴−1( 12𝑰 +𝑫St) is the slip mobility matrix and 𝑫St is the Stokes second layer operator, both introduced in Sec-

tion 2.5. The matrix 𝑵̃ maps the slip velocities to the forces applied on the surface nodes, through the node resistance operator 𝑴−1, 
then computes their resultant on each rigid body, through the operator 𝑲𝑇 , and multiply the resulting forces and torques by the body 
mobility matrix 𝑵 to obtain the slip-induced body velocities in the suspension. As shown in [82], a continuous version of 𝑵̃ , which 
generalizes the work of Stone and Samuel [83], can be derived using the Lorentz reciprocal theorem.

For an isolated body discretized with 𝑁𝑏 nodes, 𝑵 is a 6 ×6 matrix and 𝑵̃ is a 6 ×3𝑁𝑏 matrix. Let 𝑵 𝑟𝑒𝑓 and 𝑵̃ 𝑟𝑒𝑓 be the reference 
mobilities to be matched for a given body, which can be known analytically or calculated with a well-resolved discretization. 𝑵 and 
𝑵 𝑟𝑒𝑓 have the same 6 ×6 shape regardless of the solution method used to compute them. However, 𝑵̃ and 𝑵̃ 𝑟𝑒𝑓 have different sizes 
since their number of columns depends on the grid resolution, 𝑁𝑏 , regardless of the numerical method used to compute the reference 
solution.

In their recent work, Broms et al. [64] proposed a systematic approach to match the mobility matrix 𝑵 𝑟𝑒𝑓 for spherical and 
rod-like passive particles. They did so by optimizing the grid, and more specifically the geometric dimensions of the grid surface 
(length, radius) and the node size 𝑎 (or equivalently the node spacing).

Here we extend their framework to include the slip-mobility matrix 𝑵̃ 𝑟𝑒𝑓 in the optimization problem. In order to generalize the 
method to arbitrary shapes, we consider only two parameters to be optimized: the size scale of the body, a scalar that we denote as 
𝑆 (e.g. 𝑆 = 𝑅𝑔∕𝑅 for a sphere of radius 𝑅, where 𝑅𝑔 is the geometric radius of the surface grid) and the radius of the nodes 𝑎. If 
𝑆 = 1, then the geometric surface of the grid, where the nodes are located, coincides with the surface of the ideal particle. If 𝑆 < 1
(𝑆 > 1) the geometric surface is located in the interior (exterior) of the ideal surface.

3.1. Singular value decomposition of the slip mobility matrix

Since 𝑵̃ and 𝑵̃ 𝑟𝑒𝑓 do not have the same size (usually 𝑁𝑏,𝑟𝑒𝑓 ≫ 𝑁𝑏), one way to compare these two matrices is through their 
singular values decomposition (SVD). Keeping only its compact form, the SVD decomposition of 𝑵̃ is

𝑵̃ =𝑾 𝚺𝑽 𝑇 (42)

where the 6 × 6 matrix 𝚺 contains the 6 singular values along the diagonal

𝚺 =
⎡⎢⎢⎣
𝜎1 0 0
0 ⋱ 0
0 0 𝜎6

⎤⎥⎥⎦ . (43)

As shown in Appendix A, the singular values of the slip mobility matrix scale as ∼𝑁1∕2
𝑏

.

In order to separate slip-translation (𝑈𝑆) and slip-rotation (Ω𝑆) couplings, we decompose 𝑵̃ into two 3 × 3𝑁𝑏 blocks, each of 
which are decomposed with SVD:

𝑵̃ =

[
𝑵̃
𝑈𝑆

𝑵̃
Ω𝑆

]
=
[
𝑾 𝑈𝑆𝚺𝑈𝑆 (𝑽 𝑈𝑆 )𝑇
𝑾 Ω𝑆𝚺Ω𝑆 (𝑽 Ω𝑆 )𝑇

]
. (44)

Because these two blocks are independent, their three singular values correspond to the singular values of the whole matrix.

To gain a bit more insight, we will focus on the 𝑈𝑆 block to provide a physical interpretation of the SVD decomposition. The matrix 
𝑽 𝑈𝑆 = [𝒗1, 𝒗2, 𝒗3] contains three orthonormal eigenmodes, i.e. unitary slip distributions on the particle surface. These distributions 
induce, through the action of 𝑵̃

𝑈𝑆
, translational motion along three orthonormal directions spanning ℝ3 and contained in 𝑾 𝑈𝑆 =

[𝒘1, 𝒘2, 𝒘3]. The singular values {𝜎1, 𝜎2, 𝜎3} provide the magnitude the resulting translational motion. For simplicity, consider a 
spherical, isotropic, object, so that 𝚺𝑈𝑆 = 𝜎𝑰3. As a result the SVD can be written as

𝑵̃
𝑈𝑆

=𝑾 𝑈𝑆𝜎𝑰3(𝑽 𝑈𝑆 )𝑇 = 𝜎(𝑽̄ 𝑈𝑆 )𝑇

where 𝑽̄ 𝑈𝑆 = 𝑽 𝑈𝑆 (𝑾 𝑈𝑆 )𝑇 = [𝒗̄1, ̄𝒗2, ̄𝒗3] are the eigenmodes rotated in the frame of the translational motions 𝒘’s. In this case, the 
9

hydrodynamic response to an arbitrary slip distribution 𝒖𝑠 is given by
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𝑵̃
𝑈𝑆

𝒖𝑠 = 𝜎
⎡⎢⎢⎣
𝒗̄1 ⋅ 𝒖𝑠
𝒗̄2 ⋅ 𝒖𝑠
𝒗̄3 ⋅ 𝒖𝑠

⎤⎥⎥⎦ .
Therefore, in order to match the hydrodynamic response of the reference grid, one must match both the singular value 𝜎, and the 
projection of 𝒖𝑠 on the eigenmodes: 𝒗̄𝑖 ⋅ 𝒖𝑠. Direct comparison of the singular values between two different grids is straightforward 
because their number does not depend on 𝑁𝑏 nor on the slip distribution 𝒖𝑠. On the other hand, the projected value depends both 
on the slip distribution 𝒖𝑠 and on the eigenmodes 𝒗̄’s, and thus on the number of grid points. Therefore, in the following we decide 
to match the 𝜎’s only. A few empirical tests have shown that the eigenmodes of two different discretizations of the same shape are 
similar and thus, if the 𝜎’s match within a tight tolerance, then their hydrodynamic response to a given slip distribution should be 
comparable.

3.2. Optimization procedure

Following [64], our optimization procedure is based on the minimization of a cost function that measures the relative error 
between the mobility matrices of the surface grid and a reference grid/solution. Since each block of the mobility matrices scale 
differently with the particle size (e.g. 1∕𝑅 for force-translation couplings vs. 1∕𝑅3 for torque-rotation couplings of a sphere), we 
define the errors between the reference and the computed mobility matrix block by block

𝐸𝑈𝐹 = ‖𝑵𝑈𝐹
𝑟𝑒𝑓 −𝑵𝑈𝐹 ‖∕‖𝑵𝑈𝐹

𝑟𝑒𝑓 ‖ (45)

𝐸Ω𝐹 = ‖𝑵Ω𝐹
𝑟𝑒𝑓 −𝑵Ω𝐹 ‖∕‖𝑵Ω𝐹

𝑟𝑒𝑓‖ (46)

𝐸𝑈𝑇 = ‖𝑵𝑈𝑇
𝑟𝑒𝑓 −𝑵𝑈𝑇 ‖∕‖𝑵𝑈𝑇

𝑟𝑒𝑓‖ (47)

𝐸Ω𝑇 = ‖𝑵Ω𝑇
𝑟𝑒𝑓 −𝑵Ω𝑇 ‖∕‖𝑵Ω𝑇

𝑟𝑒𝑓‖ (48)

as well as

𝐸𝑈𝑆 = ‖𝚺𝑈𝑆𝑟𝑒𝑓 − 𝛽𝚺𝑈𝑆‖∕‖𝚺𝑈𝑆𝑟𝑒𝑓‖ (49)

𝐸Ω𝑆 = ‖𝚺Ω𝑆
𝑟𝑒𝑓 − 𝛽𝚺

Ω𝑆‖∕‖𝚺Ω𝑆
𝑟𝑒𝑓‖ (50)

where 𝛽 = (𝑁𝑏∕𝑁𝑏,𝑟𝑒𝑓 )1∕2 ∼ ‖𝚺𝑟𝑒𝑓‖∕‖𝚺‖ is the scaling factor between the singular values of the reference and discrete grids (see 
Appendix A). The matrix norm chosen in this work is the Frobenius norm, but the choice of a specific norm does not affect significantly 
the outcome of the optimization.

