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Abstract

This report introduces PixelBytes Embedding, a novel approach for unified multimodal representation learning.
Our method captures diverse inputs in a single, cohesive representation, enabling emergent properties for multi-
modal sequence generation, particularly for text and pixelated images. Inspired by state-of-the-art sequence models
such as Image Transformers, PixelCNN, and Mamba-Bytes, PixelBytes aims to address the challenges of integrating
different data types. We explore various model architectures, including Recurrent Neural Networks (RNNs), State
Space Models (SSMs), and Attention-based models, focusing on bidirectional processing and our innovative PxBy
embedding technique. Our experiments, conducted on a specialized PixelBytes Pokémon dataset, demonstrate that
bidirectional sequence models with PxBy embedding and convolutional layers can generate coherent multimodal
sequences. This work contributes to the advancement of integrated AI models capable of understanding and gen-
erating multimodal data in a unified manner. Code is available at https://github.com/fabienfrfr/PixelBytes.

Figure 1: PixelBytes Pokémon generation process. Left: Image and text tokenization with embedding window for
modality unification. Center: Sequence generation using PxBy Embedding. Right: Generated pixelated image and
text description. Red box shows a possible generation example. Note: The model currently has some inaccuracies in
image generation and may invent words, indicating areas for future improvement.

1 Introduction
Recent advancements in artificial intelligence have led to increasingly generalist models, not by combining multiple
specialized components, but by giving simple tasks to models where emergent properties—complex behaviors that arise
from simpler underlying rules—appear. This is the case with generative language models like GPT [3]. However, these
models are limited by their focus on language alone, failing to capture the full complexity of multimodal understanding
[6]. To address this limitation, researchers have explored combining LLMs with other modalities [7]. But this brings
us back to the initial problem, as it often results in specialized model combinations without allowing for new emergent
properties. We propose "PixelBytes Embedding", a novel approach enabling unified training across modalities by
capturing diverse inputs in a single, cohesive representation.

Multimodal sequence generation, which involves the creation of coherent outputs combining various data types such
as text, images, and numerical sequences, presents a significant challenge in artificial intelligence [1]. While models
like GPT have excelled in text generation [3], there’s a growing need for unified approaches that can seamlessly handle
varied data types. Building upon these findings, PixelBytes aims to address the challenge of unified text and image
generation by proposing a model capable of producing mixed sequences of text and images in a coherent and unified
manner. We draw inspiration from state-of-the-art sequence models, including Image Transformers [9], PixelCNN [14],
and recent developments in bytes generation by mamba architectures [18].

Our research explores various architectures including Recurrent Neural Networks (RNNs), State Space Models
(SSMs) [4], and Attention-based models, focusing on the effectiveness of bidirectional processing [19], novel embed-
ding techniques (particularly PxBy embedding, which unifies pixel and byte-level representations), the impact of
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convolutional layers, effects of model depth, input dimensionality, and size. Our experiments reveal that bidirectional
sequence models with PxBy embedding and convolutional layers demonstrate good performance in generating coherent
sequences.

Our results show that it is possible to train sequence models with unified embeddings for both text and pixel
completion. This paper presents our methodology to construct unified sequence data from text and image, experimental
results, and analysis, contributing to the development of our sequence generation embedding models. The proposed
PixelBytes Embedding approach may offer valuable insights for the development of multimodal AI, potentially leading
to models that can better understand and generate various types of data.

2 Model Architecture

2.1 Overview
The PixelBytes architecture is designed to seamlessly integrate multimodal data for unified sequence generation. At
its core, the model incorporates two key innovative components: a specialized tokenizer sequence constructor and a
unified multimodal embedding technique called PxByEmbed. The tokenizer sequence constructor is engineered to
process both pixelated images and text at a byte level, enabling a consistent representation across modalities. This is
complemented by PxByEmbed, our novel embedding approach that creates a unified representation for both pixel and
byte data in a single, coherent space. This architecture draws inspiration from recent advancements in multimodal
learning [1] and efficient sequence modeling [16], allowing PixelBytes to capture intrinsic relationships between visual
and textual information effectively.

2.2 Dataset Construction
Image captioning datasets, while combining visual and textual modalities, prove unsuitable for joint text and image
generation due to limited text content and difficulties in interpreting pixelated versions of high-resolution images. To
address these limitations, we developed a specialized Pokémon dataset, offering advantages such as a long-standing
franchise history, pixelated designs, rich descriptive text, and over 1000 unique Pokémon.

