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Abstract
Macroscopic intelligibility models predict the expected hu-
man word-error-rate for a given speech-in-noise stimulus. In
contrast, microscopic intelligibility models aim to make fine-
grained predictions about listeners’ perception, e.g. predict-
ing phonetic or lexical responses. State-of-the-art macroscopic
models use transfer learning from large scale deep learning
models for speech processing, whereas such methods have
rarely been used for microscopic modeling. In this paper, we
study the use of transfer learning from Whisper, a state-of-the-
art deep learning model for automatic speech recognition, for
microscopic intelligibility prediction at the level of lexical re-
sponses. Our method outperforms the considered baselines,
even in a zero-shot setup, and yields a relative improvement of
up to 66% when fine-tuned to predict listeners’ responses. Our
results showcase the promise of large scale deep learning based
methods for microscopic intelligibility prediction.
Index Terms: speech perception, intelligibility prediction,
Whisper, deep learning.

1. Introduction
Traditional speech intelligibility models measure how compre-
hensible speech is. Generally, they make predictions about the
average number of words that may be heard correctly given a
noisy speech stimulus. These models are referred to as macro-
scopic, as their prediction target is an expected value aggregated
across many words or sentences, and multiple listeners. Macro-
scopic intelligibility prediction has been of great interest for its
importance in developing speech enhancement related applica-
tions, such as hearing aids.

In the last decade, a different paradigm for intelligibility
modeling has emerged: microscopic intelligibility prediction [1,
2]. These models aim to predict human perception of speech at
a higher level of detail than macroscopic models. For instance,
such model might be expected to predict a confusion matrix
characterising phonetic misperceptions, or to predict a listener’s
lexical response to a specific noisy speech token. It is hoped
that building these models will contribute to understanding the
mechanisms underlying human speech perception, since they
must reproduce more specific listener’s behavior.

Throughout the last decade, we have also witnessed great
advances in speech processing applications thanks to the popu-
larization and scaling of deep learning methods. Training large-
scale deep learning models from scratch on intelligibility pre-
diction is usually not feasible due to the small amount of la-
beled data available. However, recent advances on representa-
tion learning showed that transfer learning from large-scale self-

∗Equal contribution.

supervised or weakly-supervised pre-trained models is highly
effective across a wide range of speech applications [3, 4, 5, 6].
These methods yielded the state-of-the-art models for macro-
scopic intelligibility prediction [7, 8], but little work has been
done on applying them to microscopic modeling. Moreover,
there is evidence that the representations learned by large scale
pre-trained models are predictive of human brain speech pro-
cessing [9], likely making them relevant to model speech per-
ception with tasks such as microscopic intelligibility prediction.

In this paper, we explore the use of transfer-learning from
a state-of-the-art large-scale deep learning model for automatic
speech recognition (ASR) to microscopic intelligibility predic-
tion. We focus on Whisper [5], an ASR model that approaches
the accuracy and robustness of humans. We use it to tackle
the task of predicting lexical responses, which is considered to
be the most challenging on microscopic intelligibility modeling
[1]. Our method outperformed the considered baselines, even
in a zero-shot setup. When fine-tuned to predict listener’s re-
sponses, it yielded a relative improvement of 66%. Overall,
our results showcase the promise of transfer learning from large
pre-trained models to microscopic intelligibility prediction.

2. Problem
We approach the problem of microscopic intelligibility predic-
tion using the framework proposed by Marxer et al. [1]. They
consider a setup in which there are a set of tuples (x, y, k),
where x ∈ RT is a noisy single-channel speech waveform of
duration T , y = [y1, . . . , yn] with yi ∈ V for i = 1, . . . , n
is a vector of n unique responses perceived by a set of m lis-
teners from a finite vocabulary V , and k = [k1, . . . , kn] with
ki ∈ {1, . . . ,m} is a vector indicating the frequency of each
response in y. They propose three tasks of increasing detail and
difficulty to evaluate microscopic intelligibility models: confu-
sion frequency prediction, confusion characterization, and full
confusion prediction. The first task consists in predicting the
probability of confusions occurring at the resolution of individ-
ual phonemes. In the second, the target is to predict what each
phoneme will be confused with, i.e., predicting a probability
distribution over possible phoneme substitutions. Finally, the
last task is to predict the complete word perceived by the listen-
ers, represented as a probability distribution over responses.