From these relative errors we define the objective function 𝑓 to minimize in order to find the optimal particle size 𝑆 and node 
radius 𝑎 as

𝑓 (𝑆,𝑎) =𝑤𝑈𝐹𝐸𝑈𝐹 +𝑤Ω𝐹𝐸Ω𝐹 +𝑤𝑈𝑇𝐸𝑈𝑇 +𝑤Ω𝐹𝐸Ω𝑇 +𝑤𝑈𝑆𝐸𝑈𝑆 +𝑤Ω𝑆𝐸Ω𝑆 , (51)

where {𝑤𝑈𝐹 , ⋯ , 𝑤Ω𝑆} are weights that can be adjusted depending on the types of hydrodynamic response that are privileged with 
respect to the others. Unless specified otherwise, the weights are taken to be equal hereafter (𝑤𝑈𝐹 =⋯ =𝑤Ω𝑆 = 1). We also consid-

ered another cost function using the max of the errors as in [64] but found (51) to be more robust and that performs well for our 
purposes (see Appendix B). The minimization problem to be solved is

min
𝑆,𝑎
𝑓 , (52)

s.t. 0 < 𝑎 < 𝐿∕2,

1∕2 < 𝑆 < 2

where 𝐿 is a typical length scale of the particle (e.g. 𝐿 = 𝑅 for a sphere). The bounds added in (52) are used to avoid unphysical 
solutions and to reduce the size of the domain explored in parameter space.

The problem is solved with a differential evolution algorithm [84], which, due to its stochastic nature and to the small dimension 
of the parameter space, systemically converges to a global minimum (while we found that gradient-based methods were much more 
sensitive to the initial guess and sometimes stopped at local minima).

4. Validations

In this section, we first consider the motion of slip-driven particles to evaluate the performance of the grid optimization procedure 
described in Section 3. Then, we validate our Laplace and Stokes solvers with canonical cases against reference solutions from the 
literature. We show that, thanks to the double layer formulation of the Stokes problem and to the optimized grids, we achieve a good 
10

agreement with exact solutions with only a few nodes on the particle surface.
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Table 1

Original and optimized grid parameters for a sphere with radius 𝑅 = 1 in an unbounded 
domain.

Orig. grid Opt. grid w/o slip Opt. grid SL Opt. grid DL

𝑁𝑏 𝑆 𝑎∕𝑠 𝑆 𝑎∕𝑠 𝑆 𝑎∕𝑠 𝑆 𝑎∕𝑠

12 0.792 0.5 0.936 0.291 0.991 0.231 0.858 0.412

42 0.891 0.5 0.959 0.311 0.992 0.238 0.929 0.410

162 0.950 0.5 0.974 0.345 0.992 0.254 0.965 0.413

642 0.977 0.5 0.984 0.388 0.993 0.284 0.982 0.424

2562 0.989 0.5 0.991 0.431 0.994 0.346 0.990 0.449

4.1. Swimmers with a prescribed slip

4.1.1. Spherical squirmer

The spherical squirmer model consists of a spherical particle with a prescribed surface slip velocity, i.e. that does not depend 
on concentration or any other quantity, usually decomposed into series of spherical harmonics [85]. It has been extensively used to 
model the self-propulsion and flow generated by ciliated microorganisms [86–88].

Here we consider a spherical squirmer of radius 𝑅 in an unbounded domain with an axisymmetric slip distribution on its surface. 
The exact mobility coefficients of the sphere are given by the Stokes drag (𝑁𝑈𝐹

th
= 1∕(6𝜋𝜂𝑅) and 𝑁Ω𝑇

th
= 1∕(8𝜋𝜂𝑅3)) while the exact 

slip-velocity couplings are given by surface averages of the slip flow, see Eqs. (4) and (6) in [83].

With the multiblob method, the sphere surface is discretized with nodes located on geodesic grids [89]. In the original works of 
[89] and [63], the node radius 𝑎 is chosen so that neighboring nodes touch each other (𝑎∕𝑠 = 0.5, where 𝑠 is the nearest-neighbor 
distance) and the geometric radius of the grid 𝑅𝑔 is chosen in order to match the Stokes drag of an ideal sphere with radius 𝑅 in 
an unbounded domain (i.e. 𝑁𝑈𝐹

th
= 1∕(6𝜋𝜂𝑅)). We denote this discretization as the “original grid”. We also define the “optimized 

grid”, parametrized by the doublet (𝑆 = 𝑅𝑔∕𝑅, 𝑎), as the solution of the minimization problem (52) that includes all the mobility 
coefficients, as in [64], and slip-velocity couplings (which is the new part from our contribution). The reference mobility and slip-

mobility matrices, 𝑵 𝑟𝑒𝑓 and 𝑵̃ 𝑟𝑒𝑓 , are obtained from a highly resolved sphere with 𝑁𝑏,𝑟𝑒𝑓 = 10242 nodes. The reference mobility 
coefficients are close to the analytical ones (relative error is 3 × 10−5 for the 𝑈𝐹 -coefficient, and 2 × 10−4 for the Ω𝑇 -coefficient), 
and the propulsion speed 𝑼 𝑟𝑒𝑓 due to 𝒖𝑠 has a relative error of 8 × 10−3 with respect to 𝑼 th.

We consider two different discrete formulations of the integral equation (24): the double layer (DL) formulation (29), and the 
single layer (SL) formulation, where the expression 

(
1
2𝑰 +𝑫St

)
𝒖𝑠 in (29) is replaced by 𝒖𝑠 (see Section 2.3). Table 1 shows the 

original and optimized grids using the SL and DL formulations, together with the optimized grid in the absence of slip, where only 
the mobility matrix 𝑵 is matched. As expected, our optimized grid in the absence of slip matches exactly the one from Broms et 
al. (see Table 2 of [64]). We first notice that adding the slip mobility matrix in the cost function changes both the size scale 𝑆 but 
also the relative node size 𝑎∕𝑠 compared to the mobility problem without slip. However these changes differ between the SL and 
DL formulation. In the SL case, the optimized grid is very close to the geometric surface of the sphere (𝑆 > 0.99) and the relative 
node size increase with 𝑁𝑏 but remains well below contact (𝑎∕𝑠 < 0.35). In the DL case, the optimized grid, shown in Fig. 2a, has 
a smaller radius (𝑆 < 0.99) and the nodes remain close to contact (𝑎∕𝑠 ≥ 0.41) for all resolutions, which reduces the leakage of the 
fluid through the gaps between the nodes compared to the SL optimized grids. Indeed, when the flow is squeezed against the particle 
surface, e.g. due to the presence of an other particle, it will leak more through the SL grid compared to the DL grid. Leakage across 
discretized surfaces has also been observed in the context of Immersed Boundaries [90–92] and Regularized Stokeslet [93–95] when 
the nodes (or Regularized Stokeslets) are too far apart from each other.

We now evaluate the hydrodynamic response of the sphere to a surface slip given, in the frame of the particle, by 𝒖𝑠 = − sin𝜃𝒆𝜃 , 
where 𝜃 ∈ [0, 𝜋] is the angle between the position on the squirmer surface and its axis of symmetry 𝒆𝑧. It is known from [86] that the 
resulting swimming speed is 𝑼 th = 2∕3𝒆𝑧.

