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Abstract—Recent research has been focusing on Graph Signal
Processing (GSP) to combine different neuroimaging modalities,
enabling the integration of both structural and functional brain
data. To characterize how signals interact with brain networks,
the Fourier and wavelet transforms have been extended to the
graph setting by designing spectral filters on the structural graph
Laplacian eigenvalues. Here, we present the benefits of leveraging
graph wavelet packets in neuroimaging using diffusion MRI
and fMRI data, based on the Boston Adolescent Neuroimaging
of Depression and Anxiety (BANDA) dataset. We consider the
distance between eigenvectors to extract features related to
the spectral domain of the structural graph. Our proposed
framework demonstrates superior accuracies in a classification
scheme compared to conventional GSP methods.

Index Terms—anxiety, depression, functional MRI, graph sig-
nal processing, structural connectivity, graph wavelet packets

I. INTRODUCTION

Anxiety and depression in adolescents are mental health
conditions that negatively affect the quality of life. Our knowl-
edge of the biological mechanisms behind those diseases is
still limited and the aim of this project is to improve our
understanding of the cerebral underpinnings behind them.

Brain connectivity has been extensively studied for inves-
tigating clinical biomarkers of psychiatric diseases [1], [2].
Functional connectivity (FC) captures the similarity between
brain regions by measuring the correlation between Blood-
Oxygen-Level-Dependent (BOLD) signals, i.e., time-series
extracted from resting-state functional Magnetic Resonance
Imaging (rs-fMRI). Structural connectivity (SC) focuses on
the anatomical connections between brain regions estimated
by tractography techniques to provide insights into neural con-
nectivity pathways and patterns. Many neuroimaging studies
investigated FC and SC to provide a better understanding of
psychiatric diseases in adults [3], [4]. Among them, several
papers studied the structural-functional brain connectome of
depression and reported disturbances in various brain net-
works in patients, such as the default mode network (DMN),
frontoparietal network (FPN) and cingulo-opercular network
[5]. Likewise, a recent review and meta-analysis of rs-fMRI
revealed altered connectivity between the amygdala and the
prefrontal regions in anxious patients [3]. Investigating youth
depression and anxiety is also crucial because the emergence
of treatment-resistance conditions often correlates with the
diagnostic of these disorders during adolescence [6]. Yet, there
is a lack of research studying markers in youth. The main

meta-analyses found altered FC in the DMN, the FPN, and
the salience network [7], [8].

While these results are meaningful, most of these studies
analyzed different modalities independently. However, due to
the intricate nature of the brain, integration of both structural
and functional brain data is hypothesized to enable identi-
fication of more robust markers of brain diseases [9], [10].
Graph Signal Processing (GSP) is a promising framework in
this respect. It uses the eigendecomposition of the structural
graph Laplacian to unveil the topological organization of brain
regions across various scales, enabling the examination of
frequency patterns of SC. By defining the BOLD signals on
the underlying graph structure, GSP helps uncover hidden
relationships that might exist between these two modalities.
Recent works studied the frequency behavior of the BOLD
signals by computing their Graph Fourier Transform (GFT),
which decomposes the signals into the spectral domain to
reveal how they align with the global network topology of
the structure. In [11], the superior predictive performance of
using feature vectors derived from the GFT was shown in a
supervised classification setting of autism, when compared to
classical connectivity metrics extracted from FC or rs-fMRI
time-series alone. GFT coefficients were also used to analyze
the coupling strengths between rs-fMRI time-series and SC
with low- or high-pass filters in the context of classification of
patients with disorders such as depression [12], anxiety [13],
and Alzheimer’s disease [14].

