
HAL Id: hal-04683349
https://hal.science/hal-04683349v2

Preprint submitted on 14 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Public Domain Mark 4.0 International License

PixelBytes: Catching Unified Representation for
Multimodal Generation

Fabien Furfaro

To cite this version:
Fabien Furfaro. PixelBytes: Catching Unified Representation for Multimodal Generation. 2024. �hal-
04683349v2�

https://hal.science/hal-04683349v2
http://creativecommons.org/choose/mark/
http://creativecommons.org/choose/mark/
https://hal.archives-ouvertes.fr


PixelBytes: Catching Unified Representation for Multimodal Generation

Fabien Furfaro∗

2024

Abstract

This report introduces PixelBytes, a novel approach for unified multimodal representation learning. Inspired by
existing sequence models such as Image Transformers, PixelCNN, and Mamba-Bytes, our method aims to capture
diverse inputs in a cohesive representation, exploring the integration of different data types, particularly text,
audio, and pixelated images (sprites). We conducted experiments on a specialized PixelBytes Pokémon dataset.
Initially, we investigated various model architectures, including Recurrent Neural Networks (RNNs), State Space
Models (SSMs), and Attention-based models, focusing on bidirectional processing and our convolutional PxBy
embedding technique. Subsequently, we evaluated models based on data reduction strategies and the effectiveness
of autoregressive learning. We specifically examined Long Short-Term Memory (LSTM) networks in both predictive
and autoregressive modes for our main experiments. Our findings suggest that autoregressive models outperform
predictive models in this context. By adopting a flexible approach to multimodal modeling, PixelBytes contributes
to the ongoing development of foundation models capable of understanding and generating multimodal data. The
complete PixelBytes project, including code, models, and datasets, is available online [9].
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Figure 1: Overview of the PixelBytes approach: (Left) Scanning process reads different modalities at specific positions.
(Center) Example of our dataset and autoregressive generation across modalities. (Right) Generation example, with
PxBy embedding window displayed below. Note: The model currently shows some inaccuracies in image generation
and may produce incorrect words, indicating areas for future improvement.

1 Introduction
Recent advancements in artificial intelligence have led to increasingly generalist models, not by combining multiple
specialized components (like Gato from DeepMind [23]), but by assigning simple tasks to models where emergent prop-
erties—complex behaviors arising from simpler underlying rules—appear. This is exemplified by generative language
models such as GPT [6]. However, these models are constrained by their focus on language alone, failing to capture
the full complexity of multimodal understanding [13]. To address this limitation, researchers have explored integrating
Large Language Models (LLMs) with other modalities [20]. However, this approach often results in specialized model
combinations without fostering new emergent properties. We propose "PixelBytes", a novel approach enabling unified
training across modalities by representing diverse inputs in a single, cohesive format.
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Multimodal sequence generation, which involves creating coherent outputs combining various data types such as
text, images, and numerical sequences, presents a significant challenge in artificial intelligence [1]. While models
like GPT have excelled in text generation [6], there is a growing need for unified approaches that can seamlessly
handle diverse data types. Building on these findings, PixelBytes addresses the challenge of unified text, audio, and
image generation by proposing a model capable of producing coherent mixed sequences of text, audio, and images.
Our approach is inspired by state-of-the-art sequence models, including Image Transformers [22], PixelCNN [28], and
recent developments in byte generation by Mamba architectures [32].

Our research investigates various architectures including Recurrent Neural Networks (RNNs), State Space Models
(SSMs) [7], and Attention-based models, examining the effectiveness of bidirectional processing [18, 26, 35], innova-
tive embedding techniques (particularly PxBy embedding, which integrates pixel and byte-level representations), the
influence of convolutional layers, and the effects of model depth, input dimensionality, and size.

Our experiments, conducted on a specialized PixelBytes Pokémon dataset, suggest that autoregressive models
with balanced data reduction strategies outperform predictive models in terms of accuracy and loss. While our initial
investigation indicated potential for bidirectional sequence models with PxBy embedding and convolutional layers,
our final results focus on the performance of Long Short-Term Memory (LSTM) networks in both predictive and
autoregressive modes. This paper presents our approach for constructing unified sequence data from text, audio,
and pixelated images (sprites), as well as our experimental findings and analysis. By adopting a flexible approach
to multimodal modeling, PixelBytes aims to contribute to the development of versatile foundation models capable of
processing and generating multimodal data.