We compare the performance of each grid using both the single layer (SL) and the double-layer (DL) formulation. As explained in 
Section 2.3, even though the double layer operator can theoretically be eliminated from the boundary integral formulation with slip 
flows, it has been shown that its presence in the discretized version can drastically reduce numerical errors [65]. Fig. 2b compares the 
propulsion speed from the different grids against the exact solution. Due to the regularization error (see Section 3), the grids converge 
slowly, as ∼𝑁−1∕2

𝑏
, to the exact solution. The error of the original grid with SL (blue disks) is quite large for low and intermediate 

resolutions (≥ 22% for 𝑁𝑏 ≤ 162). This error is significantly reduced with the optimized grid (blue triangles), but remains above 11%
for 𝑁𝑏 ≤ 162. The DL formulation (green disks) drastically decreases the error on the original grid: it always remains below 10% for 
all resolutions and below 6% above 𝑁𝑏 ≥ 42. Grid optimization further improves the error which drops below 3% for 𝑁𝑏 ≥ 42.

Altogether these results confirm that the DL formulation (31) is crucial to properly account for surface flows with a low resolution, 
hence this is the formulation adopted hereafter in this work. On top of that, our grid optimization technique further decreases the 
error by a factor 2, which permits to simulate slip-driven particles with a coarse grid (𝑁𝑏 = 42) with a 2-3 digits accuracy.

4.1.2. Slip-driven smooth rod

In this section we consider the motion of a rod-like particle with aspect ratio 𝐿∕𝑅 = 4 (length 𝐿 = 2 μm, radius 𝑅 = 0.5 μm) due 
11

to a prescribed slip velocity on its surface. Following [64] and [96] we discretize the rod surface with a quadrature that ensures 
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Fig. 2. a) Optimized discretization of the sphere surface with the double layer formulation (DL) for 𝑁𝑏 = 12, 42, 162 and 642 nodes respectively (see last column 
of Table 1). The ideal sphere (𝑅 = 1) is shown in light red. b) Relative error of the propulsion speed of a squirmer as a function of the grid resolution 𝑁𝑏 . (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Discretization of the smooth rod with different resolutions (original grid: 𝑆 = 1, 𝑎∕𝑠 = 0.5). Colorbar: prescribed slip at the node centers renormalized by the 
mean value of the continuous distribution 𝑢𝑠,𝑧 = 2∕𝜋.

the continuity of the normal vector 𝒏. The discretization of the rod is divided into three parts: two caps, each discretized with 𝑛𝑐𝑎𝑝
Gauss-Legendre nodes along the curvilinear length, connected by a central cylinder, discretized with 𝑛𝑐𝑦𝑙 equally spaced nodes along 
the axial direction. Both the caps and the cylinder are discretized with 𝑛𝜙 nodes along the azimuthal direction. The total number of 
nodes per cylinder is therefore 𝑁𝑏 = (2𝑛𝑐𝑎𝑝+𝑛𝑐𝑦𝑙)𝑛𝜙. The cross-sections are shifted so that every second layer is aligned. An “original” 
grid is chosen naively by placing the nodes on the actual surface of the rod (𝑆 = 1), and the node radius is chosen so that the distance 
between two adjacent layers of the central cylinder, 𝑠, is equal to one node diameter (𝑎∕𝑠 = 0.5). Fig. 3 shows the original grid 
for five different resolutions. Due to its axisymmetry, the particle has only four independent diagonal mobility coefficients in an 
unbounded domain: 𝑁𝑈𝐹∥ , 𝑁𝑈𝐹⟂ , 𝑁Ω𝑇

∥ , 𝑁Ω𝑇
⟂ , where ∥ and ⟂ are the direction parallel and perpendicular to the axis of symmetry 

of the rod respectively. Note that, because of the shift between contiguous cross-sections, 𝑛𝑐𝑦𝑙 must be an odd number in order to 
preserve the fore-aft symmetry of the particles and to avoid spurious nonzero off-diagonal coefficients in the mobility matrix, which 
was overlooked by [64].

The reference grid used for the optimization process is the original discretization (𝑆 = 1, 𝑎∕𝑠 = 0.5) with 𝑁𝑏 = 10480 nodes 
(𝑛𝑐𝑦𝑙 = 30, 𝑛𝑐𝑎𝑝 = 50, 𝑛𝜙 = 80). Its mobility coefficients match the BEM solution from [64] (Table A.12) within less than 0.1% for 
the UF coefficients and less than 0.7% for the Ω𝑇 coefficients. Table 2 provides the original and optimal grids for various values 
of the weight of the slip-translation coupling 𝑤𝑈𝑆 in the cost function (51) (𝑤𝑈𝑆 = 1 is the default value and corresponds to an 
identical weight for all error contributions). As for the spherical case, the nodes on the optimal grid are located in the interior of the 
actual particle (𝑆 < 1). We also observe that, for a given resolution 𝑁𝑏 , the relative node size 𝑎∕𝑠 increases with 𝑤𝑈𝑆 while the size 
scale 𝑆 varies nonmonotonically. The resulting error on the mobility coefficients is shown in Fig. 4(left). When the weight on the 
12

slip-translation coupling is identical to the others (𝑤𝑈𝑆 = 1), the error on the mobility is decreased by one order of magnitude with 
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Table 2

Original and optimized grid parameters for a smooth rod with aspect ratio 𝐿∕𝑅 = 4 in an 
unbounded domain.

Orig. grid Opt. grid, 𝑤𝑈𝑆 = 1 Opt. grid, 𝑤𝑈𝑆 = 15 Opt. grid, 𝑤𝑈𝑆 = 25

𝑁𝑏 𝑆 𝑎∕𝑠 𝑆 𝑎∕𝑠 𝑆 𝑎∕𝑠 𝑆 𝑎∕𝑠

110 1 0.5 0.931 0.502 0.897 0.694 0.928 0.868

255 1 0.5 0.964 0.616 0.948 0.799 0.954 0.965

675 1 0.5 0.980 0.570 0.972 0.744 0.972 0.758

990 1 0.5 0.987 0.567 0.984 0.660 0.984 0.660

Fig. 4. (Left) Relative error of the rod mobility coefficients as a function of the grid resolution 𝑁𝑏 for various values of the slip-translation weight 𝑤𝑈𝑆 . Solid line: 
𝑈𝐹 couplings. Dashed line: Ω𝑇 couplings. (Right) Relative error of the propulsion speed of a slip-driven rod as a function of the grid resolution 𝑁𝑏 for various values 
of the slip-translation weight 𝑤𝑈𝑆 .

respect to the original grid (from 𝑂(10−1 − 10−2) to 𝑂(10−2 − 10−3)). However, as the weight increases, the error on the mobility 
increases as well, due to its smaller weight in the cost function.

We now evaluate the hydrodynamic response of these discretized rods due to a surface slip velocity distributed over the central 
cylinder, given, in the frame of the particle, by

𝒖𝑠 = 𝑢𝑠,𝑧(𝑧)𝒆𝑧 = −cos
(
𝜋𝑧

𝐿𝑐

)
𝒆𝑧, 𝑧 ∈ [−𝐿𝑐∕2,𝐿𝑐∕2], (53)

where 𝒆𝑧 is the axis of symmetry of the rod, 𝑧 = 0 corresponds to the midpoint of the central cylinder and 𝐿𝑐 its length. In the discrete 
setting, the slip velocity of each node belonging to the cylinder surface is multiplied by a factor 𝐴 = 𝑢𝑠,𝑧∑

𝑖 𝑢𝑠,𝑧(𝑧𝑖)
to ensure that the slip 

distribution has the same mean (𝑢𝑠,𝑧 = 2∕𝜋) as the continuous one regardless of the resolution (see Fig. 3). Fig. 4(right) shows the 
relative error of the propulsion speed of the discrete rods with respect to the reference solution as a function of the grid resolution for 
𝑤𝑈𝑆 = 1, 15 and 25. For 𝑤𝑈𝑆 = 1, the speed error is higher than the one of the original grid. However, as 𝑤𝑈𝑆 increases, the error 
decreases and eventually drops by a factor 2 compared to the original grid for the two coarsest grids (𝑁𝑏 = 110 and 255). Similarly to 
the spherical squirmer, the error converges as 𝑁−1∕2

𝑏
and the effect of the optimization is less pronounced when the grid resolution 

increases.