With the development of GSP, there have been several
attempts to derive wavelets on graphs by building spectral
filters on the Laplacian eigenvalues [15], [16]. Specifically,
the Spectral Graph Wavelet Transform (SGWT) maps graph
signals to coefficients and enables localization on both the
spatial node and spectral domains [17]. However, whether
it is with the GFT or SGWT, previous studies exclusively
focused on the eigenvalues to organize the corresponding
eigenvectors. Therefore, the relationships among the latest
have been neglected. In this work, we propose an alternative
strategy, that is, to make use for the first time of the direct
distances between graph Laplacian eigenvectors in neuroimag-
ing. We create a new set of graph transforms that aims
to extend previous transforms by fully leveraging the graph
structure, which enables a better localization on the spatial
and spectral domains. The proposed approach is evaluated in
a classification setting to predict anxiety and depression, and
is compared to the features obtained with the GFT and SGWT.



II. PRELIMINARIES

A. Data

The BANDA study is one of the projects funded by the
National Institute of Health to study a disease population
using Human Connectome Project protocols [18]. This cohort
includes 207 adolescents with brain imaging data (62 Control
(CA), 80 Anxious (AA) and 65 Depressed Adolescents (DA)).
We discarded 17 subjects due to poor image quality, resulting
in Ns = 190 subjects including 58 CA, 72 AA and 60 DA.
Three modalities of brain imaging data (structure MRI, rs-
fMRI and diffusion-weighted images) were acquired for each
participant.

B. Preprocessing

The data were preprocessed using QSIPrep [19] and
fMRIPrep [20]. The anatomical preprocessing workflows con-
tain intensity non-uniformity correction of the T1w image,
skull-stripping, and brain tissue segmentation of cerebrospinal
fluid, white-matter and gray-matter. The diffusion-weighted
images were denoised using MP-PCA, then corrected for
Gibbs unringing using local subvoxel-shifts, B1 field inhomo-
geneity using ANT’s N4 algorithm, head motion and Eddy
current using FSL’s eddy. For fMRI images, head-motion
parameters (transformation matrices and six corresponding ro-
tation and translation parameters) were estimated using FSL’s
mcflirt. A fieldmap was estimated based on two echo-planar
imaging references with opposing phase-encoding directions,
with FSL’s topup. BOLD runs were also slice-time corrected
using 3dTshift from AFNI. Finally, the brain parcellation
Schaefer atlas with 400 cortical regions [21] and 16 subcortical
regions [22] was adopted to construct SC matrices and extract
BOLD signals of all voxels within the regions of interest
(ROIs) according to the template. Whole brain probabilis-
tic tractography including 10 million fibers was performed,
using a spherical deconvolution approach and the Spherical-
deconvolution Informed Filtering of Tractograms 2 [23].

C. Graph Signal Processing

Let G = G(V, E ,A) be an undirected graph representing the
SC, where V is the set of nodes with each node representing a
distinct ROI, E is the set of undirected edges in G, and A is a
symmetric weighted matrix representing the adjacency matrix
where each entry is the number of fibers that link two ROIs.
Let X ∈ RN×T be the BOLD signals for N ROIs over the
course of T timepoints. We can now define the combinatorial
Laplacian matrix, random-walk normalized normalized Lapla-
cian matrix and the symmetric normalized Laplacian matrix,
respectively as

L =D −A
Lrw =D−1L

Lsym = I −D−1/2AD−1/2, (1)

where D is the diagonal matrix of node degrees, i.e., Dii =∑
jAij . Lsym is widely used in graph theory. Since it is

real, symmetric, and positive semi-definite, it can be diago-
nalized via its eigendecomposition as Lsym = UΛU⊤, where
the columns of U = [u1, u2, . . . , uN ] are the orthonormal
eigenvectors, and Λ is the diagonal matrix that stores the
non-negative eigenvalues Λ = diag(λ1, λ2, . . . , λN ). Each
eigenvalue λk reflects a notion of frequency of the correspond-
ing eigenvector uk, which can be interpreted as a structural
harmonic. The BOLD signals X can then be projected on the
structural harmonics through the GFT to perform a frequency
analysis of the graph signals, as defined below:

X̂ = U⊤X. (2)