2 Exploration for a Unified Representation

2.1 Hypothesis Testing Framework
The quest for a unified data representation across different modalities presents significant challenges. Text data
typically exhibits a one-dimensional dependency on preceding words with discrete values [3]. Audio signals have a
temporal dimension with continuous values [27]. Action-state representations in robotics can be similar to audio
but with correlations between channels [4]. Images and animations combine spatial and temporal dimensions across
discrete RGB channels [14]. Given these diverse characteristics, many researchers have focused on combining separate
embedding models into a single framework, as seen in projects like ImageBind [10] and RT-2 [36], rather than seeking
a truly unified data representation. However, to build a model that comprehensively understands different modalities
without intermediate alignment steps, exploring a unified data representation becomes necessary. In this section, we
will examine several hypotheses:

• Can we quantize data such that each element becomes a token? [34]

• Is predicting only the next value sufficient for a sequence model to learn effectively?

• For dimensions higher than one, is applying a convolutional filter necessary?

• For space-time dependency, what is the importance of bidirectionality in models?

Through these investigations, we aim to explore a method of representing data that could enable models to
understand various types of modalities.

2.2 Conceptual Multimodal Embedding
2.2.1 Dataset Construction

To evaluate our hypotheses on unified representation, we required a dataset combining visual and textual data suitable
for byte-level processing. Image captioning datasets proved inadequate due to limited text content and challenges in
interpreting pixelated versions of high-resolution images. Consequently, we created a specialized Pokémon dataset,
offering pixelated designs and rich descriptive text. Data was collected by web scraping Pokémon miniatures and
descriptions from Pokepedia using Beautiful Soup [24], maintaining a 2/3 text to 1/3 image ratio. For image processing,
we utilized a 55-color palette inspired by the NES, creating tokens for various color combinations. This approach
enabled us to represent visual information in a format compatible with our tokenizer.

To manage transitions between text and image tokens, we developed a 2D input sequence method utilizing a 3x3
context window around each token with a 2D zigzag scheme (Figure 1). Special tokens denote transitions between text
and images, with padding added to maintain consistent context sizes. The padding value is 0. For text, only preceding
tokens are included in the context windows. Employing OpenCV and scikit-image [5, 29] for image quantization and
pixelization, we adjusted all entries to have 113 indices, balancing text and image tokens. The resulting dataset,
combining text and pixelated images, is available on the Hugging Face Datasets Hub [9] for reproducibility. It includes
a "pixelbyte" column for this specific data representation.
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2.2.2 Embedding Techniques

Our exploration of unified representation begins with integrating image-text data for sequence generation. We devel-
oped a tokenizer that processes the "pixelbyte" column. This is paired with an embedding technique called PxByEm-
bed, which creates a unified representation for pixel and byte data in a single space. PxByEmbed is designed to test
our hypotheses about the effectiveness of convolutional filters for higher-dimensional data. It uses a learned embedding
matrix to map each token (text or image) to a vector space, while maintaining spatial relationships for image tokens.
PxByEmbed incorporates a simple convolutional layer and an adaptive mixing mechanism. This design allows us
to investigate whether predicting only the next value (with or without only previous value) is sufficient for effective
learning in a sequence model.

Algorithm 1 PxByEmbed: Multimodal Embedding Algorithm (k=3)
Input: V : vocabulary size, D: embedding dimension
Output: Embedded representation E ∈ RB×L×D

Note: Xemb ∈ RB·L×Eint×k×k, Xflat ∈ RB·L×Eintk
2

, Xproj ∈ RB·L×D

Initialize:
k ← 3
Eint ← max(9, ⌊D/k2⌋)
α ∈ R1×1×k×k

Wemb ∈ RV ×Eint

Wproj ∈ REintk
2×D

Wpatch ∈ REint×Eint×k×k

function PxByEmbed(X ∈ ZB×L×k×k)
Xemb ← Permute(Embed(X,Wemb), [0, 3, 1, 2])
Xpatch ← Conv2D(Xemb,Wpatch, padding = 1)
Xcombined ← σ(α)⊙Xemb + (1− σ(α))⊙Xpatch

Xflat ← Flatten(Xcombined)
Xproj ← XflatWproj

E← LayerNorm(Xproj)
E← Reshape(E, [B,L,D])
return E

end function

The algorithm processes input sequences in 3x3 patches, embedding each element and then applying a learnable
convolution. The embedding pad value is set to 0 to avoid influencing the training of subsequent tokens. These two
representations are then combined using a learned parameter, allowing the model to adaptively balance between local
and global information.

