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ABSTRACT

The dimension reduction technique of random sketching is advantageous in significantly reducing computa-
tional complexity. In orthogonalization processes like the Gram-Schmidt (GS) algorithm, incorporating ran-
dom sketching results in a halving of computational costs compared to the classical/modified Gram-Schmidt
(CGS/MGS) algorithms, while maintaining numerical stability comparable to the MGS algorithm. The ran-
domized Gram-Schmidt (RGS) algorithm produces a set of sketched orthonormal vectors, and the loss of
orthogonality in these vectors is linearly dependent on the condition number of the given matrix. We propose
a new variant, RGS2, with reorthogonalization to obtain a set of l2 orthonormal vectors. A round-off error
analysis demonstrates that the loss of orthogonality is close to the unit round-off level. Numerical experiments
exhibit the benefits of our proposed algorithm. Furthermore, we apply the RGS2 algorithm to the Generalized
Minimal Residual Method (GMRES) and compare its numerical performance with other GMRES variants.

Keywords: Randomized Gram-Schmidt process, Reorthogonalization algorithm, Random sketching, Round-off error anal-
ysis, Randomized GMRES
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1 Introduction

Random sketching is a technique used in numerical linear algebra to reduce the dimensionality of large data sets. This is
achieved by multiplying the original matrix or vector with a random skteching matrix. Random sketching can be used to speed
up computations and reduce the memory requirements of algorithms that operate on large matrices and vectors. Defining a
suitable random sketching matrix is an essential aspect of this technique.

In practice, several variants of random sketching have been proposed and analyzed, such as Gaussian distributions,
Rademacher distributions, and sub-sampled randomized Hadamard transform (SRHT). The quality of the approximation de-
pends on the choice of sketching matrix. For more details on theoretical estimations and specific examples of suitable sketching
matrices, we refer to literature for example, the works of Achlioptas [1], Halko et al.[2], and Woodruff [3]. Additionally, it is
important to note that in order to ensure the effectiveness of the dimensionality reduction, the sketching matrix should have cer-
tain properties such as ϵ−embedding and (ϵ, δ, d) oblivious l2−subspace embedding. The size of the sketching matrix should
also be chosen accordingly. For more details on these properties and specific examples of suitable sketching matrix sizes, we
refer to literature such as Balabanov and Nouy[4], and Balabanov and Grigori[5].

Recently, Jang et al.[6] proposed new Generalized Minimal Residual (GMRES) methods that combine random sketching
and deflated restarting. These methods exhibit improved stability in generating Krylov basis vectors and enhanced convergence
rates by disregarding eigenvectors and singular vectors obtained via the randomized Rayleigh Ritz method. Since these methods
rely on the randomized Gram-Schmidt (RGS) algorithm[5], the set of basis vectors is not l2 orthonormal but sketched orthonor-
mal. On the other hand, Nakatsukasa and Tropp[7] introduced a random sketching algorithm for GMRES and Rayleigh-Ritz
methods, called sGMRES and sRR, respectively. Their works employed truncated Arnoldi process rather than full orthogonal-
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ization, leading to faster computation but weaker stability. Furthermore, based on the truncated Arnoldi process, Burke and
Güttel[8] developed another variant of the randomized GMRES with deflated restarting (GMRES-DR).

In this paper, we propose new randomized Gram-Schmidt algorithms inspired by reorthogonalization[9, 10]. Unlike the
existing RGS algorithm, our method provides a set of l2 orthonormal basis vectors with numerical stability. Additionally, we
present a round-off error analysis to demonstrate that the loss of orthogonality is close to the unit round-off level. Finally,
we apply the proposed algorithm to GMRES and GMRES-DR to compare numerical performance with the classical methods.
Relevant MATLAB codes for the randomized Gram-Schmidt (RGS) algorithms and associated numerical experiments can be
found on the author’s GitHub repository (https://github.com/Yongseok7717/RGS2). These include implementations of
various GS algorithms, along with scripts for GMRES and GMRES-DR methods.

We would like to highlight that our research provides fully l2 orthogonalization with random sketching at first with relevant
error analysis. We show that our method is computationally cheaper than other GS algorithms with reorthogonalization and
the loss of orthogonality does not depend on the condition number of the input matrix. As seen in [6], to solve ill-conditioned
systems, GMRES and GMRES-DR would not work properly if the quality of Kylov basis vectors is poor in finite arithmetic, i.e.
if there exists the large loss of orthogonality. Therefore, since our algorithm ensures the quality of orthogonalization process,
we can observe significantly improved numerical performance. For a summary of our work, Table 1 describes the comparison
with other existing algorithms.

GS type Numerical nonsingularity condition Loss of orthogonality Computational complexity References

CGS p(m,n)ūκ(A)2 < 1
∥∥I − V TV

∥∥ ≤ p(m,n)ūκ(A)2 2nm2 flops [11]
CGS2 p(m,n)ūκ(A) < 1

∥∥I − V TV
∥∥ ≤ p(m,n)ū 4nm2 flops [9]

MGS p(m,n)ūκ(A) < 1
∥∥I − V TV

∥∥ ≤ p(m,n)ūκ(A) 2nm2 flops [12]
MGS2 p(m,n)ūκ(A) < 1

∥∥I − V TV
∥∥ ≤ p(m,n)ū 4nm2 flops [13]

RGS p(m)ūκ(A) < 1
∥∥I − STS

∥∥ ≤ p(m,n)ūκ(A) nm2 flops [5]
RGS-L2 p(m,n)ūκ(A) < 1

∥∥I − V TV
∥∥ ≤ p(m,n)ū 3nm2 flops This paper

Table 1: Comparison of Gram-Schmidt algorithms applying to Arnoldi process with n×n matrix A for m dimensional Krylov
subspace generating the orthogonal factor V (and the sketched orthogonal factor S for RGS), where p is a some low degree
polynomial, ū is the unit round error and κ(A) is the condition number of A.

Our paper is structured as follows. Section 2 provides an introduction to random sketching. In Section 3, we present
two variants of the randomized Gram-Schmidt (RGS) algorithm with reorthogonalization. Section 4 includes rounding error
analyses of our proposed algorithms along with numerical examples. In Section 5, we demonstrate the benefits of our method
through numerical tests on solving linear systems. Finally, Section 6 concludes our findings with remarks.

2 Preliminary

We adopt standard notations for their broad applicability. Our focus is on real-valued systems, using bold lowercase for vectors
and uppercase for matrices. For example, a vector of length n is denoted as x ∈ Rn for n ∈ N. The l2 norm of a vector x,
computed by using the l2 inner product (·, ·), is denoted as ∥x∥. The transpose of matrix X is represented as XT , and the
pseudo-inverse of X is denoted as X†. Additionally, κ(X) denotes the condition number of X . We use σmin(X) and σmax(X)
for the minimum and maximum singular values of X , respectively. The identity matrix of dimension n is denoted by In, and
Oi×j represents the zero rectangular matrix of size i by j. For improved algorithm readability, we utilize MATLAB expressions;
for example, X(1 : i, 1 : j) denotes the submatrix comprising the first i rows and first j columns of X . For rounding error
analysis, we denote the unit round-off by ū (e.g. ū = O(10−16) for IEEE double precision) and a low-degree polynomial by ξk
for k = 1, 2, . . . such that depends on the problem dimensions but is independent of the condition number of the problem and
ū.