Altogether these results show that, for nonspherical geometries, it becomes more challenging to match both the mobility coeffi-

cients and the response to active surface slip simultaneously. Indeed, the mobility errors and speed errors have opposite trends with 
respect to the weight 𝑤𝑈𝑆 . In the present case, the optimal grid obtained for 𝑤𝑈𝑆 = 15 seems to be a good compromise as the mobility 
errors drop by a factor ≈ 3 to 7 and the speed error decreases by 35% for the coarsest grid. Of course, these results are specific to the 
particle geometry and slip distribution presented here. They solely intend to show that by tuning the weights in the cost functions 
(51) one can find a compromise between the hydrodynamic response to forces/torques and to surface slip.

We also would like to emphasize that, in this work, we have chosen to write a simple and generic optimization problem which 
could be improved in many ways by taking into account the specificities of the particles considered. For instance, one could further 
improve the results by optimizing more geometric parameters such as the geometric length 𝐿𝑔 and radius 𝑅𝑔 of the grid, instead of 
a single size scale parameter 𝑆 , and/or use different grids for the 𝑈𝐹 and Ω𝑇 couplings, as in [64], but also for the 𝑈𝑆 and Ω𝑆
13

couplings.
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Fig. 5. (a) Relative mean slip error for a passive particle immersed in a external linear field as a function of the number of nodes. (b) Concentration field error 
computed on a shell at a distance 𝑟 from the center of the colloid of radius 𝑅 discretized with 𝑁𝑏 = 42 nodes. The error decays with the square of the distance for both 
the second and the infinite norm.

4.2. Inert particle in a linear concentration field

To validate the Laplace solver we study a single inert spherical colloid immersed in a linear concentration field 𝛁𝑐∞(𝒙) = 𝒆𝑧. Due 
to the no-flux boundary conditions on its surface, the particle perturbs the external concentration field. To characterize the quality 
of the solution, we measure the average slip velocity induced by this disturbance which, for a constant surface mobility 𝜇(𝒓) = 1, is 
just the surface average of the tangential concentration gradient: ⟨𝒖𝑠⟩ = ⟨𝛁∥𝑐⟩. The slip is azimuthal by symmetry and its average 
magnitude is ⟨𝑢𝑠,𝑡ℎ⟩ = 1 [50]. In this test we use the optimized resolutions given in the last column of Table 1. Fig. 5a shows the 
relative error in the average slip for colloids discretized with a different number of nodes 𝑁𝑏. We observe that the error is around 1%
with a discretization of 42 nodes, and below for higher resolutions. Although for us the concentration is an intermediate variable, as 
we are mostly interested in the velocity of the colloids, we show in Fig. 5b the absolute error on the concentration field computed 
on a shell of radius 𝑟 centered in the colloid. We see that the error decays with the square of the distance and that it is of small 
magnitude, 𝑂(10−3), one radius away from the colloidal surface for a colloid discretized with 𝑁𝑏 = 42 nodes.

4.3. Active particles

4.3.1. Active particle with finite Damkholer number

For reactive particles that consume reactant it is useful to define the dimensionless Damköhler number, Da = 𝑘𝑅∕𝐷, see Sec-

tion 2.1. Here we verify that our approach works for arbitrarily Da numbers by simulating a single Janus particle with an inert 
hemisphere and an active one and by comparing our results against those of Michelin and Lauga [67]. The surface mobility is set to 
𝜇(𝒓) = 1 over the whole sphere; the background concentration is set to zero, 𝑐∞ = 0, and the emitting fluxes and reaction rates are 
set to 𝛼 = −1 and 𝑘 = Da𝐷∕𝑅 on the active hemisphere and 𝛼 = 𝑘 = 0 on the passive one.

We show the swimming speed induced by these surface reactions for several resolutions in Fig. 6. The general trend is recovered by 
all our discretizations. For low Da numbers the concentration cannot diffuse as fast as it is consumed and an asymmetric concentration 
profile is formed around the sphere. That asymmetry creates surface concentration gradients and consequently a surface slip that 
induces a swimming speed. As the Da number increases, and the concentration diffuses faster, the concentration asymmetry is reduced 
which leads to weaker concentration gradients and a swimming speed that tends to zero for Da≫ 1. A more careful comparison against 
the results of Michelin and Lauga shows that our results agree well with a resolution of 𝑁𝑏 = 162 nodes or more. For 42 nodes we 
obtain a good agreement for Da > 1 and an error of about 5% for Da≪ 1.

For a discretization with only 12 nodes the agreement is worse for all Da numbers. Moreover, with that resolution the veloc-

ity exhibits a discontinuity near 𝐷𝑎 = 4.05 (not shown), where the swimming velocity even changes sign. We postulate that such 
strange behavior emanates from the nonlinear dependence on the reaction rate, 𝑘, in the governing equation for the concentration 
gradient (19), which we show more explicitly in Appendix D. Thus, for finite reaction rates we need a finer resolution to resolve the 
concentration gradient on the colloidal surface with enough accuracy.

4.3.2. Two emitting particles

Here we study the hydrochemical interactions between two active colloids to evaluate the accuracy of the method. We consider 
two spherical colloids of unit radius, 𝑅 = 1, immersed in an unbounded domain with a constant background field 𝑐∞ = 0. We consider 
cases with different production fluxes, mobilities and configurations as sketched in Fig. 7. In the three cases considered we solve the 
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Laplace-Stokes problem with optimized discretizations with 𝑁𝑏 = 12, 42, and 162 nodes per colloid, and we vary the inter colloidal 
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Fig. 6. Swimming speed for a Janus sphere versus the Damköhler number. Results for resolutions with different number of nodes, 𝑁𝑏, and comparison with the results 
of Michelin and Lauga [67]. The results with 42 nodes agree well for high Da numbers and show an error of about 5% for Da≪ 1; for finer resolutions the agreement 
is good for all Da numbers.

Fig. 7. Considered cases to validate the interaction between two active colloids in an unbounded domain. a) Uniform colloids with 𝛼 = 1 and 𝜇 = 1 on their surfaces.

b) Janus particles with constant mobility 𝜇 = 1 but active and passive hemispheres, with 𝛼 = 1 and 𝛼 = 0 respectively, shown in gray and white, aligned along their 
symmetry axes. c) Janus particles with active and passive hemispheres (𝛼 = 𝜇 = 1 and 𝛼 = 𝜇 = 0 respectively) in a non-axisymmetric configuration, with the colloids 
on the line 𝑥 = 𝑦, 𝑧 = 0. In the three cases the colloids do not consume solute, 𝑘 = 0, and are immersed in a constant background field 𝑐∞ = 0.

distance. We compare our results with those obtained by the Diffusiophoretic Force Coupling Method (DFCM), which relies on 
truncated multipolar expansions, and the exact solution computed either in bispherical coordinates for axisymmetric cases or with a 
highly accurate BEM code for non-axisymmetric configurations [50].

In the first setup we consider colloids with a uniform emission flux and mobility, 𝛼 = 1 and 𝜇 = 1, on their surfaces. Since the 
discretized colloids are not perfectly isotropic, see Fig. 2a, we only compute the solution down to distances where the nodes, of radius 
𝑎, of the different colloids start to overlap. This way the results do not depend on the relative orientation of the colloids. Since the 
node radius decreases for finer grids, higher resolutions overlap at a smaller gap size. We show in Fig. 8a the velocity for one of 
the colloids as a function of the gap 𝑑 between the two colloids. Close colloids generate a concentration gradient in their gap which 
induces a phoretic speed. As the particles are moved apart the magnitude of the concentration gradient decreases and the speed 
decays to zero. We observe that our lowest resolution, 𝑁𝑏 = 12, is accurate down to gaps of one colloidal radius, 𝑑 = 1, just as the 
DFCM. For higher resolutions the solution remains accurate for smaller gaps and it surpasses the accuracy of the DFCM.