2.3 Model Architectures Evaluated
We evaluated three compact model architectures: a Recurrent Neural Network (RNN) using Long Short-Term Memory
(LSTM) units [25], a Transformer [30], and a State Space Model (SSM) based on Mamba [11]. For both the RNN and
Mamba architectures, we compared variants with and without a bidirectional first layer. Each model was constrained
to fewer than 100,000 parameters and adapted to process our dataset of pixel data and bytecode sequences. The
models were trained on Kaggle using T4 GPUs, with a batch size of 32, sequence length of 256, and learning rate of
0.001 for 200 epochs. The trained models are available on the Hugging Face Model Hub [9].

Figure 2: Training and validation metrics for RNN, Transformer, and SSM models over 200 epochs.
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2.4 Comparative Analysis
Figure 2 illustrates the training and validation metrics for our three model types. The SSM achieved the best scores for
loss and accuracy but exhibited signs of overfitting. The RNN demonstrated more balanced performance, suggesting
better generalization to unseen data. The Transformer had the lowest performance, possibly due to the absence of
positional encoding. The strong performance of the SSM supports the potential of unified representation for pixel
and byte data. However, its tendency to overfit suggests that predicting only the next value might not be sufficient
for effective learning in all cases. The balanced performance of the RNN indicates that simpler architectures can still
be effective for our task. The Transformer’s lower performance suggests that complex attention mechanisms may not
always be necessary or beneficial for this type of data.

2.4.1 Generation Evaluation Metrics

To assess the effectiveness of our approach and various model architectures, we evaluated their generation capabilities.
We tested State Space Models (SSM), Attention models (Att), and Recurrent Neural Networks (RNN) in generating
32 consecutive sequences. Our evaluation used three metrics: Hamming Distance [12], Cosine Similarity, and BLEU
Score [21].

Type Dir. Emb. Conv. In Emb Hidden State Depth Hamming Cosine BLEU
SSM Bi PxBy Y 81 64 1 0.170 ± 0.086 0.883 ± 0.105 0.753 ± 0.115
SSM Bi PxBy Y 81 64 2 0.158 ± 0.074 0.896 ± 0.095 0.771 ± 0.097
SSM Uni PxBy Y 81 64 2 0.166 ± 0.081 0.886 ± 0.102 0.760 ± 0.106
Att - PxBy Y 81 64 1 0.157 ± 0.064 0.887 ± 0.103 0.765 ± 0.088
Att - PxBy Y 81 64 2 0.159 ± 0.066 0.887 ± 0.103 0.760 ± 0.092

RNN Bi Center N 81 64 2 0.185 ± 0.074 0.888 ± 0.083 0.750 ± 0.093
RNN Bi PxBy Y 81 64 2 0.153 ± 0.061 0.902 ± 0.090 0.777 ± 0.083
RNN Bi PxBy Y 162 64 2 0.152 ± 0.062 0.905 ± 0.089 0.778 ± 0.084
RNN Bi PxBy Y 36 64 2 0.152 ± 0.061 0.904 ± 0.090 0.778 ± 0.083
RNN Bi PxBy Y 81 128 2 0.153 ± 0.063 0.903 ± 0.091 0.776 ± 0.086
RNN Bi PxBy Y 81 32 2 0.149 ± 0.062 0.899 ± 0.095 0.785 ± 0.082
RNN Bi PxBy Y 81 64 1 0.149 ± 0.062 0.897 ± 0.096 0.780 ± 0.085
RNN Bi PxBy Y 81 64 3 0.153 ± 0.063 0.906 ± 0.087 0.776 ± 0.086
RNN Bi PxBy N 81 64 2 0.151 ± 0.062 0.903 ± 0.090 0.779 ± 0.084
RNN Uni PxBy Y 81 64 2 0.153 ± 0.064 0.904 ± 0.088 0.777 ± 0.087