Let Θ ∈ Rt×n be a sketching matrix with t ≪ n. This matrix introduces a sketched product and its associated norm, referred
to as the Θ-norm or sketched norm. These are employed to approximate the l2 inner product and l2 norm through the embedding
of subspaces. Specifically, the random sketched product and sketched norm are defined as follows:

(v,w)Θ = (Θv,Θw) and ∥v∥Θ = ∥Θv∥ ,
for any v,w ∈ Rn, respectively. This results in a l2-subspace embedding, mapping subspaces of Rn into subspaces of Rt.
The effectiveness of this embedding depends on the choice of the sketching matrix Θ. For detailed theoretical insights, we
refer to [5]. Hence, it is crucial to define a suitable sketching matrix, for example, using Gaussian distributions, Rademacher
distributions, SRHT, etc., as discussed in [1, 2, 3].
Definition 1 (ϵ−embedding). For 0 < ϵ < 1, the sketching matrix Θ is an ϵ−embedding for subspace V ⊂ Rn if

∀x,y ∈ V, |(x,y)− (x,y)Θ| ≤ ϵ ∥x∥ ∥y∥ .
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Definition 2 ((ϵ, δ, d) oblivious l2−subspace embedding). The random sketching matrix Θ is a (ϵ, δ, d) oblivious l2−subspace
embedding for V ⊂ Rn of dimension d if

probability(Θ is an ϵ−embedding for V ) ≥ 1− δ.

According to [4, 5], we can define the random sketching matrix by rescaled Rademacher distribution and partial SRHT
(P-SRHT) with the size of sketching matrix t given by

t ≥ 7.87ϵ−2(6.9d+ log(1/δ)) and t ≥ 2(ϵ2 − ϵ3/3)−1
(√

d+
√

8 log(6n/δ)
)2

log(3d/δ),

respectively, to obtain (ϵ, δ, d) oblivious l2-subspace embeddings.
Proposition 1 (l2 norm and Θ norm). For a vector v ∈ Rn, we have the following bounds.

• ∥v∥Θ = ∥Θv∥ ≤ ∥Θ∥ ∥v∥.

• ∥v∥ =
∥∥Θ†Θv

∥∥ ≤
∥∥Θ†

∥∥ ∥v∥Θ if Θv ̸= 0.

• | ∥v∥ − ∥v∥Θ | ≤ ϵ ∥v∥ if Θ is an ϵ-embedding for V ⊂ Rn and v ∈ V .

• ∥Θ∥F ≤
√
(1 + ϵ)n with probability at least 1−δ if Θ is an (ϵ, δ/n, 1) oblivious l2-subspace embedding, where ∥·∥F

is the Frobenius norm.

• For Θv ̸= 0,
1

∥Θ†∥
∥v∥ ≤ ∥v∥Θ ≤ ∥Θ∥ ∥v∥ and σmin (Θ) ∥v∥ ≤ ∥v∥Θ ≤ ∥Θ∥ ∥v∥ .

We refer to [5, 6] for more details.

In order to obtain the benefit of random sketching in cost reduction, we introduce fast computations in sketching by Fast
Walsh Hadamard transformation (FWHT) as follows.
Definition 3 (Fast Walsh Hadamard transformation). Let Hm be the 2m × 2m Hadamard matrix defined by

Hm =

[
Hm−1 Hm−1

Hm−1 −Hm−1

]
,

for m ∈ N with H0 = 1. For a vector a of length N = 2m, if we use the FWHT algorithm as depicted in Algorithm 1 to
compute Walsh Hadamard transformation of a, the complexity follows N log(N) flops rather than N2 flops.

Algorithm 1 Fast Walsh Hadamard transformation
Input: vector a ∈ RN

Output: b ∈ RN

1: h = 1; b = a.
2: while h < N do
3: for i = 1 : 2h : N do
4: for j = i : (i+ h− 1) do
5: x = b(j); y = b(j + h).
6: b(j) = x+ y; b(j + h) = x− y.
7: end for
8: end for
9: h = 2h

10: end while
return b.

Using the Hadamard matrix, we can define the sketch matrix of P-SRHT by

Θ =
1√
t
PHmD, (2.1)

where D is a random N × n rectangular diagonal matrix whose entries are independent random signs, m satisfies log2(n) ≤
log2(N) = m < log2(n) + 1 and P is a t × N random permutation matrix that restricts an n−dimensional vector to t
coordinates. Therefore, the computational cost of sketching is n log(t) flops. For more details, please see [4] and the references
therein.
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3 Random sketching in Gram-Schmidt process

The Gram-Schmidt process is primarily employed for orthonormalizing a set of vectors or computing the QR factorization of
a matrix. It operates iteratively, utilizing projection operators to achieve the desired orthogonalization. Let us consider the
linearly independent W = [w1,w2, . . . ,wm] and the projection operator Pu defined by

Pu(w) =
(u,w)

(u,u)
u for any u and w.

Then Gram-Schmidt process leads a set of orthogonal vectors Um = [u1, . . . ,um] where

u1 = w1, uj = wj −
j−1∑
i=1

Pui
(wj) for j = 2, . . . ,m, and span{w1, . . .wm} = span{u1, . . .um}.

Therefore, it can also result in an orthonormal set by normalizing each vector. For example, obtaining the orthonormal matrix
Qm can be done as follows:

Qm = [q1, . . . , qm] where qj = uj/ ∥uj∥ ∀j = 1, . . . ,m, and span{w1, . . .wm} = span{q1, . . . qm}.

Various GS algorithms have been proposed and analyzed including the classical Gram-Schmidt algorithm (CGS) [14], the
modified Gram-Schmidt algorithm (MGS) [14, 15, 12] and their re-orthogonalized algorithms[9, 10] (namely CGS2 and MGS2,
respectively) . The latter methods improve computational orthogonality for practical implementation. Depending on the choice
of Gram-Schmidt algorithms, the projection can be defined with respect to iterations by

CGS : P (j) = In −QjQ
T
j ,

CGS2 : P (j) = (In −QjQ
T
j )(In −QjQ

T
j ),

MGS : P (j) = (In − qjq
T
j )(In − qj−1q

T
j−1) · · · (In − q1q

T
1 ),

MGS2 : P (j) = (In − qjq
T
j ) · · · (In − q1q

T
1 )(In − qjq

T
j ) · · · (In − q1q

T
1 ),

where Qj =
[
q1, . . . , qj

]
for each j ∈ {1, . . . ,m}. These projectors approximate the l2 orthogonal projector In −QjQ

†
j onto

the orthogonal complement of span(Qj) in the inexact arithmetic where the quality of computational orthogonality relies on
κ(Qm).