D. Graph Wavelet Transform

The GFT can be further exploited to construct graph
wavelets that are localized both in the spatial and spectral
domains, which is not the case for the GFT coefficients that
are only localized in the latest. In [17], the SGWT was
introduced to build wavelet frames adapted on graphs as
ψj,n = Ug(jΛ)U⊤δn, where g is a band-pass kernel defined
in the spectral domain, j is the scale parameter and δn is the
standard basis vector centered at node n. A low-pass filter
or scaling function h(λ) is added to compute the complete
frame. The scale parameter j and the position parameter n
provide the ability to examine the spatial and spectral domains
at different levels of localization and scale. Therefore, the
wavelet coefficients of a given graph signal X are obtained
by computing the following inner product:

W (j, n) = ⟨ψj,n,X⟩. (3)

We now explain in an intuitive example how the exclusive
use of the eigenvalues to build filters for the GFT and
SGWT may be limited to fully exploit the graph structure.
As represented in Figure 1, the first six eigenvectors ordered
sequentially in terms of increasing eigenvalues oscillate in
different directions. As the frequencies increase, the smooth-
ness in terms of values between neighboring ROIs decrease
accordingly. This representation enables the construction of
filters for graph signals. However, these filters depend only on
the 1D sequence of eigenvalues, and do not reflect how the
eigenvectors behave. This is illustrated between the second and
third eigenvector, where the type of oscillations is completely
different, despite the values of the associated frequencies being

Fig. 1. The first six Laplacian eigenvectors.



close to each other. In other words, the spatial information
given by the eigenvectors is completely overlooked by simply
taking the eigenvalue sequence into account.

III. METHODS

We propose to construct well localized basis vectors based
on the eigenvectors, which will allow to build discriminative
features in the graph spectral domain. Our approach is detailed
in the following subsections.

A. Natural distance between eigenvectors

We first introduce a pseudometric that quantifies the dif-
ference between the eigenvectors using the Difference of
Absolute Gradient (DAG) pseudometric [24]. To incorporate
information related to the oscillations of the eigenvectors, their
gradient on each edge is first computed. Due to the undirected
nature of G, the absolute value of the gradients is considered.
Then, the distance between the eigenvectors is computed using
these values with the l2-distance. Therefore, eigenvectors with
similar oscillation patterns are expected to output a small DAG
distance, while those with different oscillations would lead to a
large DAG distance. Let Q ∈ RN×|E| be the incidence matrix
of G, defined as

Qi,k =


−
√
Ai,j if ek = (vi, vj) for some j,

+
√
Ai,j if ek = (vj , vi) for some j,

0 otherwise,
(4)

where vi ∈ V is a node and ek = (vi, vj) ∈ E is an edge
from vi to vj . The matrix Q verifies QQT = L.

Then, the DAG pseudometric between ui and uj is defined
as

dDAG(ui, uj) = ∥|∇G|ui − |∇G|uj∥2
where |∇G|u = abs(QTu) ∈ RN

≥0, (5)

where abs(.) applies the absolute value to its argument. For
further details related to the properties of this pseudometric,
see [25]. Now that the difference between eigenvectors has
been quantified, we can use it to build graph wavelet packets.

B. Natural graph wavelet packets

Instead of relying on the eigenvalue sequence to build filters,
we conduct an approach as proposed in [25], which allows to
construct a graph wavelet packet dictionary of well localized
vectors. This construction is achieved in two steps that are
explained in the following subsections.