We constructed our dataset by web scraping Pokémon miniatures and descriptions from Pokepedia using Beautiful
Soup [10], maintaining a 2/3 text to 1/3 image ratio. For image quantization, we employed a 55-color palette inspired
by the NES, creating tokens representing different color combinations. This approach translates visual information
into a format suitable for sequence modeling. The quantization and pixelization process used OpenCV and scikit-
image [2, 15]. To ensure balanced representation, we adjusted the number of image and text tokens to 113 indices
for all entries, allowing the model to learn equally from both visual and textual information. The final dataset,
balancing text and pixelated images, is available on the Hugging Face Datasets Hub for reproducibility at https:
//huggingface.co/datasets/ffurfaro/PixelBytes-Pokemon.

3 Multimodal Embedding Algorithm

3.1 PxByEmbed: Multimodal Embedding Algorithm
At the core of our approach is the PxByEmbed algorithm, which represents mixed sequences of text and pixelated
images in a unified manner. This algorithm builds upon existing embedding techniques by incorporating spatial
adaptivity, allowing for representation of both textual and visual information. PxByEmbed is designed to address the
specific needs of pixel-level image representation and byte-level text encoding. The algorithm uses a learned embedding
matrix to map each token (text or image) to a vector space, while maintaining spatial relationships for image tokens.
This approach allows our model to handle both modalities within a single framework.

3.2 Managing Transitions
PixelBytes uses a method to handle transitions between text and image tokens during sequence generation. This
approach is used in both dataset construction and sequence generation (Figure 1).

For dataset construction, we use a 2D input sequence method with a 3x3 context window around each token. We
use special tokens to mark transitions between text and images, and add padding to keep context sizes consistent. For
text, only previous tokens are included in the context windows. The input_seq_construct function implements this
process.

During sequence generation, the _process_token function manages transitions. It handles text tokens (bytes)
and image tokens (tuples) differently, and takes care of special characters like newlines and tabs. A sequence_clock
keeps track of the generation progress. Each new token’s context is represented in a 3x3 matrix, which helps maintain
coherence when switching between text and images.
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Algorithm 1 PxByEmbed: Multimodal Embedding Algorithm (k=3)
Input: V : vocabulary size, D: embedding dimension
Output: Embedded representation E ∈ RB×L×D

Note: Xemb ∈ RB·L×Eint×k×k, Xflat ∈ RB·L×Eintk
2

, Xproj ∈ RB·L×D

Initialize:
k ← 3
Eint ← max(9, ⌊D/k2⌋)
α ∈ R1×1×k×k

Wemb ∈ RV×Eint

Wproj ∈ REintk
2×D

Wpatch ∈ REint×Eint×k×k

function PxByEmbed(X ∈ ZB×L×k×k)
Xemb ← Permute(Embed(X,Wemb), [0, 3, 1, 2])
Xpatch ← Conv2D(Xemb,Wpatch, padding = 1)
Xcombined ← σ(α)⊙Xemb + (1− σ(α))⊙Xpatch

Xflat ← Flatten(Xcombined)
Xproj ← XflatWproj

E← LayerNorm(Xproj)
E← Reshape(E, [B,L,D])
return E

end function

4 Training and Evaluation

4.1 Model Architectures
We evaluated three compact model architectures, each with fewer than 100,000 parameters: a Recurrent Neural
Network (RNN) using bidirectional Long Short-Term Memory (LSTM) units [11], a Transformer [16], and Mamba,
based on the State Space Model (SSM) [4]. These models were adapted to process our dataset of pixel data and
bytecode sequences. Training was conducted on Kaggle using dual T4 GPUs, with a batch size of 32, sequence length
of 256, stride size of 32, and learning rate of 0.001. We trained for 200 epochs, evaluating performance every 5 epochs.
The resulting models are available at https://huggingface.co/ffurfaro/PixelBytes-Pokemon. Additionally, we
developed a more specialized model for generation tasks, which is not presented in this paper.

Figure 2: Training and validation metrics (Loss, Accuracy) for RNN, Transformer, and SSM models over 200 epochs.

Figure 2 shows the training and validation metrics for our three model types over 200 epochs. The State Space
Models (SSM) achieved the best scores for loss and accuracy. However, the widening gap between their training
and validation curves suggests they may be overfitting, meaning they learned the training data well but struggled to
generalize to new examples.

In contrast, the LSTMs (referred to as RNNs in our analysis) demonstrated more balanced performance. The
closer alignment of their training and validation curves indicates they may generalize better to unseen data. The
Transformer model had the lowest performance among the three. This could be due to the absence of positional
encoding trick, which is important for Transformers in sequence tasks.