3.1 RGS-L2 algorithms

The RGS algorithm [5] is based on random sketching. To be specific, it is motivated by approximating inner products of high
dimension vectors with inner products of their low dimensional random projections, so called sketch. Thus, the approximate
orthogonality depends on the random projection rather than the l2 norm sense. For more theoretical proofs and details of RGS,
we refer to [5] and the references therein. Unlike other variants of Gram-Schmidt process, e.g. CGS, MGS, CGS2 and MGS2,
the randomized Gram-Schmidt process allows us to have Θ orthogonality rather than l2 orthogonality. In other words, we will
employ Θ orthogonal projector hence we define

RGS : P (j) = In −Qj(ΘQj)
†Θ,

where Qj =
[
q1, . . . , qj

]
for each j ∈ {1, . . . ,m}. As in the CGS2 and MGS2 algorithms, the reorthogonalizing process with

the l2 orthogonal projector in the RGS algorithm leads us to define the following l2 orthogonal projector:

RGS-L2C : P (j) =(In −QjQ
T
j )(In −Qj(ΘQj)

†Θ), (3.1)

RGS-L2M : P (j) =(In − qjq
T
j ) · · · (In − q1q

T
1 )(In −Qj(ΘQj)

†Θ), (3.2)

by combining the RGS with either CGS or MGS. Consequently, using (3.1) or (3.2), we can derive the full RGS-L2 algorithm
where it is described in Algorithm 2.

As depicted in Algorithm 2, we introduce two types of reorthogonalization algorithm and we call the corresponding methods
RGS-L2C and RGS-L2M, respectively, for convenience. The fundamental idea in the RGS-L2 algorithm is that we can reduce
the computational cost by employing the sketched orthogonal projections and impose the l2 orthogonality of Q rather than Θ
orthogonality as in the RGS algorithm. Furthermore, in inexact arithmetic, the resulting matrix Q of RGS-L2 gets less loss of
orthogonality than CGS, MGS and RGS. On the other hand, in exact arithmetic, we can easily show that Q is l2 orthonormal.
Theorem 1. Let Q and R be matrices given by performing Algorithm 2 on W where W has full rank. Suppose the sketching
matrix Θ satisfying that Θwj ̸= 0, for any j = 1, . . . ,m. Then it is true that W = QR and Q is l2 orthonormal in exact
arithmetic.
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Algorithm 2 RGS algorithm with reorthogonalization
Input: matrix W ∈ Rn×m, sketching matrix Θ ∈ Rt×n

Output: Q ∈ Rn×m, R ∈ Rm×m

1: for j = 1 : m do
2: uj = wj .
3: Sketch wj : pj = Θwj .
4: Solve t× (j − 1) least squares problem: R1(1 : j − 1, j) = arg min

y∈Rj−1
1

∥∥Sj−1y − pj

∥∥
5: uj = wj −Qj−1R1(1 : j − 1, j)
6: vj = uj .

7:

Reorthogonalizing (via CGS) (via MGS)
for i = 1 : j − 1 do

R2(1 : j − 1, j) = QT
j−1vj R2(i, j) = qT

i vj

vj = vj −Qj−1R2(1 : j − 1, j) vj = vj − qiR2(i, j)
end for

8: R(1 : j − 1, j) = R1(1 : j − 1, j) +R2(1 : j − 1, j); R(j, j) = ∥vj∥.
9: qj = vj/R(j, j).

10: Sketch qj : sj = Θqj .
11: Sj = [s1, . . . , sj ]; Qj = [q1, . . . , qj ].
12: end for

return Q = Qm and R.

Proof. Let j ∈ {1, . . . ,m}. It is obvious that

wj = uj +Qj−1R1(1 : j − 1, j) and uj = vj +Qj−1R2(1 : j − 1, j) (3.3)

where uj and vj are defined in Lines 5 and 7, respectively, for each j, in either RGS-L2C or RGS-L2M. By the definition of
qj , we can write

wj = qjR(j, j) +Qj−1(R1(1 : j − 1, j) +R2(1 : j − 1, j)) = QjR(1 : j, j),

thus, to tidy up the result for all j, we have W = QR.

To prove the orthonormality of Q, we want to use mathematical induction. For j = 1, it is trivial that ∥q1∥ = 1. We suppose
the induction hypothesis such that QT

j Qj = Ij for 1 ≤ j < m. If we show QT
j+1Qj+1 = Ij+1, then the proof completes by

induction.

Consider QT
j qj+1. By the definition of qj+1 and (3.3) for j + 1, we can write it as

QT
j qj+1 =

QT
j vj+1

R(j, j)
=

QT
j (uj+1 −QjR2(1 : j, j + 1))

R(j, j)
=

QT
j uj+1 −R2(1 : j, j + 1)

R(j, j)
,

since QT
j Qj = Ij . Corresponding to Line 7 of Algorithm 2, in the CGS variant, R2(1 : j, j+1) is defined by R2(1 : j, j+1) =

QT
j uj+1. On the other hand, the MGS variant leads us to rewrite R2(k, j + 1) for each k = 1, . . . , j as

R2(k, j + 1) = qT
k uj+1 −

k−1∑
i=1

qT
k qiR2(i, j + 1) = qT

k uj+1,

by the induction assumption such as the orthogonality of Qj . Hence, regardless of the choice of reorthogonalization, we have

QT
j qj+1 =

QT
j uj+1 −R2(1 : j, j + 1)

R(j, j)
=

QT
j uj+1 −QT

j uj+1

R(j, j)
= Oj×1.

Therefore, we can derive

QT
j+1Qj+1 =

[
QT

j Qj QT
j qj+1

qT
j+1Qj qT

j+1qj+1

]
=

[
Ij Oj×1

O1×j 1

]
= Ij+1,

so that we end the proof by induction.
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3.2 Cost analysis

Next, we analyze the computational complexity of RGS-L2 algorithm.
Theorem 2. Supposed the random sketching in Algorithm 2 is performed by P-SRHT via FWHT. Also, we assume that one
of common least squares solvers such as Givens QR solver, Householder solver, etc., is used for solving the least squares
problems of size t × (j − 1). Then the total computational complexity of the RGS-L2 algorithm is 3nm2 flops asymptotically,
where log(t) ≪ m.

Proof. The proof follows the cost analysis of the RGS algorithm in [6]. We first consider costs corresponding to lines for
j = 1, . . . ,m.

• Random sketching: Lines 3 and 10. By introducing FWHT in P-SRHT, it costs n log(t) flops.

• Solving least square problems: Line 4. Using Givens QR or Householder solvers, it requires O(t(j − 1)2) flops, e.g.
2t(j − 1)2 flops or 3t(j − 1)2 flops.

• Defining uj : Line 5. It consists of a matrix-vector multiplication and a vector addition. Hence, the cost is 2nj flops.

• Reorthogonalizing: Line 7. For both CGS and MGS variants, we need 4nj flops.

• Defining R(1 : j − 1, j): Line 7. The addition of vectors of length (j − 1) requires (j − 1) flops.

• Normalization: Lines 8 and 9. To normalized a vector of length n, (2n+ 2) flops is needed.