Table 1: Comparison of model characteristics and performance (mean ± std)

The results reveal variations across different model configurations. Among RNN models with PxBy embedding,
we observed a Hamming distance of 0.149 ± 0.062 and a BLEU score of 0.785 ± 0.082 for a bidirectional model
with convolution, 81 embedding dimensions, and 32 hidden state dimensions. The highest cosine similarity (0.906 ±
0.087) was achieved by a 3-layer RNN model. We noted some differences in performance between models with and
without convolution, as well as between unidirectional and bidirectional configurations, though these differences were
not always substantial. Varying the embedding dimension (36, 81, 162) in RNN models resulted in similar performance
levels. RNN models using center embedding showed different results compared to those using PxBy embedding. The
performance of SSM and Attention models varied in comparison to RNN models across the different metrics, but no
model type consistently outperformed the others across all measures.

2.5 Identified Challenges
Our initial results revealed several limitations in our embedding approach. While we observed variations in performance
across different model configurations, the differences were often not substantial [33]. The PxBy embedding, which we
initially considered promising, did not consistently outperform simpler approaches across all metrics and model types.
Based on these findings, we recognized the need to refine our approach. The repetition of sequences in our generated
output indicated that our embedding method might not be capturing the full range of patterns in our data [2].

3 Optimizing Unified Representation

3.1 Refined Embedding Approach
To address the challenges identified in our initial experiments, we propose a revised embedding strategy. Instead of
using a convolutional approach, we now focus on six specific positions within each token, with the input dimension
equal to the output dimension. This adjustment allows for a larger embedding size while potentially enhancing the
model’s ability to capture relevant patterns. We also recognized the need for a more flexible tokenizer [15]. Our
initial implementation proved cumbersome when generating new data, highlighting the importance of a more versatile
approach. We are exploring methods to integrate all necessary functionality into the tokenizer itself, which should
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streamline our overall pipeline and potentially improve performance. These refinements reflect a shift from our initial
exploration towards a more focused approach to unified representation. While our initial results provided valuable
insights, they also revealed the complexities inherent in multimodal sequence modeling and the need for continuous
iteration in our methods [16].

3.1.1 Dataset Construction

For our refined approach, we developed a new dataset combining images, text, and audio extracted from Pokemon
sprite animations. This dataset, available on the Hugging Face Dataset Hub [9], was compiled through web scraping of
Pokepedia and includes descriptions of the Pokemon along with their associated cries. The dataset comprises animated,
pixelated GIFs of Pokemon sprites as the visual component. The audio files are two-channel recordings: Channel 1
contains the original mono sound of the Pokemon cry, while Channel 2 features a filtered version simulating a bits
Game Boy speaker output to verify our approach for control problems. This setup enables us to model a simplified
dynamic physical system, where the original sound acts as the "action" input and the filtered output represents the
"state" of the system. The transfer function of this bandpass filter can be approximated as:

H(s) =
Kω2

n

s2 + 2ζωns+ ω2
n

(1)

where K is the gain, ωn is the natural frequency, and ζ is the damping ratio. These parameters can be adjusted
to closely match the frequency response of a Game Boy speaker.

3.2 Enhanced Tokenization Strategy
Building on our previous work, we developed an improved tokenization strategy using the ActionPixelBytesTokenizer.
This tokenizer addresses multimodal data more effectively, including text, images, and audio, while maintaining a
unified representation. It employs a combined vocabulary that includes ASCII bytes, RGB values from the NES
palette, and action states for control and audio. This approach aims to create a consistent representation across
different data types. For text processing, the tokenizer converts to lowercase ASCII bytes. Images are converted to
Lab color space and quantized to the nearest NES palette color. Audio data is normalized and mapped to predefined
action states, with the setpoint reset to zero (standard equilibrium). The token vocabulary now comprises 151 tokens,
where index 0 corresponds to the null padding value, and indices 1 and 2 are transition values. A key aspect of the
new tokenizer is its sequence construction method. Instead of using convolutional methods, we focus on six specific
positions for each token to avoid repetition in the sequencing of a 3D zigzag scheme (Figure 1). This approach
creates context-target pairs that aim to capture relationships between neighboring tokens in both space and time. The
sequence construction algorithm is detailed below:

