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1Université Paris-Saclay, 1,2Laboratoire de Signaux et systèmes,(CentraleSupelec),2CNRS
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Abstract—This paper addresses the limitations of generative
face video compression (GFVC) under conditions of substan-
tial head movement and complex facial deformations. Previous
GFVC frameworks focused on perceptual compression and re-
construct videos only with the goal of perceptual quality. As a
result, they often have a large disparity relative to conventional
codecs when evaluated for pixel fidelity. We propose a robust
framework for learned predictive coding process aiming for both
perceptual quality and improved performance in terms of pixel
fidelity under low bitrate conditions. Our method proposes a
dual residual learning strategy. Specifically, it learns the frame
residual between the animated frame and the ground truth i.e.
spatial residual coding and further exploits redundancies between
neighboring frame residuals i.e temporal residual coding. We
specially formulate a low bitrate conditional residual coding
mechanisms for both spatial and temporal residual coding. In
addition, we propose a zero-cost residual alignment mechanism
to refine prediction accuracy of frame residuals. Through end-
to-end optimization, the proposed framework achieves a balance
between perceptual quality, pixel fidelity and compression effi-
ciency. We conduct experimental evaluations on test sequences
and conditions proposed under the JVET-AH0114 standard to
show significant performance gains relative to HEVC and VVC
standards in terms of perceptual metrics. Compared to other
GFVC frameworks, our proposed framework achieves state of the
art performance on perceptual metrics and pixel fidelity metrics.
It is also competitive with HDAC, HEVC and VVC in terms of
pixel fidelity at low bitrates.

Index Terms—generative video compression, face animation,
self re-enactment

I. INTRODUCTION

Achieving low-bitrate compression with high-quality re-
construction remains an open challenge in video coding. In
recent years, a number of end-to-end learned image and
video compression frameworks have been proposed [1]–[4]
to solve the limitations associated with conventional video
compression approaches. These have shown competitive per-
formance relative to conventional codecs such as HEVC [5]
and VVC [6]. However, learned compression frameworks are
typically designed for the general purpose video compression
and do not address the specific conditions of talking face
compression which is typical of video conferencing i.e. ultra
low bitrate and real-time processing. This work follows a line
of generative face video compression (GFVC) frameworks
proposed to use animation models for talking head video
compression at ultra low bitrates [7]–[13]. GFVC methods
achieve extreme high coding efficiency by encoding only a
sparse motion representation and few reference frames and

use a generative autoencoder network to reconstruct video
sequences with high perceptual quality. Inspired by the First
Order Animation model [14], GFVC frameworks assume that
face and head motion can be represented through a compact
set of sparse motion keypoints, which can be entropy coded
and transmitted to the decoder. A decoding network trained
within an adversarial learning process uses this information
to reconstruct an approximation of the original talking head
sequence i.e. face self re-enactment with minimal loss of facial
information.

However, these schemes are open-loop, i.e., frames are
predicted from a reference picture without any mechanism to
correct the prediction errors. This creates a number of lim-
itations including an error drift as target frames increasingly
diverge from the reference frame in terms of spatial complexity
and pose variations. Moreover, most GFVC frameworks are
limited in rate-distortion performance since the main variable
is typically the quality and number of the reference frames. On
the other hand, state-of-the-art video codecs typically include
a prediction and residual coding loop to maximize recon-
struction accuracy but are burdened by a high computation
complexity [6] that limit the deployment of their advanced op-
timization processes in video conferencing applications. In the
case of animation-based codecs, designing and implementing
such a predictive coding scheme is challenging because there
is no guarantee that the coding cost of the frame residuals will
be lower than the cost of the original image. However, a prior
attempt in this direction i.e. predictive coding for animation-
based video compression (RDAC) [13] explored a closed-loop
coding scheme based on face animation and demonstrated a
potentially viable approach to achieve predictive coding under
low-bitrate conditions.

Inspired by RDAC, this paper proposes a robust predictive
coding framework that learns a low bitrate representation
of spatial and temporal frame residuals. In the process, we
formulate conditional residual coding [15] for ultra-low bi-
trate compression. Further we propose a formulation of an
autoencoder architecture that learns a conditional residual
compression between temporally neighboring frame residuals.
Finally, we include an improvement to the predictive coding
frameworks by using a zero-cost alignment strategy of frame
residuals to minimize the cost of differential residual coding.
Specifically, by reusing the motion information conveyed by
the animation keypoints, we show that in the GFVC coding
process, there is a sufficient temporal correlation between



frame residuals such that effective motion compensation is
necessary to reduce the coding cost associated with the frame
residuals. We call our proposed approach RDAC+ in the rest of
the paper. We include a set of experiments and evaluations to
characterize different elements of RDAC+ and show efficiecy
gains of the proposed framework relative to conventional state-
of-the-art codecs such as HEVC, VVC as well as some prior
GFVC frameworks.