Tidying up all results, summing them up over j = 1, . . . ,m gives

Total complexity =

m∑
j=1

(
2n log(t) +O(t(j − 1)2) + 6nj + j − 1 + 2n+ 2

)
≈

m∑
j=1

6nj ≈ 3nm2,

since other computational costs are dominated by nj when j is large enough such as log(t) ≪ j.

Although the complexity of RGS-L2 is larger than CGS and MGS about 50%, it is 25% cheaper than CGS2 and MGS2.
Overall, the complexity of GS process follows

RGS : nm2 flops < CGS/MGS : 2nm2 flops < RGS-L2 : 3nm2 flops < CGS2/MGS2 : 4nm2 flops,

respectively.
Remark (Other randomization methods for orthogonal process). While we employ the reorthogonalization process in l2 norm,
De Damas and Grigori[16] propose another reorthogonalization algorithm for sketched orthonormal matrix. Instead of com-
bining l2 orthogonal projector and θ orthogonal projector like ours, their randomized method performs the sketched projection
twice. Hence, it produces the sketched orthonormal basis vectors with less computational cost rather than l2 orthonormal.

Although the Gram-Schmidt algorithm is the most common method for orthonormalization, Cholesky decomposition is also
widely used for QR decomposition. In a randomized manner, Balabanov[17] develops several variants of randomized Cholesky
QR factorization. The proposed methods generate a set of either sketched or l2 orthonormal vectors depending on the number
of performing Cholesky decomposition. However, in order to ensure the stability, it requires positive definiteness.

4 Loss of orthogonality

In our rounding error analysis, we follow the standard rounding model. Using the most common notation, we have

fl(x op y) = (x op y)(1 + δ), op ∈ {+,−, ∗, /}, (4.1)

where |δ| ≤ ū, x and y are floating point numbers and fl(x) denotes the nearest floating-point number to x. In the standard
rounding model, the rounding error for z = Y x is given as

z̄ = Y x+ δz, with |δz| ≤ ξ(n,m)ū, (4.2)

where z̄ denotes the computed floating point number of z, Y is a matrix of m by n, x is a vector of n length and
ξ(n,m) = O(nm). We refer to the book of Higham[15] for more details of the standard rounding model. On the other
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hand, the probabilistic rounding model is widely used in the randomized linear algebra. In this model, δ is bounded by random
variables and δz has zero means and its entries are linearly independent. For the probabilistic and stochastic models, we refer
to [18, 19].

Let us consider s = Θx in exact arithmetic and denote s̄ for finite precision arithmetic. We recall the rounding error analysis
of random sketching from [5] such that

Θx = s̄+ δs, ∥δs∥ ≤ ξs ∥x∥ ū, (4.3)
where ξs depends on the oblivious l2 subspace embedding property. In our rounding error analysis, we assume that (4.3) holds
with ξs = O(1). Please see Corollary 2.6 in [5] for the condition of the oblivious l2 subspace embedding to obtain (4.3) with
ξs = O(1). Therefore random sketching enables us to reduce the dimension of the problem without large loss of numerical
precision. We refer to [5] and its supplementary material for the detail of the rounding error analysis of the RGS algorithm.
However, for simplicity, we consider only fixed precision, not mixed precision. Furthermore, we follow the rounding error
analysis of an elementary orthogonalization step [20, 14, 11] and we suppose that nmū ≪ 1.

4.1 Analysis of RGS-L2C

In our analysis, we consider the standard rounding model, while (4.3) is derived by the probabilistic rounding model. Indeed,
the probabilistic rounding model is only required for random sketching. Hence, by assuming (4.3) for simplicity, we show the
rounding error analysis with the standard rounding model.
Theorem 3. Suppose Q̄ and R̄ are computed by Algorithm 2 in the CGS variant. Then it satisfies that

W + δW = Q̄R̄, ∥δW∥ ≤ ξC ∥W∥ ū, (4.4)

where ξC is a low degree polynomial of n and m and is independent of ū, W , Q and R. The loss of orthogonality is bounded
by ∥∥Im − Q̄T Q̄

∥∥ ≤ ξ̃C ū, (4.5)

where ξ̃C = O(nm3/2), if ξ̃rκ(W )ū < 1 holds for some ξ̃r = O(n2m3).

Proof. Recall Algorithm 2 and use the standard rounding error results in the elementary orthogonalizing process. The vector
ūj computed in Line 5 satisfies

ūj = wj −
j−1∑
i=1

q̄ir̄
(1)
i,j + δuj ∥δuj∥ ≤ ξ2 ∥wj∥ ū, (4.6)

where ξ2 = O(nm) and we can also obtain

v̄j = ūj −
j−1∑
i=1

q̄ir̄
(2)
i,j + δvj ∥δvj∥ ≤ ξ2 ∥ūj∥ ū, (4.7)

in Line 7. By introducing any least square solver satisfying the backward-stability property such that

R̄1(1 : j − 1, j) = argmin
y

∥∥(S̄j−1 + δSj−1)y − (p̄j + δpj)
∥∥ ,

we can derive ∥∥R̄1(1 : j − 1, j)
∥∥ ≤ ξ1 ∥wj∥ , (4.8)

where ξ1 = O(1) by (4.3). For example, in [5] and its Supplementary material, it is given by ξ1 = 1.4. Let αj be the error of
the least square problem such that

αj =
∥∥(S̄j−1 + δSj−1)R̄1(1 : j − 1, j)− (p̄j + δpj)

∥∥ .
This is equivalent to

αj =
∥∥ΘQ̄j−1R̄1(1 : j − 1, j)−Θwj

∥∥ .
By the subspace embedding property, we have

αj ≥ (1− ϵ)
∥∥Q̄j−1R̄1(1 : j − 1, j)− w̄j

∥∥ ,
and so the backward error estimates of the least square solvers (e.g. see the work of Higham[15]) imply∥∥Q̄j−1R̄1(1 : j − 1, j)− w̄j

∥∥ ≤ αj /(1− ϵ) ≤ ξϵū ∥wj∥ , (4.9)

where ξϵ = O(nm). We refer to the work of Balabanov and Grigori[5] for more details of the bounds (4.8) and (4.9).
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On the other hand, the other orthogonalization coefficients r̄(2)i,j and the diagonal elements r̄j,j fulfill

r̄
(2)
i,j = q̄T

i ūj + δr
(2)
i,j , |δr(2)i,j | ≤ nū ∥q̄i∥ ∥ūj∥ , (4.10)

r̄j,j = ∥v̄j∥+ δrj,j , |δrj,j | ≤ nū ∥v̄i∥ , (4.11)

respectively. By normalization, we have the computed q̄j such that

q̄j = v̄j/ ∥v̄j∥+ δqj ,
∥∥δqj

∥∥ ≤ (n+ 4)ū,
∥∥q̄j

∥∥2 ≤ 1 + (n+ 4)ū. (4.12)