In our second test we use two Janus colloids, with emitting fluxes 𝛼 = 1 and 𝛼 = 0 on each hemisphere, and a uniform mobility 
𝜇 = 1, forming an axisymmetric configuration as shown in Fig. 7b. The velocity is shown for three discretizations in Fig. 8b. A single 
Janus colloid is able to swim due to the self-generated concentration gradient. Thus, unlike the previous case, this problem is not 
symmetric. Fig. 8b shows that for close colloids, i.e. gaps below 1 colloidal radius, our discretizations with 42 or 162 nodes are more 
accurate than the DFCM, while the 12 nodes discretization is somewhat less accurate. For very large distances the colloids attain the 
swimming speed of an isolated colloid, 𝒖∞ = 𝒆𝑥∕4. The DFCM is specially designed for spherical particles and is tuned to recover this 
result exactly, thus its error decays to zero when the colloids move apart. Our discretization works for arbitrary colloidal shapes at 
the cost of introducing a discretization error that affects even isolated colloids. Thus, the error does not decay to zero at long distance 
as it can be seen in the inset of Fig. 8b. These errors are around 9.7%, 5.4% and 0.02% for the discretizations with 12, 42 and 162 
nodes respectively. The error is small for moderate resolutions and the solution can be refined.

As a final test we consider two Janus colloids where the active and passive hemispheres have different reaction fluxes and surface 
mobilities, 𝛼 = 𝜇 = 1 and 𝛼 = 𝜇 = 0, in an asymmetric configuration as shown in Fig. 7c. By symmetry, the colloids remain in the 𝑧 = 0
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plane but acquire velocities in the 𝑥 and 𝑦 directions as well as an angular velocity directed along the 𝑧 axis. Our results, compared 
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Fig. 8. Velocities along the 𝑥-axis for two uniform (a) or janus (b) colloids as shown in Fig. 7a and b. The motion of the uniform colloids is symmetric thus, we only 
show the velocity of one of them in (a). The motion of the janus colloids is not symmetric and we represent with full and empty symbols the velocity of the leftmost 
and the rightmost colloid respectively in (b). The results for discretizations with 𝑁𝑏 = 12, 42 and 162 are compared with a DFCM and the exact solution BSC. We 
compute the solution down to distances where the nodes of the different colloids start to overlap. The low resolution results show an accuracy similar to the DFCM 
while higher resolutions are more accurate at shorter distances.

Fig. 9. Numerical results for a pair of Janus colloids in an non-symmetric configuration as shown in Fig. 7c. We represent with full and empty symbols the velocity of 
the rightmost and leftmost colloid. The results for discretizations with 𝑁𝑏 = 12, 42 and 162 are compared with a DFCM and essentially the exact solution computed 
with a BEM. The three panels, a, b, and c, show the linear velocity along the 𝑥 and 𝑦 axes and the out of the plane angular velocity respectively.

with the DFCM method and a highly accurate BEM solution, are shown in Fig. 9. In general our results are more accurate than the 
DFCM for short distances with all the discretizations considered. The 𝑦 component of the velocity and the angular velocity decay to 
zero for large distances as expected. As before, the 𝑥 component of the velocity shows the same finite error for large intercolloidal 
distances, but it can be controlled by increasing the resolution. Overall, these tests show that using a discretization with 42 nodes the 
numerical results remain reasonably accurate down to interparticle distances of 0.3 colloidal radius.

5. Simulations

In this section we use the flexibility and accuracy of the method to investigate more complex systems with large numbers of 
particles with intricate shapes. The first example focuses on the individual and collective motion of gravitactic active rods down 
an incline. The second system consists of chiral particles that rotate and repel each other due to hydrochemical interactions. Both 
examples explore new physical problems that, to the best of our knowledge, have not been addressed with numerical simulations 
before.

5.1. Gravitactic active rods

Thanks to their ease of manufacture, rod-like phoretic particle has been widely investigated experimentally over the last two 
16

decades. Inspired by the recent work of Brosseau et al. [14], we investigate the dynamics of colloidal tail-heavy Janus rods with 
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Fig. 10. a) Sketch of the self-propulsion and tilting mechanisms of a phoretic rod above an incline with angle 𝛼 = 20◦ . Red and blue arrows represent concentration 
gradients and slip velocities respectively. b) Basic mechanism of phoretic attraction between the inert parts and repulsion between the reactive parts. c) Mechanism 
of chemotactic reorientation. d) Trajectory of an isolated rod swimming uphill on an incline (top view). e) Trajectories of 100 rods initially placed on a square lattice. 
Colorbar: dimensionless time. f) Snapshots of the simulation over time. Insets in the last panel: close-up view on some clusters, colored arrows show their rotation 
direction if any. See also Supplemental Movie 1.

asymmetric surface properties swimming on an incline, with a tilt angle 𝛼 = 20◦. In their work they have shown that isolated swimmers 
with a heavier tail were gravitactic and thus oriented against gravity. In addition they tilted head-down due to hydrochemical 
interactions with the wall underneath, which induced a fore-aft drag asymmetry and facilitated their upward swimming along steep 
slopes.

In this section, we focus on the collective dynamics of such swimmers in order to evaluate the effect of multi-body hydrochemical 
interactions on their ability to swim uphill. Our rods, with length 𝐿 = 4 μm and radius 𝑅 = 1 μm, are discretized with 𝑁𝑏 = 110 nodes 
on their surface as described in Section 4.1.2. They are immersed in a fluid with viscosity similar to water 𝜂 = 1 mPa⋅s at temperature 
𝑇 = 300 K (= 26.9◦), with a constant background fuel concentration field 𝑐∞ = 100μm−3. They consume fuel asymmetrically at a rate 
𝑘𝐵 = 2 μm⋅s−1 at the back and 𝑘𝐹 = 0 μm⋅s−1 at the front. The mobility is also asymmetric with 𝜇𝐵 = −4 μm5⋅s−1 and 𝜇𝐹 = 0 μm5⋅s−1, 
and the solute diffusivity is 𝐷 = 1 μm2⋅s−1. The resulting Damkholer number is Da = 𝑘̄𝐿∕𝐷 = (𝑘𝐹 +𝑘𝐵)𝐿∕2𝐷 = 4. In our simulations 
we exaggerate the role of gravitaxis and consider a tail eight times heavier than the tip, where the total excess mass (compared to 
the solvent) of the rod is 𝑚e = 6.8 × 10−9 mg. In the short range, the rods repel each other and/or the wall below with a repulsive 
potential to prevent overlaps.

First, we investigate the motion of a single Janus rod initially oriented along the 𝑥-axis. In the absence of walls, the concentration 
is higher near the inert part, where no fuel is consumed. The resulting concentration gradient is directed from the inert to the reactive 
side, which, by phoresis, generates a surface slip flow in the opposite direction, and therefore, by momentum conservation, a straight 
swimming motion along the 𝑥-axis with the inert part first. In the presence of a wall, as sketched in Fig. 10a, the concentration 
field is highest below the tip of the inert part due to confinement. The resulting concentration gradient, and thus the slip flow, is 
therefore stronger below than above the rod. This, together with a smaller relative pressure ahead of the slip region [14], leads to 
a reorientation of the rod with its inert part toward the wall, with a net motion uphill along the 𝑥-axis. In the absence of thermal 
fluctuations, the Janus rod swims uphill at a steady speed 𝑉0 = 6.26 μm⋅s−1. However, due to their small size, 𝑂(𝜇m), these particles 
are sensitive to the Brownian motion of the solvent molecules. As shown in Fig. 10d, a typical rod trajectory fluctuates significantly 
but the rod swims uphill in average due to the gravitactic torque that reorients it against gravity. Similar trajectories have been 
observed experimentally with bimetallic rods [14].