II. RELATED WORK

Learning-based compression of talking head videos has
gained significant interest since the development of deep
learning approaches for effective image animation such as
[14]. These frameworks focus on the optimization of per-
ceptual quality in reconstructed videos. Prior works in this
area [7], [8], [10] demonstrated the efficiency of animation-
based compression at ultra-low bitrates. Compact feature rep-
resentation (CFTE) [11] optimizes the compactness of the
bitstream representation of the motion keypoints with Exp-
Golomb codes, leading to higher accuracy in motion prediction
at lower bitrates. These frameworks rely only on image ani-
mation for frame reconstruction, which fits into the domain of
perceptual compression. However, they do not have a reliable
method for quality improvement when additional bit budget
is allocated to the codecs. Additionaly, they have a notable
drift in reconstruction performance as the temporal distance
between the reference and target frame increases as well as
under extreme occlusions and disocclusions. As a result, most
prior research [7]–[10] has focused on talking-head videos
with minimal complexity outside the facial region and are
evaluated based only on the perceptual quality relative to
conventional codecs at ultra low bitrates.

Previous works such as [7], [12], [13] have attempted
to consider scenes with complex background and foreground
deformations. In the deep animation codec (DAC) [7], an
adaptive Intra refresh algorithm is introduced to limit the drift
in image animation. A threshold parameter is used to measure
significant deviations between the reference and the target
frame, adding a new reference when needed. This approach
still suffers from error drift and frequent introduction of
reference frames introduces temporal artifacts in the decoded
video. The spatio-temporal animation framework proposed
by Chen et al. [10] addresses the jittering artifacts that are
noted in a number of animation-based coding frameworks. The
hybrid coding strategy (HDAC) [12], similarly addressed the
problem with jittering and goes further to enable variability in
reconstruction quality of animated sequences. This is achieved
through a hybrid, layered coding architecture leveraging a
low-quality HEVC bitstream as side information to enhance
the final result of the animation codec. However, training
HDAC requires an extensive data preprocessing to create
multiple quality levels of the target base layer codec and
a complex specialized optimization process. It is therefore
evident that a fundamental limitation of previous approaches
is the total or partial open-loop nature of the codec. The first
end-to-end learned predictive coding with image animation is

proposed in RDAC [13]. The results are promising and showed
significant reduction in drift error propagation and allows
obtaining competitive rate-distortion performance across a
much larger range of bitrates than previous animation-based
codecs, which often operate only at fixed rate points. This
paper proposes an advanced version of the predictive coding
strategy inspired by RDAC and is therefore called RDAC+.
Specifically, in recognition of the entropy constraint required
for GFVC frameworks, we propose a conditional residual
coding approach for spatial and temporal frame residuals. This
offers improved coding efficiency relative to the vanilla learned
residual coding approach used in RDAC. We further improve
the coding efficiency of the temporal residuals in RDAC
through motion estimation and compensation. We propose a
faster alternative to traditional motion estimation i.e. motion
vector search. Specifically, we propose a spatial alignment
process that reuses the motion keypoints from animation, thus
avoiding the need to compute and transmit motion vectors.
Our framework provides higher reconstruction performance
and extends the range of bitrates beyond what is covered by
[7]–[11] while achieving higher perceptual quality relative to
HEVC and VVC and showing competitive performance on
pixel fidelity metrics at ultra-low bitrates. We make evaluations
against [7], [10], [12], [13] due to their close match in model
complexity and their recent adoption in the JVET-AH0114 1

standard.

III. PROPOSED METHOD: RDAC+

The core elements of the proposed framework in Fig. 1
is similar to RDAC [13].A deep image animation process
uses a reference image and a sparse set of motion keypoints
learned through self-supervised training to reconstruct talking-
head video sequences. A frame residual, computed as the
difference between the animated and the original frame is
transmitted as a low dimensional latent representation and used
to add missing features to the animated frame. We propose a
conditional residual coding process in RDAC+( III-A) which
offers additional coding efficiency compared to the simpler
residual coding used in RDAC. In addition, we propose a
zero-cost motion compensation strategy ( III-B) to maximize
coding efficiency by spatially aligning temporal residuals.The
framework is optimized end-to-end to encode video over a
larger range of bitrates than previous models and achieves a
higher perceptual and pixel fidelity performance.