Combining (4.6) with (4.7), we can obtain

wj + δuj + δvj =

j−1∑
i=1

(r̄
(1)
i,j + r̄

(2)
i,j )q̄i + v̄j , (4.13)

then collecting (4.13) for all j = 1, . . . ,m gives
W + δW = Q̄R̄, (4.14)

where δW = δU + δV = [δu1, . . . , δum] + [δv1, . . . , δvm]. Then we shall show a bound for δW . We first note that, from
(4.6),

∥ūj∥ ≤∥wj∥+
j−1∑
i=1

∥q̄i∥ |r̄
(1)
i,j |+ ∥δuj∥

≤∥wj∥
(
1 + 1.4

√
(j − 1)

√
1 + (n+ 4)ū+ ξ2ū

)
≤ξ3 ∥wj∥ , (4.15)

by (4.8) and (4.12), where ξ3 = O(m1/2). With (4.15), (4.7) implies that

∥δvj∥ ≤ ξ4 ∥wj∥ ū, (4.16)

where ξ4 ≤ ξ2ξ3 = O(nm3/2). Therefore, taking into account (4.7) and (4.16), the perturbation matrix δW is bounded by

∥δW∥ ≤ ξC ∥W∥ ū, (4.17)

where ξC ≤ ξ2 + ξ4.

Next, we want to show the bound of the loss of orthogonality by induction such that∥∥Ii − Q̄T
i Q̄i

∥∥ ≤ ξ̃iū, (4.18)

for some a low degree polynomial ξ̃i of n and m, for any i = 1, . . . ,m. For i = 1, it trivially holds (4.18). We suppose that
(4.18) is true for i = j − 1 with 1 < j ≤ m. To prove the statement for j, we follow the argument described in [21, 11] such
that

if
∥∥Q̄T

i−1q̄i

∥∥ ≤ ξ5ū for i = 1, . . . , j, (4.19)

then
∥∥Ij − Q̄T

j Q̄j

∥∥ ≤ max
i=1,...,j

{
∥q̄i∥ − 1 +

∥∥Q̄T
i−1q̄i

∥∥√2j
}
≤ ξ6ū (4.20)

where ξ5 = O(nm) and ξ6 = O(nm3/2). Note that if (4.19) holds for j − 1, (4.20) implies that∥∥Q̄j−1

∥∥ ≤ (1 + ξ6ū)
1/2

. (4.21)

Clearly, (4.19) is true for i = 1. Hence, with the assumption of induction for j−1, it is enough to show (4.19) for j to complete
the proof.

Consider the bound of
∥∥Q̄T

j−1ūj

∥∥. By (4.6), (4.9) and (4.21), we have∥∥Q̄T
j−1ūj

∥∥ ≤
∥∥Q̄j−1

∥∥ ∥∥wj − Q̄j−1R̄1(1 : j − 1, j)
∥∥+ ∥∥Q̄j−1

∥∥ ∥δuj∥
≤ξ7 ∥wj∥ ū, (4.22)

where ξ7 = O(nm). After noting that

Q̄T
j−1v̄j =

(
Ij−1 − Q̄T

j−1Q̄j−1

)
Q̄T

j−1ūj + Q̄T
j−1

(
−

j−1∑
i=1

q̄iδr
(2)
i,j + δvj

)
,

8
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the assumption of induction (4.18) with (4.10), (4.12), (4.20), and (4.22) yields that∥∥Q̄T
j−1v̄j

∥∥
∥v̄j∥

≤
∥∥Ij−1 − Q̄T

j−1Q̄j−1

∥∥ ∥∥Q̄T
j−1ūj

∥∥
∥v̄j∥

+
∥∥Q̄j−1

∥∥(j−1∑
i=1

∥q̄i∥ |δr̄
(2)
i,j |+ ∥δvj∥

)
/ ∥v̄j∥

≤
(
ξ6ξ7ū

∥wj∥
∥v̄j∥

+ ξ8
∥ūj∥
∥v̄j∥

)
ū, (4.23)

where ξ8 = O(nm). Also, by (4.12), (4.21) and (4.23), we can write

∥∥Q̄T
j−1q̄j

∥∥ ≤
∥∥Q̄T

j−1v̄j

∥∥
∥v̄j∥

+
∥∥Q̄T

j−1δqj

∥∥
≤
(
ξ6ξ7ū

∥wj∥
∥ūj∥

∥ūj∥
∥v̄j∥

+ ξ8
∥ūj∥
∥v̄j∥

+ (1 + ξ6ū)
1/2

(n+ 4)

)
ū. (4.24)

Finally, to complete the proof, we consider the upper bounds of ∥wj∥ / ∥ūj∥ and ∥ūj∥ / ∥v̄j∥.

• ∥wj∥ / ∥ūj∥
By recalling (4.13), we can write

Wj +∆j = Q̄j−1

[
R̄j−1, r̄j

]
, (4.25)

where ∆j = [δUj−1 + δVj−1, δuj − ūj ], R̄j−1 = R̄(1 : j − 1, 1 : j − 1) and r̄j = R̄1(1 : j − 1, j). We introduce
and follow the arguments in [13, 11] and the references therein to describe the distance to singularity. More precisely,
while Wj is nonsingular, the right hand side of (4.25) is of rank j − 1, thus the perturbation matrix ∆j satisfies that

σmin(W ) ≤ σmin(Wj) ≤ ∥∆j∥ . (4.26)

Then dividing (4.26) by ∥Wj∥ yields
1

κ(Wj)
≤ ∥∆j∥

∥Wj∥
≤

∥∆j∥F
∥Wj∥

. (4.27)

Since (4.6), (4.16) and the definition of ∆j give

∥∆j∥F ≤ (jξ2 + (j − 1)ξ4) ū∥Wj∥F + ∥ūj∥, (4.28)

we can derive

κ(W ) ≥ κ(Wj) ≥
∥Wj∥
∥∆j∥F

. (4.29)

Using the fact that ∥Wj∥F ≤
√
j ∥Wj∥ and ∥wj∥ ≤ ∥Wj∥, we deduce (4.29) to

κ(W ) ≥ 1

(jξ2 + (j − 1)ξ4) ū
∥W∥F

∥W∥ +
∥ūj∥
∥W∥

≥ 1
√
j (jξ2 + (j − 1)ξ4) ū+

∥ūj∥
∥wj∥

, (4.30)

and we can rewrite it as
∥wj∥
∥ūj∥

≤ κ(W )

1−
√
m (mξ2 + (m− 1)ξ4) ūκ(W )

. (4.31)

We assume that
√
m (mξ2 + (m− 1)ξ4) ūκ(W ) ≪ 1 and we suppose there exists η0 = O(1) such that

∥wj∥
∥ūj∥

≤ η0κ(W ). (4.32)

• ∥ūj∥ / ∥v̄j∥
To derive the upper bound of ∥ūj∥ / ∥v̄j∥, we consider the lower bound of its reciprocal. From the definition of v̄j

and r̄
(2)
i,j , taking l2 norm and dividing it by ∥ūj∥ gives

∥v̄j∥
∥ūj∥

≥ 1−
∥∥Q̄j−1

∥∥ ∥∥Q̄T
j−1ūj

∥∥
∥ūj∥

−

j−1∑
i=1

∥∥∥q̄iδr
(2)
i,j

∥∥∥
∥ūj∥

− ∥δvj∥
∥ūj∥

. (4.33)

9
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Hence, employing (4.7), (4.10), (4.12), (4.15), (4.21) and (4.22) implies that

∥v̄j∥
∥ūj∥

≥ 1−
(
(1 + ξ6ū)

1/2
ξ7ū+m(1 + (n+ 4)ū)nξ3ū+ ξ2ξ3ū

) ∥wj∥
∥ūj∥

= 1− ξ9ū
∥wj∥
∥ūj∥

, (4.34)

for some ξ9 = O(nm3/2). Here, we assume that ξ9η0κ(W )ū < 1 then we have

∥ūj∥
∥v̄j∥

≤ 1

1− ξ9η0κ(W )ū
, (4.35)

by (4.32).