Algorithm 2 Create Sequence Data
Input: X ∈ RT×H×W : context array
Output: C ∈ RTHW×6: context, Y ∈ RTHW×1: targets
Note: T : time steps, H: height, W : width

Initialize: P ∈ R(T+1)×(H+2)×(W+2) as padded array
function CreateSequenceData(X)

P← Pad(X, (1, 1, 1, 1, 1, 0),mode=’constant’, value=0)
S1 ← P1:T,1:H,2:W+1

S2 ← P1:T,2:H+1,2:W+1

S3 ← P1:T,3:H+2,2:W+1

S4 ← P2:T+1,1:H,1:W

S5 ← P2:T+1,2:H+1,1:W

S6 ← P2:T+1,1:H,2:W+1

C← Stack([S1,S2,S3,S4,S5,S6],dim=-1)
C← Reshape(C, [THW, 6])
Y ← Reshape(X, [THW, 1])
for i← 2 to THW do

Ci,6 ← Yi−1,1

end for
return C,Y

end function

This algorithm constructs a context array for sequence modeling. It pads the input to handle boundary conditions
and extracts six slices to represent spatial and temporal relationships. The context array C is formed by stacking
these slices, while the targets Y are derived from the input. The last column of C is set to the true previous value,
implementing an autoregressive feature. The tokenizer is designed to handle various input combinations and includes
functionalities such as special token handling and padding.
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3.3 Autoregressive Model Architecture
Building upon our initial approach findings, we developed the aPxBySequenceModel architecture. This architecture
is designed to handle both predictive and autoregressive tasks using a Long Short-Term Memory (LSTM) network.
The model comprises three main components: an embedding layer, an LSTM sequence model, and a fully connected
output layer. The embedding layer maps input tokens to a continuous vector space, with the embedding size calculated
based on the input dimension. Specifically, the embedding size is determined by dividing the overall embedding size
by the number of positions we focus on within each token. This approach aligns with our revised embedding strategy,
which emphasizes six specific positions within each token (with padding 0 to avoid influencing training). The LSTM
layer aims to capture temporal dependencies in the sequence data, potentially enhancing pattern recognition across
different modalities. The model operates in two distinct modes:

• Predictive mode: In this configuration, the model takes six input values and attempts to predict only the next
token.

• Autoregressive mode: Here, the model’s output dimension matches the input dimension (Figure 1). Additionally,
the output is restructured by multiplying it with the vocabulary size, enabling the model to generate sequences
based on the learned representations.

During the forward pass, input data is processed through the embedding layer, then through the LSTM layers,
and finally through the fully connected layer. The output shape is adjusted based on the operating mode, which may
provide the flexibility we found lacking in our initial implementation.

3.3.1 Model Training and Data Management

For data management, we developed the TokenPxByDataset class to handle multimodal inputs, including text, image,
and audio data. This class generates overlapping sequences from longer inputs, facilitating the model’s capture of
context across sequence boundaries. It optimizes memory usage through on-the-fly data retrieval, preparing samples
only as needed. The class ensures consistent sequence lengths by implementing circular padding for sequences extending
beyond an item’s end. These features enable efficient processing of variable-length inputs during training.

Our training process incorporates several enhancements for efficiency and monitoring. In the _process_epoch
function, we manage both autoregressive and non-autoregressive modes. For autoregressive mode, we reshape input
and output sequences, using the input sequence as the target. In non-autoregressive mode, we flatten the outputs
and use provided labels as the target. This flexibility allows the model to adapt to different tasks. The train_model
function alternates between training and validation phases, enabling regular performance evaluation. We employ
gradient accumulation to simulate larger batch sizes, beneficial when GPU memory is limited. The training loop
tracks both training and validation metrics (loss and accuracy) for each epoch, saving these metrics to a CSV file. We
also implement model checkpointing to retain the best model based on validation loss.