A. Learned Predictive Coding in Animation-Based Codecs

We interpret the output of the animation process X̂t as a
prediction of the actual inter frame Xt. Thus, following the
classical predictive coding approach, we aim to efficiently code
the prediction residual Rt = Xt − X̂t, achieving a recon-
struction quality gain with respect to the open-loop animation-
based codec. Moreover, we observe that residual frames Rt are
themselves temporally correlated. Therefore, we can further
leverage these correlations to perform temporal predictive

1https://jvet-experts.org/doc end user/current document.php?id=14051
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Fig. 1: Proposed RDAC+ framework. All the target frames are animated using information from a sparse keypoint detector
(KPD) passed to a dense motion generator (DMG) to predict the optical flow (Of

0→t) between the target and reference frame.
The optical flow is applied to the reference frame features extracted by an encoder (er) through a grid sampling operation (W ).
The deformed features are used by a decoder (dg) to generate a prediction of the target frame. The frame residual between
the original and animated frame is compressed into a bitstream using a conditional residual coder and used at the decoder
side to reconstruct the final output. A refinement network is further applied to improve texture and high frequency detail
reconstruction.

coding on residuals. Our system thus includes two prediction
loops: one outer loop using image animation as predictor,
and an inner loop for predictive residual coding, as shown
in Figure 1. Here, we include two variational autoencoders
(VAE) for conditional residual compression.These follow the
common architecture proposed by [1] and adapted for low
bitrate coding similar to RDAC [13]. At time t − 1, if there
are no previously decoded inter frames in the decoder buffer,
then the first conditional residual coder is used to encode the
frame residual Rt−1 obtained after animation. We refer to this
as a spatial conditional residual coding process which can be
described as follows:

R̂t−1 = gs(round(ga(Rt−1||X̂t−1))||gp(X̂t−1)) (1)

where || represents a concatenation operation, ga and gp are
analysis networks that create low dimensional embedding for
conditional reconstruction of the frame residual. A rounding
operation and additional of uniform noise is used to parame-
terize the quantization process at training time.

Subsequently at time t, we use the previously decoded R̂t−1

to reduce the coding cost of the current frame residual Rt.
We compute the temporal frame residual Dt = Rt − R̃t−1,
which is subsequently compressed into a low dimensional

latent representation yt. The condition process for conditional
temporal residual coding is formulated as follows:

D̂t = gs(round(ga(Dt||R̂t−1||X̂t))||gp(R̂t−1||X̂t)) (2)

In Fig. 1 we show only the conditional temporal residual
coding loop for clarity. The temporal frame residual is re-
constructed as ŷt from the bitstream and used at the decoder
to generate D̂t. Subsequently, D̂t is summed back to the
decoded residual R̃t−1 to produce a reconstructed residual R̂t,
which together with the animated frame X̂t allows decoding
the frame X̃t. Similar to RDAC [13], the temporal frame
residuals are subsampled to 0.5 resolution relative to the spatial
frame residual. Further, we experimentally determine and fix a
prediction window of 8 frames for temporal residual coding. In
both RDAC and RDAC+ we note that increasing the prediction
window above 8 frames further reduces the bitrate but may
introduce errors in some sequences with complex features in
the frame residuals. We propose an investigation on how to
effectively increase the temporal residual prediction window
for further study due to its potential to increase the coding
efficiency of the proposed framework.



B. Motion Compensated Learned Residual Coding for
Animation-Based Coding

Classical video compression relies on motion compensation
as an effective form of prediction, aligning the spatial content
between one or multiple reference frames and the current one.
In learned video compression frameworks [2]–[4], the optical
flow between frames is encoded as a latent representation
and transmitted as part of the bitstream. However, coding
optical flows entails a significant bitrate consumption, which
is unfeasible in the ultra-low-bitrate scenarios targeted in this
work. An alternative used in standard video codecs is block-
based motion compensation. The advantage of block matching
is that it can be highly optimized in a rate-distortion sense,
while producing a smaller set of motion vectors to transmit.
However, in our search, we failed to identify a block-matching
algorithm that can be used in our framework at training time
and thus could not include it in the end-to-end optimization
process.

We follow a different and novel approach for motion
compensation that reuses the optical flow obtained by ani-
mation keypoints to perform spatial alignment between two
consecutive residual frames Rt−1 and Rt. Specifically, we
apply the predicted optical flow between the adjacent decoded
frames (0ft−1→t) through a grid sampling operation. Note
that the information required to predict the flow between the
target frames is extracted from the decoder buffer hence the
residual motion prediction introduces no additional coding
cost. During training, the dense motion generator is simul-
taneously optimized to predict the optical flow between the
reference frame and the target frames (Of

0→t) as well as
the motion between neighboring target frames (Of

t−1→t). Our
hypothesis is that learning temporal residual coding with a
spatial alignment function reduces the effective coding cost of
the frame residuals.