Tidying up all results above, we can obtain∥∥Q̄T
j−1q̄j

∥∥ ≤
(
ξ6ξ7ū

η0κ(W )

1− ξ9η0κ(W )ū
+

ξ8
1− ξ9η0κ(W )ū

+ (1 + ξ6ū)
1/2

(n+ 4)

)
ū. (4.36)

To end the proof, we suppose that ξ6ξ7η0κ(W )ū ≤ 1 and (1 − ξ9η0κ(W )ū)−1 = O(1). To sum up all assumptions we
introduced, we need

ξ̃rūκ(W ) < 1, (4.37)

where ξ̃r = O(n2m3). As a result, it satisfies that ∥∥Q̄T
j−1q̄j

∥∥ ≤ξ̃5ū, (4.38)

where ξ̃5 = O(nm) so that it completes the proof by induction.

In the proof, the condition (4.37) is interpreted as the numerical nonsingularity of the matrix W .

4.2 Analysis of RGS-L2m

In a similar way with the proof of Theorem 3, we can show the rounding error analysis of the RGS-L2 with MGS variant.
Theorem 4. Suppose Q̄ and R̄ are computed by Algorithm 2 in the MGS variant. Then it satisfies that

W + δW = Q̄R̄, ∥δW∥ ≤ ξM ∥W∥ ū, (4.39)

where ξM is a low degree polynomial of n and m and is independent of ū, W , Q and R and under the assumption of numerical
nonsingularity, the loss of orthogonality is bounded by∥∥Im − Q̄T Q̄

∥∥ ≤ ξ̃M ū, (4.40)

where ξ̃M = O(nm3/2).

Proof. We use similar arguments in the proof of Theorem 3 but we further introduce more sequences to define v̄j such that

v̄
(i+1)
j = v̄

(i)
j − q̄ir̄

(2)
i,j + δv(i),

∥∥∥δv(i)
∥∥∥ ≤ ζ1ū

∥∥∥v̄(i)
j

∥∥∥ for i = 1, . . . , j − 1, (4.41)

v̄
(i+1)
j = (In − q̄iq̄

T
i )v̄

(i)
j + δφ

(i)
j ,

∥∥∥δφ(i)
j

∥∥∥ ≤ ζ2ū
∥∥∥v̄(i)

j

∥∥∥ for i = 1, . . . , j − 1, (4.42)

with v̄
(1)
j = ūj and v̄j = v̄

(j)
j , where ζ1 = O(1), ζ2 = O(n) and the orthogonalization coefficients is written as

r̄
(2)
i,j = q̄T

i v̄
(i)
j + δr

(2)
i,j , |δr(2)i,j | ≤ ζ2ū

∥∥∥v̄(i)
j

∥∥∥ . (4.43)

Using the above arguments describing errors in elementary projections proved by Björck [20] and the extended results shown
by Giruad and Langou [13], we have ∥∥∥v̄(i)

j

∥∥∥ ≤ ζ1 ∥ūj∥ for i = 1, . . . , j − 1. (4.44)

For instance, if 3.12m(n+ 2)ū < 0.01, ζ1 and ζ2 can be defined by 1.45 and 2n+ 3, respectively [20, 13]. Therefore, we can
express v̄j as

v̄j = ūj −
j−1∑
i=1

q̄ir̄
(2)
i,j + δvj ∥δvj∥ ≤ ζ3 ∥ūj∥ ū, (4.45)

10
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where δvj =
j−1∑
i=1

δv(i) and ζ3 = O(m).

In the same way in the CGS variant (4.13), we can derive

W + δW = Q̄R̄,

where δW satisfies that
∥δW∥ ≤ ξM ∥W∥ ū for some ξM = O(nm3/2).

Next, we shall show the bound of loss of orthogonality by mathematical induction. Recalling the induction assumptions for
i = j − 1 with an arbitrary 1 < j ≤ m and the arguments such as (4.18)-(4.22), it is enough to show (4.19) holds for i = j.

The proof follows the same way in Theorem 3 except the bounds with respect to v̄j . Before showing the loss of orthogonality,
we first introduce the following argument described in [13]:

∥v̄j∥2 +
j−1∑
i=1

|r̄(2)i,j |
2 ≤ ζ4 ∥ūj∥2 , (4.46)

for some ζ4 = O(1). This inequality can be derived by Pythagorean theorem and we can define ζ4 = 1.01 with the assumption
1.06(2.04 + 4.43)(j − 1)ū, e.g. see Giraud et al.[13] for more details.

Next, we consider orthogonality between v̄j and q̄k for any k = 1, . . . , j−1. By summing (4.41) from i = k+1 to i = j−1,
we get

v̄j = v̄
(k+1)
j −

j−1∑
i=k+1

q̄ir̄
(2)
i,j +

j−1∑
i=k+1

δv(i),

multiplying this by q̄T
k and substituting (4.42) give

q̄T
k v̄j = −

j−1∑
i=k+1

q̄T
k q̄ir̄

(2)
i,j + q̄T

k δφ
(k)
j +

j−1∑
i=k+1

q̄T
k δv

(i).

Clearly, using (4.12), (4.41), (4.42), (4.44), (4.46) and the induction assumption (4.19) leads us to obtain

∣∣q̄T
k v̄j

∣∣ ≤( j−1∑
i=k+1

(q̄T
k q̄i)

2

)1/2( j−1∑
i=k+1

|r̄(2)i,j |
2

)1/2

+ ∥q̄k∥
∥∥∥δφ(k)

j

∥∥∥+ ∥q̄k∥
j−1∑

i=k+1

∥∥∥δv(i)
∥∥∥

≤ζ5ū ∥ūj∥ , (4.47)

where ζ5 = ζ4ξ5 + ζ1(ζ2 + ζ1(j − k − 1))(1 + (n+ 4)ū) ≤ O(nm). Since k is arbitrary and

∥∥Q̄T
j−1v̄j

∥∥2 =

j−1∑
i=1

∣∣q̄T
i v̄j

∣∣2 ,
there exists ζ6 = O(nm3/2) such that ∥∥Q̄T

j−1v̄j

∥∥ ≤ ζ6ū ∥ūj∥ . (4.48)

Hence, we have ∥∥Q̄T
j−1q̄j

∥∥ ≤
∥∥Q̄T

j−1v̄j

∥∥
∥v̄j∥

+
∥∥Q̄T

j−1δqj

∥∥ ≤ ζ6ū
∥ūj∥
∥v̄j∥

+ (1 + ξ6ū)
1/2

(n+ 4)ū, (4.49)

by (4.12), (4.21) and (4.48). As shown in Theorem 3, when (4.35) holds, it can complete the proof. Therefore, under the
condition of numerical nonsingularity of W such as (4.37), combining (4.49) and (4.35) shows the induction step and completes
the proof.