In this work, we focus on the most challenging task of full
confusion prediction. Our model is therefore expected to pre-
dict a probability distribution over lexical responses conditioned
on the speech waveform P (y|x). As proposed by Marxer et
al. [1], the performance of the model is evaluated as the like-
lihood of the observed data, namely the (x, y, k) tuples, given
the probabilities predicted by the model. The likelihood is the
probability mass function of a multinomial distribution. Let i
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Figure 1: Illustration of the task studied in this paper and our proposed method. We aim to predict the distribution of responses from a
set of listeners to noisy speech stimuli. We use Whisper, an ASR model, to predict a distribution over posible listeners’responses.

index the tuples in a dataset of size N , yi,j and ki,j be the j-th
response and its frequency in the i-th tuple, and let us denote
P (yi,j |xi) as pi,j for brevity. To avoid numerical underflow er-
rors we use the log-likelihood. Then, the score G that we seek
to maximize is:

G =
1

N

N∑
i=1

log

(
mi!

ki,1! . . . ki,ni !
p
ki,1

i,j . . . p
ki,ni
i,ni

)
(1)

3. Method
Our method is illustrated in Figure 1. We use Whisper [5], a
recent ASR model trained on a 680,000 hours labeled speech
corpus recorded in diverse conditions. Whisper outputs a proba-
bility distribution over word-level transcriptions given a speech
input, therefore its application to lexical response prediction is
straightforward. We chose Whisper mainly for two reasons:
first, it is a state-of-the-art model whose accuracy and robust-
ness approaches that of humans. We are interested on determin-
ing if its comparable performance to humans results in similar
behavior under noisy speech stimuli. Second, its architecture is
well suited for our task. Whisper consists of an encoder, which
extracts contextual acoustic features c, and a decoder that pre-
dicts P (y|c). Its encoder has been shown to produce useful fea-
tures for macroscopic intelligibility prediction [8]. We would
like to test if those representations are also useful for micro-
scopic modeling. Having a separate decoder allows us to adapt
it to our task without modifying the encoder. This is in contrast
to other state-of-the-art encoder-only ASR systems in which the
output is directly predicted from the encoder, e.g. [3].

3.1. Whisper architecture

Whisper is an encoder-decoder transformer model [10]. The
Mel-spectrogram of the speech waveform x ∈ RT is fed to
a strided convolutional neural network, which produces a se-
quence of frame representations z ∈ RT ′×d, where d is the
inner dimension of the model and T ′ < T . The encoder pro-
cesses z through a stack of transformer blocks with bidirec-
tional self-attention, yielding a sequence of contextual features
c ∈ RT ′×d. The decoder is a stack of transformer blocks with
causal self-attention that predicts the probability over transcrip-
tions conditioned through cross-attention on c. Whisper tok-

enizes transcriptions using subword units [11], therefore sin-
gle words can be tokenized as a sequence of multiple tokens.
For instance, the word enjoyed can be represented as the se-
quence of tokens [enjoy, ed]. Let y be a single word tok-
enized as a sequence of tokens indexed by t, then the decoder
outputs P (yt|y<t; c). By the chain rule of probabilityP (y|c) =∏

t p(yt|y<t; c).
Whisper was trained on multiple tasks and languages, and

it uses special tokens as a prefix in the decoder to inject infor-
mation about the desired setup. We apply the model only for the
task of ASR in English, therefore our prefix is in all cases the
sequence of tokens SOT (start of transcription), EN (English),
and Transcribe (ASR task).

3.2. Transfer learning for lexical response prediction

Whisper can be directly applied to lexical response prediction
in a zero-shot fashion. Indeed, we can simply compute the like-
lihood of the listeners’ responses predicted by the decoder. In
this setup, we are essentially measuring the agreement between
pre-trained Whisper and human speech perception.

We also fine-tune Whisper in two setups: to predict the top
(most commonly reported) response, i.e. to match the majority
of human listeners; and to model the distribution of listeners’
responses. In the first case, we train the model to do ASR as in
[5], using the top response as target. In the latter, we train it to
minimize the absolute difference between the predicted likeli-
hood of the observed responses and their relative frequency:

L =
1

N

N∑
i=1

n∑
j=1

∣∣∣∣∣log(pi,j)− log

(
ki,j∑n
j=1 ki,j

)∣∣∣∣∣ (2)

4. Experimental Setup
4.1. Dataset

In our experiments, we used the publicly available English Con-
sistent Confusion Corpus [12] (ECCC), a dataset created by
gathering perceived responses from 15 listeners to common En-
glish words mixed with noise maskers of different types: sta-
tionary speech shaped noise (SSN); four-speaker speech babble
(BAB4); and three-speaker babble modulated noise (BMN3)).
The corpus is composed of words-in-noise misperceived in the
same way by at least 6 of the 15 listeners, resulting in over 3,000
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Table 1: Performance on the test set for the different base-
lines (top and bottom) and transfer learning paradigms using
WHISPER-LARGE-V3 (center).

Model Avg. log
likelihood

Top-1
acc.

Avg. top-n
coverage

Kendall
corr.