1) Hierarchical bipartition of eigenvectors: Let G∗ =
G∗(V∗, E∗,A∗) be the dual graph of G, where the set of
eigenvectors V∗ = {u1, u2, . . . , un} are the nodes, E∗ is
the set of undirected edges, and A∗

i,j = 1/dDAG(ui−1, uj−1),
∀i, j = 1, 2, . . . , N . We chose V∗ as the set of eigenvectors of
the combinatorial Laplacian. The main advantage of consid-
ering this dual graph is that we can fully study the relations
between the eigenvectors in a complete graph setting, which
brings clearly more specific patterns of the brain structure than

simply using the eigenvalue magnitudes [25]. Therefore, we
can construct a graph wavelet packet dictionary by biparti-
tioning G∗ recursively via spectral graph bipartitioning using
the Fiedler vectors of Lrw (see 1), whose use is preferred
compared to L or Lsym in the case of graphs where node
degrees are widely distributed [26]. At each level j, there are
2j subgraphs and bipartitioning is performed on each of these
subgraphs to obtain the bipartition at level j+1. Increasing the
level j of the bipartition thus corresponds to a more localized
basis vector in G.

2) Localization on G via varimax rotation: After the con-
struction of the hierarchical bipartition, the varimax rotation
is performed on the eigenvectors of each subgraph of G∗ at a
given level j. Let U (j)

k ∈ RN×Nj
k be a matrix whose columns

are the eigenvectors belonging to V∗(j)
k , where j is the level

in the bipartition, and N j
k is the number of eigenvectors at

level j in the k-th subgraph. Applying the varimax rotation
to U (j)

k consists in adjusting the orientation of its columns,
such that the variances of the squared values of the columns
are maximized. Due to the orthonormality of the columns of
U

(j)
k , this operation is equivalent to an orthogonal rotation that

maximizes the overall 4-th order moments, i.e.,

Ψ
(j)
k = U

(j)
k R

(j)
k , (6)

where R
(j)
k = argmax

R∈SO(Nj
k)

N∑
p=1

Nj
k∑

q=1

[(
U

(j)
k R

)4
]
p,q

. In other

words, this rotation acts as an approximate entropy minimizer
of the distribution of the columns of U (j)

k [27], which thus
outputs column vectors that are more localized in G than
those of U (j)

k . We refer to the dictionary {Ψj
k}j=0:J;k=0:2j−1

as the Varimax Natural Graph Wavelet Packet (VM-NGWP)
dictionary.

C. Classification

Now that we have obtained well localized basis vectors
that are ordered according to the natural distance between
the eigenvectors, we can concatenate them into a single
matrix Ψ(j) ∈ RN×N for each level j to project the BOLD
signals X:

Y (j) = ⟨Ψ(j),X⟩. (7)

This projection can be interpreted as filtering of BOLD sig-
nals by natural localized vectors. We note that the eigenvectors
were computed for each SC to take into account individual
variability. The VM-NGWP dictionary was constructed for
multiple levels j ranging from 2 to 9, thus outputting 8
feature vectors of dimension Ns × N after projection. To
account for the potential redundancy and complementarity
of the projected data, we conducted a principal component
analysis on the concatenated set of feature vectors across
subjects and ROIs using the tidy data standard [28]. The first
principal components that explained 80% of the variability
were then extracted and used as input for the classification
task. Classification was performed by training a linear support



vector machine (SVM) model with parameter C = 0.1 in
a cross-validation scheme with a train-test split of 90/10%,
using a stratified shuffle over 50 splits. Other models such as
the SVM with the radial basis function kernel or the logistic
regression were tested, along with an optimal search for the
different hyperparameters, but the linear SVM gave the best
performances. Incremental feature selection was carried out
on the ROIs by starting classification with a small subset of
features and iteratively adding additional features to the subset
in increments of 10 at each step. At each iteration, the features
were ranked via ANOVA and the classification was performed
until all features (N ) were considered.

The classification performance of our framework (that we
refer simply as VM-NGWP) was compared with two other
methods: based on the classification of (i) GFT coefficients
and (ii) SGWT coefficients (cf. Sec. II-C, II-D).

• For the GFT coefficients, we computed their variance us-
ing the full frequency bands, and for different frequency
bands given the low, middle and high frequency modes,
called GFT, GFTLOW GFTMID, GFTHIGH, respectively.
These bands were defined by splitting the spectral domain
into three portions with equal energy, based on average
energy spectral density (across time) for each subject.