3.4 Performance Evaluation
We evaluated three LSTM models: one in predictive mode and two in autoregressive mode, each with approximately
4 million parameters. The models were trained on Kaggle using T4 GPUs. We utilized an embedding size of 128, a
hidden size of 512, and two layers. Training was conducted for 100 epochs with a batch size of 32, a learning rate of
0.001, and a sequence length of 1024.

3.4.1 Results Comparison

To manage data proportions, we applied different reduction strategies for image and audio data. This was particularly
important for audio data in the autoregressive mode, as it contains more null values to predict, which could potentially
impact training. Table 2 presents the final performance metrics after training.

Table 2: Comparison of model performance after 100 epochs
Model Train Loss Train Accuracy Val Loss Val Accuracy
Autoregressive (2,2) 0.2211 0.9329 0.4519 0.8852
Autoregressive (4,2) 0.2346 0.9290 0.4914 0.8726
Predictive (2,2) 0.8810 0.7440 2.1144 0.6009

The numbers in parentheses indicate the reduction factors for (audio, image) data. Lower loss and higher accuracy
indicate better performance. Both autoregressive models outperformed the predictive model in terms of accuracy and
loss on both training and validation sets. The autoregressive model with balanced reduction (2,2) achieved slightly
better results than the one with more aggressive audio reduction (4,2). Although the predictive model had lower
performance overall, it still reached reasonable accuracy given the task complexity. This suggests that our pixelbyte
representation is effective, especially when using autoregressive learning.
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Figure 3: Generation results for the 1st Generation Starter Pokémon using the autoregressive model with a temperature
of 0.1. Reference images and generated images are paired sequentially.

The complete frame generation results, as shown in Figure 3, demonstrate spatial consistency in image creation,
despite the model being unidirectional. This suggests that data representation may be more crucial than the archi-
tecture itself, aligning with recent findings in multimodal learning [1]. The generated images show coherence in colors
and sizes, indicating that the model has captured some key visual features. While our model does not match the image
quality of state-of-the-art diffusion models [8], it demonstrates the capability to capture multiple modalities (image,
text, audio) within a single framework. This aligns with recent trends in multimodal co-learning [19], although further
optimization is needed to improve generation quality. The trained models are available on the Hugging Face Model
Hub [9] for further examination and replication of our results.

4 Discussion and Future Directions
Our experiments with various model architectures for unified text and image generation have yielded unexpected
insights and prompted a shift in our approach. Initially, we explored bidirectional RNN models using PixelBytes
(PxBy) embedding with convolutional layers, anticipating improved multimodal data representation. However, deeper
analysis revealed limitations in this approach, leading us to reconsider our tokenizer design.

Our subsequent results with LSTM models have been particularly informative. The autoregressive models signifi-
cantly outperformed the predictive model, suggesting that maintaining equal input and output dimensions is crucial
for our task. This aligns with recent research emphasizing the importance of preserving structural information in
multimodal embeddings [31]. The performance difference between the two autoregressive models highlights the im-
pact of data balancing strategies. The model with balanced reduction (2,2) for audio and image data showed slightly
better results, indicating potential overfitting with animated images. We now aim for a more versatile solution that
can handle all aspects of data preparation and support true autoregressive modeling. Our TokenPxByDataset class
remains valuable, but we are working to integrate its functionality more closely with our revised tokenizer for a more
streamlined data pipeline. The predictive model requires existing spatio-temporal data, while the autoregressive model
regenerates data that it could access at the previous time step, without the need for regeneration.

While we initially explored both RNN and State Space Models (SSM), with SSMs showing promising rapid conver-
gence [7], our focus has shifted towards simplifying the overall architecture. Our approach offers an alternative to the
principles of models like ImageBind [10], as our preliminary results suggest it may be possible to unify modalities with-
out relying on intermediate representations. We now recognize the potential benefits of allowing emergent properties
to develop within a simplified framework. Moving forward, we will refine our strategy to better utilize specific input
positions for high-definition image and sound. We also aim to further simplify our model architecture to promote
the emergence of natural multimodal representations. Additionally, we plan to explore alternative approaches like
Diffusion-LM [17], which may offer new perspectives on multimodal sequence modeling. While our work is ongoing, it
aligns with recent trends in multimodal AI research [1] and could potentially provide a versatile foundation for various
multimodal tasks.
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