C. Architecture Details

The keypoint detector (KPD), dense motion generator and
frame generation networks are similar to prior works [7], [13],
[14], i.e., generative autoencoder networks optimized to detect
a sparse set of facial landmarks, predict a dense motion field
between two frames using one as a reference and landmarks
extracted from each frame and a generative autoencoder for
frame reconstruction given an approximate feature representa-
tion of the target frame. The residual coding networks follow
the hyperprior [1] formulation dimensioned for low bitrate
compression. Specifically, we propose a latent dimension of
48x8x8 feature maps mapped to 5 bitrate levels using learned
gain vectors [16]. The input dimensions of the spatial and
temporal residual coding frameworks are adjusted accordingly
to account for the variable number of input features for the
analysis network ga and the conditioning network gp. The
final element of our reconstruction process is a low-complexity
refinement network. This is inspired by the classical UNet
Architecture and is trained as a post-processing element to
the proposed coding framework.

IV. RESULTS AND DISCUSSION

A. Model Training

The training dataset consists of 18k talking-head videos
from the VoxCeleb2 dataset. The RDAC+ framework is trained
in two steps as follows:

Face Animation. The animation-coding framework (DAC)
is trained with 10 random samples per video, i.e., 180k
samples per epoch for 50 epochs. This step uses the Adam
optimizer with a learning rate of 2e − 4 and β parameters
(β1 = 0.5, β2 = 0.999) using a batch size of 64. The input
images are sampled in pairs, i.e., one reference frame and
one target frame with random temporal distance between the
frames. The data augmentations described in [7], [13], [14]
are applied.

Residual Compression. We train the residual coding frame-
works for 15 epochs after which only the refinement network
is optimized for an additional 5 epochs. The data sampling
includes 10 random samples per video in each epoch. We
use the Adam optimizer with a learning rate of 1e − 4
and the MultiStepLR scheduler. Each batch sample sample
consists of four frames, i.e., one reference frame and three
neighboring frames. The reference frame is used to animate
all the target frames. The frame residual of the first target is
compressed with the spatial difference coder. Subsequently, the
reconstructed spatial residual is used as a temporal predictor
for the residual frames in the second and third target frame.
This training process emulates the temporal coding process
expected at inference time. The loss value is computed as the
average rate-distortion loss for the three target frames with
msVGG [17] as the distortion metric.

B. Benchmark Methods and Evaluation Dataset

We evaluate the performance of our proposed framework
against the GFVC methods, HEVC and VVC anchor codecs as
proposed under the JVET-AH0114 test conditions. HDAC uses
the architecture proposed in the original work [12] but uses the
improved optimization conducted as part of the JVET-AH0114
standardization effort and is thus referred to as HDAC+ in this
evaluation. The test videos are considered to have sufficient
diversity in pose, expressions and talking head motion patterns.
We use perceptual quality metrics that measure reconstruc-
tion accuracy at different levels of abstraction, from pixel
level to higher-level features. We use FSIM and MS-SSIM 2

as low-level, pixel fidelity metrics. Additionally, learning-
based metrics, e.g., msVGG and LPIPS [18] computed on a
frame-by-frame basis are included in the evaluation process.
Additionally, we include the learning-based DISTS [19]
metric which measures the texture and style preservation in
reconstructed videos.

C. Qualitative Evaluation

In Figure 2 we show through visual examples the recon-
struction quality of RDAC+ relative to conventional codecs
such as HEVC and VVC. We report visual comparisons at

2https://gitlab.com/wg1/jpeg-ai/jpeg-ai-qaf



REFERENCE TRAGET Animation-Only (8̃ kbps) Hybrid Codecs (1̃5 - 20kbps)
FRAME FRAME CFTE DAC VVC HDAC RDAC RDAC+

Fig. 2: Visual Comparison of coding results. A qualitative comparison of our proposed coding framework shows significant
quality improvement of RDAC+ over VVC, HEVC and other GFVC methods. In the top example, we observe that RDAC+
has a better color reconstruction compared to RDAC. In the bottom example, RDAC+ has a higher pixel fidelity around the
mouth region. These fine-scale improvements in these facial details across the reconstructed videos contributes to the notable
gains in coding efficiency of our framework as shown in Fig. 3

(a) (b) (c)

Fig. 3: Average RD Performance 15 VoxCeleb2 test sequences:. Our framework demonstrates substantial improvement over
RDAC as well as VVC and HEVC. Further, it shows a reliable approach to achieving bitrate variability within the GFVC
coding framework.

between 12 kbps and 20kbps to accomodate animation-only
codecs which are limitated in the range of achievable bitrates.
Being a hybrid codec, RDAC+ can instead be used at this
bitrate and can significantly improve visual quality compared
to purely animation-based schemes. Specifically, we observe
that RDAC+ has a better perceptual reconstruction quality than
HEVC and VVC. We observe a notable perceptual quality
difference between RDAC and RDAC+ especially when we
inspect the fine-scale details on the mouth and eyes as well as
the color and texture details.