Now we consider a large collection (𝑀 = 100) of such rods initially placed on a lattice at a distance 𝑑𝑥 = 𝑑𝑦 = (10 ± 2.5)𝐿 from 
each other and oriented along the 𝑥-axis. The equations of motion are integrated with the Euler-Maruyama traction scheme which 
requires solving the Stokes linear system (34) twice per time-step [79]. We simulate the suspension for 30000 time-steps, with a 
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time-step size Δ𝑡 = 0.016𝐿∕𝑉0, which corresponds to the time for an isolated rod to travel ≈ 470 its body length 𝐿, and it took 3.5 
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days on a 10-core computer. Fig. 10e-f shows the trajectory of the rods’ center of mass and three corresponding snapshots, where 
lengths are rescaled with 𝐿, speed with 𝑈0 = 𝜇̄𝑘̄∕𝐷 and time with 𝐿∕𝑈0 (see also Supplemental Movie 1).

Unlike the isolated swimmer in panel d, all particles, except for one that manages to escape, reorient toward each other and 
eventually merge into small clusters that slowly sediment down the incline. Some clusters spontaneously rotate, and change their 
rotation direction due to geometrical rearrangements induced by thermal fluctuations, while others barely move because of their 
symmetry. A closer look at the clusters shows that the particles point inwards with their inert part. This is because the inert parts are 
mutually phoretically attractive, while the reactive parts are phoretically repulsive. Indeed, as sketched in Fig. 10b, the concentration 
gradient, and thus particle motion, is always directed towards the inert parts. These clusters form because particles reorient and 
swim toward each other. This reorientation results from the competition between gravitaxis, that tends to orient particles against 
gravity, i.e. with their inert part directed along the 𝑥-axis, and chemotaxis that tends to orient particles toward chemical gradients. 
The effect of chemotaxis is sketched in Fig. 10c: due to confinement, there is a concentration build up between the inert parts of two 
neighboring particles, this local increase generates a stronger gradient in the space between the particle pair, and thus rotates the 
inert parts toward each other. However, once formed, these clusters do not grow indefinitely. We postulate it might be due to the 
phoretic repulsion between the reactive parts of the rods that are pointing outwards from the clusters. A more detailed study of the 
clustering dynamics of anisotropic phoretic particles will be the subject of future work.

5.2. Collective motion of chiral phoretic microrotors

In order to design functionalized colloidal systems and materials, one must control the self-induced motion of different active 
particles in a common environment. Recent efforts by Brooks et al. [26], Zhang et al. [28] and Sharan et al. [27] have shown 
that, just like translation, the rotation of catalytic particles can be controlled with their shape. In their work, they control both the 
magnitude and direction of rotation of an individual particle, by breaking its rotational symmetry with its chirality. While the phoretic 
mechanism leading to spontaneous rotation of a single particle is quite intuitive and well understood, their interactions and collective 
motion at large scale have not yet been investigated.

Here we use our new framework to simulate, for the first time to our knowledge, the motion of 130 chiral phoretic particles 
circularly confined by a harmonic potential above a wall. Our chiral particles simply consist of one main rod of length 𝐿𝑟 = 9 μm and 
width 𝑊 = 1 μm, with two arms of length 𝐿𝑎 = 4 μm and width 𝑊 placed asymmetrically at its extremities, as shown in Fig. 11a. 
Each particle has a uniform surface mobility 𝜇 = 1 μm5⋅s−1 and emits solute uniformly at a fixed flux 𝛼 = 1 μm−2⋅s−1. The solute 
diffusivity is chosen arbitrarily as 𝐷 = 1 μm2⋅s−1. The particles are discretized with a low resolution grid made of 𝑁𝑏 = 72 adjacent 
nodes of radius 𝑎 =𝑊 ∕2 = 0.5 μm. This minimal model might not describe accurately the flow and concentration field at the surface 
of the body but still captures the main mechanisms described below: self-induced rotation and phoretic repulsion.

The mechanism for self-induced rotation is schematized in Fig. 11a. The particle releases solute uniformly over its surface, but 
due to its bent shape, the solute primarily accumulates near the inner corners of the arms. This accumulation generates a sharp 
gradient along the arms, which, for a positive mobility coefficients 𝜇 > 0, induces a slip flow 𝒖𝑠 towards the body. To preserve 
momentum the arms move against this phoretic flow, which, by symmetry, leads to the rotation of the whole body about the 𝑧-axis at 
a constant rate Ω𝑧. When another chiral particle is nearby, see Fig. 11b, the solute also accumulates between the particles’ boundaries. 
The resulting solute gradients induce phoretic flows which, for 𝜇 > 0, push the particles away from each other while rotating. This 
phoretic repulsion mechanism also repels the particles away from the floor underneath.

To investigate their collective motion we initially place 130 particles in a disk of radius 𝑅 = 10𝐿𝑟 as shown on the first panel of 
Fig. 11d. The particles are denser than the fluid and sediment near the floor at an equilibrium height ℎ = 0.24𝐿𝑟 that results from 
the balance between gravity, phoretic repulsion and electrostatic repulsion from the floor. The particles are confined in the disk by 
a harmonic potential of the form

𝑈disk(𝑟) =
𝑘𝑈
2

(𝑟−𝑅)2 , if 𝑟 > 𝑅

where 𝑟 is the radial distance between a particle and the center of the disk and 𝑘𝑈 the stiffness of the potential. Steric interaction 
between rigid bodies and electrostratic repulsion from the wall are accounted for with a short-range pairwise repulsive potential 
between the nodes and between the nodes and the wall. In the following, lengths are nondimensionalized with the particle length 
𝑙𝑐 = 𝐿𝑟, velocities with 𝑈𝑐 = 𝛼𝜇∕𝐷 and time with 𝑡𝑐 = 𝑙𝑐∕𝑈𝑐 . Here we neglect the effect of thermal fluctuations. The equations of 
motion are time-integrated with a simple explicit Euler scheme and the time step is Δ𝑡 ≈ 2 ⋅ 10−4𝑇rot, where 𝑇rot = 2𝜋∕Ω𝑧 is the time 
for a full rotation of an isolated particle. We simulate the system for 145000 time-steps, which corresponds to ≈ 30 body rotations, 
and it took 5.5 days on a 10-core computer.

Fig. 11c shows the trajectory of the particles center of mass over time and Fig. 11d shows the corresponding snapshots at three 
different times (see also Supplemental Movie 2). A collective radial migration happens at short time due to phoretic repulsion between 
the particles: the particles repel each other and migrate towards the outer edge of the disk while rotating. Due to the circular 
confinement of the harmonic potential, they accumulate on the rim and progressively form of a tightly packed circular ring with no 
defects. As it self-assembles, the ring rotates counter-clockwise (CCW). The particles inside the disk progressively stabilize their radial 
position. Some of them form intermittent chains, which rotate like rigid bodies, and gradually break into monomers and dimers. Due 
to the competition between phoretic repulsion and harmonic confinement, the system seems to converge to a crystalline structure in 
the bulk which coexists with a few persistent dimers. At steady state, the inner particles barely move, while the ones near the ring 
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slowly migrate in clockwise (CW) direction (see trajectories in Fig. 11c and red arrows on panel d).
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Fig. 11. a) Geometry of a chiral particle and schematic of the self-rotation mechanism. b) Phoretic repulsion between two chiral particles with positive mobilities 
(𝜇 > 0). c) Trajectories of the particles center of mass over time (colorbar). d) Snapshots of the simulation at three different times. Light gray circle: confining disk of 
radius 𝑅 = 10. Colored lines: trajectory of the tip of the arms over the last rotation period. Red arrows: azimuthal motion, 𝑣𝜃 , of the particles at the periphery. See 
also Supplemental Movie 2. e) Flow field around the chiral particles at 𝑡 = 161. Color-scale from white to dark red: magnitude of the velocity field. Black lines with 
red arrows: streamlines.