Random -160 0.00 0.00 0.00
Multinomial -147 0.00 0.00 0.11
Rnd. init. (pred. top) -175 0.00 0.02 0.07
Rnd. init. (pred. all) -176 0.00 0.01 0.05

Zero-shot -140 0.05 0.25 0.28
Fine-tuned (pred. top) -81 0.07 0.39 0.38
Fine-tuned (pred. all) -46 0.13 0.48 0.42
Oracle -5 1 1 1

Table 2: Ablation of fine-tuned Whisper’s modules. Models are
trained to predict the distribution of listeners’ responses.

Fine-tuned modules Avg. log
likelihood

Decoder Encoder
Transformer

Encoder
ConvNet

✗ ✗ ✗ -140
✓ ✗ ✗ -59
✓ ✓ ✗ -57
✓ ✓ ✓ -46

consistent misperceptions. For each sample the corpus makes
available the original utterance, the noise masker, and the list of
listeners’ responses.

We split the dataset in train (80%), dev (10%) and test
(10%) sets. Considering that the masker type induces different
perceptual phenomena [13], and that other factors of variation
such as speaker gender and identity are roughly balanced across
maskers, the splits were made stratified by masker type.

4.2. Evaluation

As described in Section 2, the criterion of performance for the
task of lexical response prediction is the log-likelihood of the
observed responses under the predictive model averaged across
the dataset (Eq. 1). However, this metric is not easily inter-
pretable, which motivated us to also report three other metrics:
the accuracy of the model to predict the most common response
as the most likely (top-1 accuracy), the average percentage of
the n responses present among the top-n predictions of the
model (average top-n coverage), and the Kendall-Tau statistic
[14], which measures the correlations between the ground truth
and predicted rankings of the observed responses.

For the top-1 and top-n metrics, we compare phonemic
representations, so that homophones are considered a match.
We use the CMU pronunciation dictionary1 implemented in the
nltk library [15] to obtain phonemic representations.

For comparison, we report the same metrics for the naive
baselines suggested by Marxer et al. [1]: a random model (the
frequency of a response is uniform across any possible word);
a multinomial model empirically fitted to the responses inde-
pendent from the speech stimuli; and a topline oracle model
in which the predicted probabilities perfectly match the relative
frequencies of listeners’ responses. To assess the effect of trans-

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Figure 2: Distribution of responses’ log-likelihoods predicted
by different models. Vertical bars show quartiles.

Table 3: Performance across model sizes when fine-tuning to
predict the distribution of listeners’ responses.

Pre-trained model Parameters
(millions)

Avg. log
likelihood

WHISPER-SMALL 244 -53
WHISPER-MEDIUM 769 -51
WHISPER-LARGE-V3 1550 -46

fer learning, we also consider a baseline in which we trained a
model from scratch (i.e. with random initialization) on our task.

4.3. Models and Training

We used the official Whisper checkpoints available at https:
//huggingface.co/openai. For our fine-tuning exper-
iments we used the Adam optimizer [16] with β1 = 0.9,
β2 = 0.999, batch size of 16, and a learning rate schedule
including a warm up phase. We did a hyperparameter search
over the peak learning rate ({1e-3, 1e-4, 1e-5}), the fraction of
training steps devoted to the warm up phase ({10%, 50%}),
the learning rate schedule ({linear, cosine}) and the number of
training epochs ({1, 4, 8, 12, 16}). As criterion to choose the
best hyperparameters we used the log-likelihood of the data in
the dev set. We did a full search using the WHISPER-LARGE-
V3 model, from which the resulting best hyperparameters were:
peak learning rate of 1e-5, warm up phase of 10%, cosine learn-
ing rate decay, and 12 epochs of training. We used this setup for
all the reported experiments. After training, we keep the check-
point with the best performance on the dev set.

For all experiments we used a single NVIDIA A100 GPU
with 80 GB of VRAM. A training epoch for WHISPER-LARGE-
V3 takes 12 minutes and requires up to 37 GB of memory.

5. Results
5.1. Effects of transfer learning

On Table 1 and Figure 2 we report the results obtained on the
test set using the WHISPER-LARGE-V3 model. Our method
outperformed all the considered baselines, even in a zero-shot
setup. Models trained from scratch performed worse than the
naive baselines, which shows the benefits of transfer learning on
this task. Interestingly, the model fine-tuned to match the full
distribution of responses (FT pred. all) performs better
on top response prediction than the model trained specifically
for it (FT pred. top). This shows that the extra supervi-
sion obtained from predicting the full distribution of responses
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Figure 3: Variation of performance across masker types. (left)
Distribution of responses’ log-likelihoods. (right) Difference
between listeners’ relative frequencies and predicted probabili-
ties for the spoken word. Vertical bars show quartiles.

leads to a better model of the majority’s perception.