In the rounding error analysis, our RGS-L2C and RGS-L2M exhibit similar stability results. As a result, the way of re-
orthogonalization in the RGS-L2 algorithm is a matter of choice. However, in practice, there would be a difference in parallel
efficiency. More precisely, since CGS is more suited for parallel computing, RGS-L2C is more beneficial in the implementation
within HPC setting. Nevertheless, in this paper, we focus solely on numerical results regarding stability without concerning
parallel computing efficiency.
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4.3 Numerical example

Next, to validate our stability analysis, we compare the following numerical results obtained from various GS algorithms.

Let us consider a matrix W formed by

Wij = fµ(xi, yj) =
sin(10(xi + yj))

cos(100(yj − xi)) + 1.1
for xi = iδx and yj = jδy,

where δx = 1/n and δy = 1/m with n = 106 and m = 500. Then W is an ill-conditioned matrix of n by m such that
κ(W ) = O(1015).

We decompose the submatrices of W by QR factorization using various the GS processes, such as CGS, MGS and RGS
algorithms. To be specific, we perform QR factorization of Wi which is an n × i matrix extracted from the first i columns
of W , resulting in Wi = W (:, 1 : i) = QiRi, with respect to the GS process. We then compute condition numbers of
Qi for i = 1, . . . , 500 and approximation errors of the QR factorization with the quantity ∥Wi −QiRi∥ / ∥Wi∥. Note that
the condition numbers close to 1 imply that the algorithms are numerically stable. Additionally, we evaluate the loss of
orthogonality in l2 norm with respect to the GS algorithms. In the RGS algorithms, the sketch size t is set to 2224 which
satisfies the subspace embedding properties.

Table 2: Computing runtime in GS process.
GS type Reorthogonalization Time(s)

CGS No 92.98
Yes 186.54
No 109.39MGS Yes 219.27

RGS
No 55.18

Yes (CGS based) 149.71
Yes (MGS based) 164.06

As provided in the previous section, we can observe the runtime reduction by random sketching in Table 2. More precisely,
with/without reorthogonalization, the randomization leads to a 25% and 50% reduction in elapsed time, respectively, compared
to CGS/MGS.

(a) κ(Wi) (b) κ(Qi)

Figure 1: Condition numbers of Wi and Qi with respect to GS process.

Figure 1a illustrates that the condition number of Wi increases with i up to 5.0 × 1015. With the given ill-conditioned W ,
the CGS algorithm causes the instability of Qi as seen in Figure 1b. Initially, the reorthogonal process in the CGS variant
maintains the stability for i ≤ 350 but dramatic instability suddenly appears at i > 350. As we can see the numerical
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(a) ∥Wi −QiRi∥ / ∥Wi∥ (b)
∥∥Ii −QT

i Qi

∥∥
Figure 2: Approximation errors and loss of orthogonality with respect to GS process.

singularity of Wi in Figure 1a for i > 250, since the rounding error analysis of CGS2 relies on numerical singularity, CGS2
fails to orthogonalize vectors. Consequently, in Figure 2, there are large approximation errors and loss of orthogonality for
CGS and CGS2, respectively. On the other hands, other GS algorithms lead us to obtain stable Qi where κ(Qi) is close to 1.
Despite increasing loss of orthogonality in MGS, the reorthogonal step can resolve it unlike CGS2. The reason why MGS2
outperforms CGS2 is that MGS orthogonalizes vectors sequentially, which means it adjusts the vector being orthogonalized
step-by-step against each basis vector, while CGS orthogonalizes the vector in a single step against all previous vectors and
then corrects it. Hence CGS process can allow significant numerical errors to accumulate before they are corrected, potentially
reducing the overall accuracy. Notably, even without reorthogonalization, we can observe stability of RGS, e.g., κ(Qi) = 1+ ϵ.
Furthermore, Figure 2b validates our round-off analyses of RGS-L2C and RGS-L2M, which impose l2 orthonormality of Qi.

5 Application to GMRES

In the classical GMRES method to solve Ax = b, the orthonormal basis of Krylov subspace is computed by Arnoldi iterations
associated with CGS or MGS. In a similar way, we can apply our RGS-L2 to Arnoldi iterations. In [5, 6], RGS is employed
where the randomized (flexible) GMRES is introduced but the resulting basis vectors are not l2 orthonormal. Therefore, the
randomized GMRES is a quasi-optimal solver aimed at minimizing the residual in the sketched norm rather than l2 norm. On
the other hand, once we employ RGS-L2 to generate Krylov basis vectors, the corresponding GMRES is able to minimize the
residual in the usual norm. For example, when we denote the residual vector of m−th iteration by rm,

RGS-GMRES: minimize ∥rm∥Θ ,

but
RGS-L2-GMRES: minimize ∥rm∥ .

Consequently, with the RGS-L2 variants of Arnoldi process, the randomized GMRES method fulfills the usual minimal residual
principle:

b−Axm ⊥ AKm(A, r0),

ensuring that the approximate solution xm is an optimal minimizer of the residual norm.

Jang et al. [6] developed the randomized FGMRES-DR to accelerate the convergence of GMRES. To construct a set of Ritz
pairs to be disregarded with RGS, it is necessary to introduce the randomized Rayleigh-Ritz method, since the provided bases
of a subspace are not l2 orthonormal but Θ orthonormal. However, with RGS-L2, we can immediately follow the harmonic
Ritz pair formulation of Morgan[22]. Therefore, we want to find a pair (y, λ) such that satisfies

y ∈ S and By − λy ⊥ S, (5.1)

where B = A−1 and S = AKm(A, b). In case of the randomized Rayleigh-Ritz formulation, ⊥ in (5.1) will be replaced by
⊥Θ indicating sketched orthogonality. To obtain the harmonic Ritz pairs, we consider the following generalized eigenvalue
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problem:
HT

mHmg = λĤT
mg, (5.2)

where Ĥm = Hm(1 : m, 1 : m) and y = Vmg. If ĤT is invertible, solving (5.2) is equivalent to solving(
Ĥm + h2

m+1,mĤ−T
m emeTm

)
g = λg, (5.3)

where hm+1,m = Hm(m + 1,m) and em is the m-th Cartesian basis vector of Rm. We refer for the analysis of the deflated
restarting to [22, 23].

By performing Arnoldi iterations associated with one of GS algorithms, we can generate a set of Krylov basis vectors. For
example, we can define orthonormal Vm+1 = [v1, . . . , vm+1] such that it satisfies

span {v1, . . . , vm+1} = span {r0, Ar0 . . . ,A
mr0} .