The azimuthal motion in the system is reported in Fig. 12a. The time evolution and the probability density function (PDF) of the 
azimuthal velocity 𝑣𝜃 show that the CCW motion of the particles on the ring stabilizes around 𝑣𝜃 ≈ 0.08 while the particles inside 
mostly move CW (𝑣𝜃 < 0) but very slowly |𝑣𝜃| ≪ 0.08. Even though the distribution is bimodal, the mean azimuthal motion in the 
system is CCW (see dashed line at 𝑣̄𝜃 ≈ 0.04).

Rotational motion is also very different between the ring and bulk particles. As shown in the left panel of Fig. 12b and on 
Supplemental Movie 3, after a transient time, 𝑡 > 80, geometrical frustration prevents the particles on the ring from rotating (Ω𝑧 = 0
at 𝑟 =𝑅 = 10), while the ones at the center keep a steady rotation rate Ω𝑧 ≈ 1, except for the few particles forming chains/dimers at 
the periphery (Ω𝑧 ≤ 0.5). As shown by the PDF on the right panel, these chains are scarce compared to the two large peaks at Ω𝑧 = 1
and Ω𝑧 = 0

6. Discussions

In this work we have presented a numerical method to solve the hydrochemical problem that appears in many soft matter systems 
where colloids mediate chemical reactions on their surface and interact both chemically and hydrodynamically. The strengths of our 
approach are its flexibility, it allows to simulate complex shaped colloids in different domains, the possibility to include Brownian 
motion, the easiness of implementation and a moderate computational cost. These advantages come at the cost of a moderate accuracy, 
typically two or three digits accurate. Nonetheless, the accuracy is controllable if one is willing to accept higher computational costs. 
The error in the chemical and hydrodynamic interactions between particles can also be reduced using pair-corrections [64].

Our method only discretizes the surface of the colloids with simple quadrature rules which helps simulating large systems. To 
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solve the Stokes equations we use a regularized mobility, the so-called RPY mobility, which is always positive definite and thus it 
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Fig. 12. Time evolution (left) and probability density distribution (right) of the azimuthal velocity 𝑣𝜃 (a) and rotation rate Ω𝑧 (b) of the chiral particles. Colorbar: 
radial position of the particles. Dashed line: onset of steady state (left), and average value of the PDF (right). See also Supplemental Movie 3.

eases the generation of the Brownian noise [63,79]. To solve the Laplace problem we use a simple quadrature where we eliminate 
the self-interaction of the nodes. We use the same grid to solve both problems so the surface slip on phoretic particles can be easily 
computed and plugged in the Stokes problem.

All the steps to solve the coupled Laplace-Stokes problem are matrix free and allow the use of fast methods (e.g. the Fast Multipole 
Method [81]) to compute the hydrochemical interactions. Moreover, the linear systems to solve both problems converge in a moderate 
number of iterations that scales weakly with the number of colloids 𝑀 for the Laplace problem ( 

(
𝑀1∕5)), and is independent of 

𝑀 for the Stokes problem [63].

In this work, we have optimized the grid only for the hydrodynamic part of the problem. However, the optimal grid for the 
Stokes problem might not always be optimal for the Laplace problem. In future work we plan to optimize the grid for both problems 
simultaneously or to use a different grid for each problem. In Appendix D we provide some ideas and directions that will be tested to 
match the linear operators of the Laplace problem.

With this approach we have been able to simulate 100 phoretic rods on an inclined plane in Sec. 5.1 or 130 chiral colloids above 
a floor in Sec. 5.2. In addition to their visual appeal (Fig. 11e), these first results open many interesting questions and perspectives 
regarding the design and collective motion of chemically powered colloidal machines. Besides capturing the main hydrochemical 
mechanisms at the individual level, our tool predicts their complex dynamics at large scales. In the future it would be interesting to 
mix particles with different surface properties or particles with opposite chiralities (i.e. opposite rotation directions) to investigate 
their ability to mix or phase-separate, like binary mixtures of torque-driven particles [97]. Finally, the effect of the Damkholer number 
on propulsion has only been investigated for isolated particles so far. Since our approach is valid for any value of Da, it would also 
be interesting to the study the effect of Da on the collective dynamics of reactive suspensions.

Our code is open source and freely available on GitHub (https://github .com /stochasticHydroTools /RigidMultiblobsWall). The 
online repository also includes the grid optimization routine described in Section 3 and some documented examples shown in the 
paper: a single active sphere (Section 4.3.1) and the chiral microrotors (Section 5.2). To conclude, we would like to emphasize that 
our framework is not limited to diffusiophoresis, i.e. solute concentration fields. It broadly applies to any scalar field that satisfies 
elliptic equations, such as temperature or electric potential. With minor modifications, our code can be used to study the dynamics 
of thermophoretic or electrophoretic particle suspensions.
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Fig. A.13. Scaling of the singular values of each block of the slip mobility matrix with the number of nodes 𝑁𝑏 .
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Appendix A. Scaling of the singular values of the slip mobility matrix

As shown in Fig. A.13, the singular values of each block scale as 𝑁−1∕2
𝑏

with the rigidmultiblob method (and presumably with 
any numerical method). To understand this scaling, first note that the particle velocity resulting from the slip, 𝑼 = −𝑵̃𝒖𝑠 does not 
scale with the number of surface nodes 𝑁𝑏. The 6 × 6 matrix 𝑾 in the SVD of 𝑵̃ contains 𝑟 = 6 basis vectors of the column space of 
𝑵̃ , where 𝑟 is its rank. Since 𝑟 and the magnitude of the basis vectors do not depend on 𝑁𝑏, neither does 𝑾 .

On the other hand, the matrix 𝑽 contains 3𝑁𝑏 column vectors, 𝒗𝑖, 𝑖 = 1, .., 3𝑁𝑏, with 3𝑁𝑏 components each. Each of these column 

vectors is unitary so that 𝒗𝑖 ∼𝑁
−1∕2
𝑏

𝒗̆𝑖, where 𝒗̆𝑖 is the same vector without normalization (indeed ‖𝒗𝑖‖ = (∑3𝑁𝑏
𝑗=1 𝑣

2
𝑖,𝑗

)1∕2
= 1). As a 

result, the dot product between one of these vector and 𝒖𝑠 is 𝒗𝑖 ⋅ 𝒖𝑠 =
∑3𝑁𝑏
𝑗=1 𝑣𝑖,𝑗𝑢𝑠,𝑗 ∼𝑁

−1∕2
𝑏

3𝑁𝑏∑
𝑗=1
𝑣̆𝑖,𝑗𝑢𝑠,𝑗

⏟⏞⏞⏟⏞⏞⏟
∼𝑁𝑏

∼𝑁1∕2
𝑏

, so that

𝑽 𝑇 𝒖𝑠 ∼
⎡⎢⎢⎢
𝑁

1∕2
𝑏
⋮
1∕2

⎤⎥⎥⎥ =𝑁1∕2
𝑏

⎡⎢⎢⎣
𝑂(1)
⋮
𝑂(1)

⎤⎥⎥⎦ . (A.1)
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Table B.3

Optimal grid parameters obtained with two different 
cost functions (51) and (B.1) respectively using the 
DL formulation for a sphere with radius 𝑅 = 1 in an 
unbounded domain.

Opt. grid DL (51) Opt. grid DL (B.1)

𝑁𝑏 𝑆 𝑎∕𝑠 𝑆 𝑎∕𝑠

12 0.858 0.412 0.831 0.406

42 0.929 0.410 0.913 0.433

162 0.965 0.413 0.959 0.429

642 0.982 0.424 0.980 0.480

Fig. B.14. Relative error of the propulsion speed of a squirmer as a function of the grid resolution 𝑁𝑏 for two optimal grids obtained with different cost functions: 
(51) using the sum of the errors (triangles), (B.1) using the max of the errors (squares).