• For the SGWT coefficients, referred as SGWT, we chose
Itersine as the filter bank of wavelets, which is a tight
frame that covers a large part of the spectrum [29].

IV. RESULTS AND DISCUSSION

Table I shows the averaged test accuracies of the splits. The
best average accuracy for the classification of CA and DA
was obtained for our framework, showing that considering the
distances between eigenvectors to construct natural spectral
filters improves prediction in depression. For the prediction
of anxiety, while SGWT gives the best accuracy by a slight
margin compared to our framework, we observe that these two
methods outperform those based on GFT coefficients. This
suggests that localized basis vectors may help obtaining more
discriminative features. Moreover, except for the VM-NGWP
dictionary, the overall accuracies are higher for the prediction
of anxiety compared to depression. This suggests that our
framework may be more robust for diseases with greater
heterogeneity in the phenotypes than the other methods.

Figure 2 depicts the accuracies of the different methods
used for the classification of CA and DA, as a function of
the number of features. The best classification accuracy was
obtained for our framework, with a gain of approximatively
8%. In comparison with the GFT and wavelet coefficients, our
results show that relying only on the eigenvalues to build the
projectors for the graph signals is not sufficient and complex
spatial patterns information given by the eigenvectors may
instead provide more valuable discriminative features. Indeed,
the accuracies obtained based on the features from the GFT
or SGWT coefficients struggle to exceed the baseline of 50%.

In Figure 2, we observe that at around 150 features, the
accuracy obtained with the VM-NGWP dictionary starts reach-
ing a plateau. Therefore, we select this number of features to

TABLE I
COMPARISON OF AVERAGED TEST ACCURACIES. AA: ANXIOUS

ADOLESCENTS; CA: CONTROL ADOLESCENTS; DA: DEPRESSED
ADOLESCENTS.

Methods CA vs. AA (%) CA vs. DA (%)
GFT 55.2 54.7
GFTLOW 55.1 55.7
GFTMID 53.8 49.5
GFTHIGH 56.3 50.3
SGWT 59.0 54.9
VM-NGWP 58.0 63.3

Fig. 2. Comparison of classification accuracies between control and depressed
adolescents across increasing numbers of features.

retrieve the ROIs that were the most predictive. Figure 3 de-
picts the different scale and spatial localizations of the largest
SVM coefficients that best separate the DA from the CA.
The top features include several ROIs from the FPN such as
the precuneus and the orbitofrontal cortex, the DMN with the
parietal and prefrontal cortices, and the salience/ventral atten-
tion network (SVAN). Those networks have been linked with
depression as they are involved in processes like attentional
control, rumination and emotion regulation. For example, the
FPN and DMN have been extensively studied in relation to
depression, depicting altered connectivity within key regions
of those networks such as the ones we found, and related
to deficits in cognitive control and regulating mood [30].
Likewise, the presence of regions from the SVAN is consistent
with previous studies, as they can be related to difficulties
in regulating emotions and shifting attention appropriately in
adolescents, such that altered connectivity in the SVAN may
ultimately constitute a risk factor for developing a new onset
of a depressive disorder [31].

Fig. 3. Scale-Localization map of the best SVM coefficients on the brain for
the classification of control and depressed adolescents.



V. CONCLUSION

In this paper, we proposed a framework to classify anxious
and depressed adolescents using graph wavelet packets. In
most multimodal approaches that use GSP, the major features
are extracted based on the structural graph Laplacian eigenval-
ues. Here, we considered the relationships among eigenvectors
to fully leverage the graph structure and build well localised
basis vectors. Through comparative experiments, the results
demonstrate the effectiveness of our framework as it showed
the highest average accuracy in the classification of depression
and performed relatively well for anxiety. In future work,
we plan to examine how our approach could be combined
with deep learning on graphs to further enhance classification
performances.
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