5.2. Ablation of fine-tuning across modules

As mentioned in Section 3, we wanted to determine the useful-
ness of each of the pre-trained Whisper modules for our task.
In Table 2 we show the performance when keeping some of
the modules frozen. We saw little performance gain from fine-
tuning the transformer in the encoder in addition to the decoder.
However, there is a large relative improvement of over 40%
when fine-tuning the convolutional network in the encoder. This
suggests that low-level acoustic features relevant for human per-
ception are not being captured by Whisper’s pre-training.

5.3. Performance scaling with model size

We also studied the scaling of performance with model size. We
present the results in Table 3. Empirical results show that larger
models, which exhibit increased accuracy and robustness, are
also better for human lexical response prediction.

5.4. Performance by noise maskers

Motivated by the distinct effects on humans of different types of
noise maskers in the ECCC [13], we studied their impact on per-
formance. Figure 3 shows the obtained results. Our model has
the most difficulty predicting human perception for speech cor-
rupted with BAB4 maskers. In order to assess if this mismatch
was due to better or worse robustness relative to humans, we
also evaluated the difference in accuracies between our model
and humans, i.e. the difference between the probability of the
correct response estimated by the listeners and that predicted by
our model. For BAB4, the model was consistently worse than
humans in perceiving the original spoken word (the distribu-
tion of differences is largely positive for BAB4). For the other
masker types, in the majority of cases, humans also appear bet-
ter than Whisper at perceiving the right word.

6. Related work
Previous works have used transfer learning from Whisper for
macroscopic intelligibility prediction [17, 18, 8]. Mogridge et
al. [17] showed that Whisper’s decoder representations outper-
formed those from the encoder, indicating that high level lin-
guistic patterns heavily impact macroscopic intelligibility.

As for microscopic intelligibility, Cuervo et al. [19] ap-
proached the task of phone-level prediction of misperception
probability using transfer learning from wav2vec 2.0 [3], a large
scale self-supervised trained deep learning model. To the best
of our knowledge, we are the first to use transfer learning from a
large scale deep learning model for the micro-intelligibility task

of lexical responses characterization.

7. Discussion
7.1. On the implications of our results

Our method significantly outperformed the baselines in all the
considered metrics. This shows that Whisper does capture use-
ful information for microscopic intelligibility prediction at the
lexical level. Indeed, zero-shot experiments showed some de-
gree of analogous behaviour between humans’ and Whisper’s
perceptions of speech-in-noise (25% of agreement on average).
Moreover, we saw predictive performance increase with the size
of the pre-trained Whisper model, similarly as to how accuracy
and robustness scale [5]. Considering that the performance of
deep learning models often scales predictably with the amount
of compute (model size and amount of data) used for training
[20], perhaps we can expect larger models, which are expected
to be more accurate and robust, to increasingly converge with
humans on speech perception.

Fine-tuning to match listeners’ responses on the ECCC
helped to significantly increase performance. Interestingly, we
observed that fine-tuning to predict the full distribution of listen-
ers’ responses results in overall better performance than training
to predict the mode of the distribution, even if one is only inter-
ested on predicting the mode. This shows that modeling fine-
grained phenomena can bring benefits on coarser tasks, which
cannot be obtained from training on the coarse task alone. Per-
haps similar gains can be obtained on macroscopic intelligibility
prediction by training on microscopic intelligibility prediction.

We obtained the most performance gains from fine-tuning
the convolutional encoder, which suggests that the largest dif-
ference between Whisper’s and human speech processing is at
the low acoustic level. It could be interesting to see if a convo-
lutional encoder fine-tuned for human speech perception would
yield increased accuracy and/or robustness on ASR.

7.2. On limitations

We are limited mainly by the amount of data available for mi-
croscopic intelligibility prediction. We believe that part of the
performance gap between our method and the topline can be due
to the topline being a noisy, biased estimate of the real distribu-
tion of lexical responses that our model (by virtue of regular-
ization) approximates. A larger sample of stimuli and listeners’
responses is likely to meaningfully increase performance.

In terms of assessing the quality of our model, we are also
limited by the lack of strong baselines that employ state-of-
the-art methods for speech processing, against which we can
compare our results. We hope this work will motivate other
researchers to improve upon our work within a standardized
evaluation framework, which will lead to the construction of
a proper benchmark for microscopic intelligibility models.

8. Conclusions
We applied transfer learning methods from Whisper, a state-of-
the-art automatic speech recognition system, for the task of pre-
dicting human lexical responses to speech-in-noise stimuli. We
evaluated our model within a standardized framework in a zero-
shot setup and when fine-tuned specifically for the task. Ad-
ditionally, we studied the effects on performance of the granu-
larity of fine-tuning, model size, fine-tuning of each pre-trained
module, and different noise maskers. Results are promising,
with our methods significantly outperforming naive baselines.
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