Thus, the velocity 𝑼 = −𝑵̃𝒖𝑠 = −𝑾 𝚺𝑽 𝑇 𝒖𝑠 can be written as

𝑼 ∼ −𝑾 ⋅

⎡⎢⎢⎢⎣
𝜎1𝑁

1∕2
𝑏

⋮
𝜎6𝑁

1∕2
𝑏

⎤⎥⎥⎥⎦ . (A.2)

Since 𝑼 and 𝑾 do not scale with 𝑁𝑏 then the singular values must scale as 𝜎𝑖 ∼𝑁
−1∕2
𝑏

, 𝑖 = 1, ..6.

Appendix B. Optimized grid with a different cost function

In this Appendix we use another cost function for the grid optimization problem (52):

𝑓 (𝑆,𝑎) = max{𝐸𝑈𝐹 ,𝐸Ω𝐹 ,𝐸𝑈𝑇 ,𝐸Ω𝑇 ,𝐸𝑈𝑆,𝐸Ω𝑆} (B.1)

which is the one used by [64] to match the mobility coefficients of an ideal sphere. We have found that in the absence of slip, both cost 
functions (51) and (B.1) provide the same optimal grid parameters. However, as shown in Table B.3, when adding the slip mobility 
matrix, the two cost functions lead to slightly different optimal grids, which, in turn, results in different swimming speeds, where, as 
shown in Fig. B.14, the optimal grid using the sum of the errors (51) performs better than the one taking the max error (B.1).

Appendix C. Half space Green’s functions

The Laplace Green’s function and dipole kernel in a half space bounded by a impervious solid wall at 𝑧 = 0 are

𝐺(𝒙,𝒚) = 1
4𝜋

1
𝑟
+ 1

4𝜋
1
𝑟∗
, (C.1)

𝑇𝑖(𝒓) = − 1 𝑟𝑖 −
(
1 − 2𝛿𝑖3

) 1 𝑟∗𝑖 , (C.2)
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with 𝒓 = 𝒙 − 𝒚 and 𝒓∗ = 𝒙 − 𝑷𝒚 with 𝑷 = 𝑰 − 2𝒆𝑧𝒆𝑇𝑧 . Thus, the Green’s function (C.1) has an additional source at the other side of 
the wall. When we take the derivative of (17) to find the gradient, we derive with respect the target position 𝒙. Therefore, in the 
operators of (19) we have to use the kernels

𝑇𝑖(𝒓) = − 1
4𝜋
𝑟𝑖
𝑟3

− 1
4𝜋

𝑟∗𝑖
(𝑟∗)3

, (C.3)

𝐿𝑖𝑗 (𝒓) =
𝜕

𝜕𝑥𝑖
𝑇𝑗 (𝒙,𝒚) = − 1

4𝜋
𝛿𝑖𝑗

𝑟3
+ 3

4𝜋
𝑟𝑖𝑟𝑗

𝑟5
−
(
1 − 2𝛿𝑗3

)[ 1
4𝜋

𝛿𝑖𝑗

(𝑟∗)3
− 3

4𝜋

𝑟∗𝑖 𝑟
∗
𝑗

(𝑟∗)5

]
. (C.4)

Thus, the operator 𝐿𝑖𝑗 is not symmetric any more.

Appendix D. Some ideas on grid optimization for the Laplace problem

In the discrete setting, the concentration and its gradient on the particle surface due surface fluxes 𝜶, reaction rates 𝒌, background 
field 𝒄∞ and background gradient 𝛁𝑐∞ at the node locations are given by (25)[1

2
𝑰𝒘−1 +𝑫 +𝑺

𝒌

𝐷

]
𝒘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑨

𝒄 = 𝑺
𝒘𝜶

𝐷
+ 𝒄∞, (D.1)

and (26)

1
2
𝛁𝒄 = 𝛁𝒄∞ +𝑳𝒘𝒄 + 𝑻

[
𝒘𝒌𝒄

𝐷
− 𝜶

𝐷

]
, (D.2)

where 𝜶, 𝒄∞ and 𝒄 are 𝑁𝑏 × 1 vectors and 𝒌 and 𝒘 are 𝑁𝑏 ×𝑁𝑏 diagonal matrices containing the value of the reaction rate 𝑘 and 
weight 𝑤 at each node. 𝛁𝒄 and 𝛁𝒄∞ are 3𝑁𝑏 × 1 vectors.

Since only the tangential component of the surface gradient 𝛁∥𝒄 = [𝑰 − 𝒏𝒏]𝛁𝒄 = 𝑷 ∥𝛁𝒄 has an effect on the hydrochemical 
coupling through the slip velocity 𝒖𝑠 = 𝜇𝛁∥𝒄, we will only focus on the operator that relate the tangential surface gradients with the 
forcing terms.

Substituting the solution 𝒄 =𝑨−1
[
𝑺

𝒘𝜶

𝐷
+ 𝒄∞

]
into the tangential component of (D.2) and rearranging gives

𝛁∥𝒄 = 2𝑷 ∥

[(
𝑳𝒘+ 𝑻

𝒘𝒌

𝐷

)
𝑨−1𝑺𝒘− 𝑻

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑮𝛼

𝜶

𝐷
+ 2𝑷 ∥

(
𝑳𝒘+ 𝑻

𝒘𝒌

𝐷

)
𝑨−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑮∞

𝒄∞ + 2𝑷 ∥
⏟⏟⏟
𝑮𝛁∞

𝛁𝒄∞ (D.3)

where 𝑮𝛼 and 𝑮∞ are 3𝑁𝑏 ×𝑁𝑏 matrices, and 𝑮𝛁∞
is 3𝑁𝑏 × 3𝑁𝑏. The solution can be written more compactly as

𝛁∥𝒄 =𝑮 ⋅
⎡⎢⎢⎣

𝜶

𝐷
𝒄∞
𝛁𝒄∞

⎤⎥⎥⎦
⏟⏟⏟

𝒇𝛁

(D.4)

where 𝑮 =
[
𝑮𝛼, 𝑮∞𝑮𝛁∞

]
is a 3𝑁𝑏 × 5𝑁𝑏 matrix that gives the tangential surface gradients induced by the forcing terms in 𝒇𝛁, 

namely the surface fluxes and background field. Its size depends on the number of grid points.

Note that the operator 𝑮 depends nonlinearly on 𝒌, which might explain the behavior of the propulsion speed of a sphere with 
𝑁𝑏 = 12 near Da ≈ 4 in Fig. 6. For the sake of simplicity we will consider 𝒌 = 𝟎 hereafter.

The goal of grid optimization is to match the action of the operator 𝑮𝑟𝑒𝑓 obtained with a reference grid, independently of a 
specific forcing 𝒇𝛁. However, direct comparison between 𝑮 and 𝑮𝑟𝑒𝑓 is impossible due to the difference in the number of nodes 
(𝑁𝑏,𝑟𝑒𝑓 ≫𝑁𝑏). One alternative is to compare moments of 𝛁∥𝒄, such as the mean:

𝛁∥𝒄 =𝑮 ⋅ 𝒇𝛁 (D.5)

where 𝑮 is a 3 × 5𝑁𝑏 matrix given by

𝑮 =𝑴𝑮, (D.6)

with 𝑴 the 3 × 5𝑁𝑏 average operator given by

𝑴 = 1
𝑁𝑏

[𝑰 , ⋯ , 𝑰] . (D.7)

Then, using singular value decomposition
23
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one can define the relative error between the three singular values of 𝑮 and 𝑮𝑟𝑒𝑓 , as in Section 3.1:

𝐸
𝑮
= ‖𝚺𝑮

𝑟𝑒𝑓 − 𝛽𝚺
𝑮‖∕‖𝚺𝑮

𝑟𝑒𝑓‖. (D.8)

The error on the mean, 𝐸
𝑮

, and on higher moments, could either be minimized separately to optimize the grid for the Laplace problem 
only, or it could be added to the cost function (51) to optimize the grid for the whole hydrochemical problem.

Appendix E. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2024 .113321.
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