In addition, we have the Arnoldi identity, AVm = Vm+1H
m. In GMRES, using Vm+1, we can find an approximate solution

for minimizing the residual norm as detailed in Algorithm 3 for GMRES(-DR).

Algorithm 3 GMRES with (deflated) restarting: GMRES-DR (m, k)

Input: matrix A ∈ Rn×n, vector b ∈ Rn, sketching matrix Θ ∈ Rt×n, size of Krylov subspace m, number of deflated vectors
k, tolerance tol > 0, and vector x0 ∈ Rn.

Output: approximate solution x for Ax = b.
1: r0 = b−Ax0; β = ∥r0∥; c = [β,O1×m]T ; em = [O1×(m−1), 1]

T .
2: Perform Arnoldi process to get Vm+1 and Hm with the starting vector r0/β.
3: y∗ = arg min

y∈Rm
∥c−Hmy∥; xm = x0 + Vmy∗; x0 = xm; r0 = b−Ax0; β = ∥r0∥; ρ = c−Hmy∗.

4: while β/ ∥b∥ > tol do
5: if k > 0 then
6: h = Hm(m+ 1,m); Ĥm = Hm(1 : m, 1 : m).
7: Compute k harmonic Ritz vectors by solving the eigenvalue problem:(

Ĥm + h2Ĥ−H
m emeTm

)
gi = λigi for i = 1, . . . , k.

8: Set Gk = [g1, . . . , gk]; Gk+1 =

[[
Gk

O1×k

]
,ρ

]
.

9: Perform QR decomposition on Gk+1: Gk+1 = Qk+1Rk+1.
10: Define Vk+1 and Hk to satisfy AVk = Vk+1Hk by Vk+1 = Vm+1Qk+1; Hk = QH

k+1HmQk+1(1 : m, 1 : k).

11: Update c =

[
QT

k+1ρ
O(m−k)×1

]
.

12: else
13: v1 = r0/β; c =

[
β

Om×1

]
.

14: end if
15: Perform (m− k) steps of Arnoldi process with Vk+1 (if k = 0, V1 = v1).
16: Solve y∗ = arg min

y∈Rm
∥c−Hmy∥; xm = x0 + Vmy∗.

17: Update x0 = xm; r0 = b−Ax0; β = ∥r0∥; ρ = c−Hmy∗.
18: end while
19: x = xm.

The minimization problem for rm is equivalent to solving least squares problem. For instance, using orthonormality of Vm+1

and the Arnoldi identity, we have

minimize ∥rm∥ ⇔ minimize ∥r0 −AVmy∥ ⇔ minimize ∥r0 − Vm+1Hmy∥ ⇔ solve y∗ = arg min
y∈Rm

∥∥V T
m+1r0 −Hmy

∥∥ .
To simplify the least squares problem, we can reduce V T

m+1r0 to [∥r0∥ , O1×m], since r0 ⊥ vj for j ≤ 2. When we employ
the deflation formulation, V T

m+1r0 can be rewritten as

V T
m+1r0 = V T

m+1Vk+1Q
T
k+1ρ =

[
QT

k+1ρ
O(m−k)×1

]
,

14
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by orthogonality of Vm+1. For more details, we refer to [23].

As seen above, the orthogonality of Vm+1 plays an important role to derive least squares problems. In finite precision
arithmetic, the problem of minimizing a residual norm will no longer be the same as the least squares problem if Vm+1 does
not maintain orthogonality. Furthermore, in GMRES-DR, the loss of orthogonality will be larger than that in GMRES due to
additional QR decomposition for Gk+1. Therefore, GMRES and GMRES-DR require high-quality of orthogonalizing process.

5.1 Numerical experiments

We present some numerical examples of solving ill-conditioned linear systems with respect to different GS types. More
precisely, we consider the matrix A from SuiteSparse Matrix Collection (https://sparse.tamu.edu/Janna/ML_
Geer), namely ML Geer. The right hand side b is defined by b = Ab0/ ∥Ab0∥ where b0 = [1 . . . , 1]T ∈ Rn. In this numerical
experiment, we apply incomplete LU (ILU0) preconditioner to GMRES and GMRES-DR. We compare numerical stability and
convergence of our proposed methods with the existing classical methods. We set tol=1e-08, m = 400, k = 40 if deflated
restarting employed, and a zero initial vector x0 = 0. To satisfy the subspace embedding properties, the sketch size is set to
t = 1900.

Table 3: Averaged condition numbers and loss of orthogonality for Vm+1 during simulations.
GS type Deflation Condition number Loss of orthogonality

CGS No 1.94e+17 2.72e+02
Yes 1.67e+17 1.92e+03
No 1.00 4.98e-14RGS-L2C Yes 1.00 8.45e-14

RGS-L2M No 1.00 5.00e-14
Yes 1.00 7.81e-14

In Table 3, we compute the average values of the condition number of Vm+1, κ(Vm+1), and the loss of orthogonality,∥∥Im+1 − V T
m+1Vm+1

∥∥, for each GS algorithm. It is observed that the CGS based Arnoldi iterations exhibit significant insta-
bility in Vm+1 as well as a loss of orthogonality. In contrast, employing both RGS-L2 algorithms provide stable Vm+1 with
sufficient numerical orthogonality, typically around O(10−14), regardless of the deflation strategy.
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Figure 3: Convergence rates of GMRES and GMRES-DR with respect to GS algorithms.
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Figure 3 illustrates the relative residual norm with respect to Arnoldi iteration for each GMRES methods. In case of using
CGS based Arnoldi processes in GMRES, the poor quality of Vm+1 leads to significantly worse convergence rates compared to
RGS-L2 based GMRES. Moreover, while the deflated restarting improves convergence with the RGS-L2 algorithms, GMRES-
DR with CGS exhibits residual norm stagnation during simulation. This highlights how crucial it is to maintain orthogonality
in GMRES(-DR). Therefore, our proposed randomized methods, ensuring high-quality orthogonal processes, are expected to
enhance numerical performance significantly when combined with GMRES-DR.

6 Conclusion

In this study, we explored the efficiency and stability of various Gram-Schmidt (GS) orthogonalization algorithms, in the context
of solving ill-conditioned linear systems using GMRES and GMRES-DR methods. Our findings emphasize the critical role of
orthogonalization quality in iterative solvers like GMRES, especially in scenarios involving ill-conditioned matrices.

Our new randomized Gram-Schmidt algorithms enable to generate a set of fully l2 orthogonal vectors where the reorthogo-
nalizing process led to improvement in numerical stability. The rounding error analysis indicates the decent quality of orthog-
onality in Q factor as other reorthogonalized methods, while the proposed method exhibits reduced computational complexity.
Furthermore, as shown in the numerical examples, employing RGS-L2 improves numerical performance. Specifically, when
solving linear systems by GMRES-DR, our method significantly enhances the convergence rates by ensuring the orthogonality
of Krylov basis vectors.
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