D. Rate-Distortion Performance

We present the BD-BR gains of our framework in Tab. I
against anchor methods with sufficient overlap. The missing
numbers when comparing against HEVC are for cases where
the curves intersect leading to a failure in BD-BR computation.
The highest bitrate savings are observed with respect to the
perceptual metrics. This is a characteristic of all the GFVC

TABLE I: Bjontengaard-Delta Bitrate (BD-BR) Perfor-
mance of our proposed framework (RDAC+) relative to
HDAC, RDAC, HEVC and VVC

FSIM MS-SSIM LPIPS msVGG DISTS

RDAC -33.77 -22.51 -45.15 -38.05 -55.76
HEVC - - -78.18 -55.23 -67.80

HDAC+ 33.73 30.77 -61.43 -25.03 -25.79
VVC 17.73 23.58 -76.25 -38.01 -70.25

frameworks. However, our framework achieves this in a bitrate
range that is not easily achievable with the methods that
use animation only such as CFTE and DAC. Further, we
also observe gains in coding efficiency for previous hybrid
methods such as RDAC and HDAC which similarly proposed
to extend the range of achievable bitrates. Relative to RDAC
our framework achieves over 20% bitrate savings on MS-



SSIM and FSIM and significantly narrows the gap with HEVC
and VVC in this bitrate range. Note that HDAC+ builds on
a HEVC base layer and thus has a robust performance on
pixel fidelity metrics despite being a generative model as
well. However, our method still achieves modest gains relative
to HDAC+ in terms of perceptual metrics. We attribute this
to the end-to-end optimization of entire RDAC+ framework,
which is not the case for HDAC+ which requires offline
processing of a base layer from the HEVC codec. Note that an
evaluation process involving a convex hull search with a large
number of configuration parameters such as previously done
for RDAC [13] would produce RD curves showing a much
higher coding gain. However, to remain consistent with the
JVET-AH0114 evaluation protocol we do not conduct a such
a convex hull search. Figure 3 shows the rate-distortion curves
for a few of the evaluated metrics. Due to additional bitrate
required for residual coding, the RDAC+ codec minimum
bitrate is around 10 kbps. An obvious way to reduce the bitrate
is deactivating the residual coding, which essentially reverts
RDAC+ to DAC, i.e., an animation only codec. In practice, at
low bitrates, RDAC, RDAC+ can implement a mode decision
scheme where residual coding and pure DAC are put in
competition. In Figure 4 we show the relative contribution of
various coding tools that are applied for RDAC and RDAC+.
We observe that each additional coding or reconstruction
element introduces gains in coding efficiency. However, the
conditional residual coding mechanism ensures that RDAC+
has a higher coding efficiency through all the optimization
steps.

(a)

Fig. 4: Coding gains as a result of Temporal residual
(TR) coding, Motion Compensation (MC) and Refinement
Network (REF). The RD metrics are computed on the first
64 frames of the test videos.

V. CONCLUSIONS

Animation-based compression offers the possibility to trans-
mit videos with very low bitrate. However, it is often limited
to reconstructing the outputs at a fixed quality level, cannot
scale efficiently when higher bandwidth is available and does
not compress efficiently temporal redundancies in the signal.
In this paper, we propose a coding scheme that advances the

predictive coding architecture RDAC. In order to efficiently
exploit the both spatial and temporal dependencies to achieve
a coding gain, our framework proposes a motion compensa-
tion strategy in temporal residual coding. The experimental
evaluations show the potential it provides a more principled
approach to residual coding within the low-bitrate range
that is considered desirable for animation-based compression
frameworks. The framework demonstrates significant gains
in perceptual quality relative to conventional codecs such as
VVC and HEVC especially at low bitrate. Simultaneously
it achieves significant gains in pixel fidelity when compared
to prior animation-based coding frameworks. We propose an
exploration of model scalability towards higher resolution,
dynamic bitrate allocation in residual coding and complexity
reduction for future research.
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