Overall, these results highlight the strengths and weaknesses of each model type. While SSMs showed strong
training performance, their tendency to overfit suggests that additional regularization techniques might be needed.
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The stable performance of RNNs indicates their suitability for our task, as they balance well between fitting the training
data and generalizing to new data. The Transformer’s performance suggests it may require further adjustments to
improve its effectiveness for this task.

4.2 Generation Evaluation Metrics
We tested different model types including State Space Models (SSM), Attention models (Att), and Recurrent Neural
Networks (RNN) for generating 16 consecutive sequences. We used three metrics to evaluate their performance:
Hamming Distance, Cosine Similarity, and BLEU Score [5, 8, 13].

Type Dir. Emb. Conv. In Emb Hidden State Depth Hamming Cosine BLEU
SSM Bi PxBy Y 81 64 1 0.170 ± 0.086 0.883 ± 0.105 0.753 ± 0.115
SSM Bi PxBy Y 81 64 2 0.158 ± 0.074 0.896 ± 0.095 0.771 ± 0.097
SSM Uni PxBy Y 81 64 2 0.166 ± 0.081 0.886 ± 0.102 0.760 ± 0.106
Att - PxBy Y 81 64 1 0.157 ± 0.064 0.887 ± 0.103 0.765 ± 0.088
Att - PxBy Y 81 64 2 0.159 ± 0.066 0.887 ± 0.103 0.760 ± 0.092

RNN Bi Center N 81 64 2 0.185 ± 0.074 0.888 ± 0.083 0.750 ± 0.093
RNN Bi PxBy Y 81 64 2 0.153 ± 0.061 0.902 ± 0.090 0.777 ± 0.083
RNN Bi PxBy Y 162 64 2 0.152 ± 0.062 0.905 ± 0.089 0.778 ± 0.084
RNN Bi PxBy Y 36 64 2 0.152 ± 0.061 0.904 ± 0.090 0.778 ± 0.083
RNN Bi PxBy Y 81 128 2 0.153 ± 0.063 0.903 ± 0.091 0.776 ± 0.086
RNN Bi PxBy Y 81 32 2 0.149 ± 0.062 0.899 ± 0.095 0.785 ± 0.082
RNN Bi PxBy Y 81 64 1 0.149 ± 0.062 0.897 ± 0.096 0.780 ± 0.085
RNN Bi PxBy Y 81 64 3 0.153 ± 0.063 0.906 ± 0.087 0.776 ± 0.086
RNN Bi PxBy N 81 64 2 0.151 ± 0.062 0.903 ± 0.090 0.779 ± 0.084
RNN Uni PxBy Y 81 64 2 0.153 ± 0.064 0.904 ± 0.088 0.777 ± 0.087

Table 1: Comparison of model characteristics and performance (mean ± std)

The results show that RNN models with PxBy embedding generally perform better than other types. The best
Hamming distance (0.149 ± 0.062) and BLEU score (0.785 ± 0.082) come from the bidirectional PxBy RNN model
with convolution, 81 embedding dimensions, and 32 hidden state dimensions. This suggests that a smaller hidden
state in the RNN model can effectively capture sequence patterns.

The highest cosine similarity (0.906 ± 0.087) is from the 3-layer RNN model, indicating that more layers can
improve sequence alignment. Adding convolution usually improves RNN model performance. Interestingly, changing
the embedding dimension (36, 81, 162) in RNN models didn’t affect performance much, suggesting these models can
handle different embedding sizes well. The center embedding in RNNs didn’t perform as well as PxBy embedding for
this task.

5 Results and Discussion
Our experiments with various model architectures tested the effectiveness of unified text and image generation. Bidi-
rectional RNN models using PixelBytes (PxBy) embedding with convolutional layers generally performed better across
our metrics. The PxBy embedding improved the mean BLEU score from 0.750 to 0.777 compared to a center-only ap-
proach, indicating its effectiveness in representing multimodal data. This finding aligns with recent work emphasizing
the importance of effective multimodal embeddings in text-to-image generation tasks [17].

Bidirectional models showed a slight advantage over unidirectional ones, with BLEU scores of 0.777 and 0.776
respectively. This suggests that bidirectionality may help capture sequential dependencies, consistent with other
studies in sequence modeling [12]. Notably, varying state dimensions (32, 64, 128) had minimal impact on performance,
with BLEU scores ranging from 0.775 to 0.784. While RNN models showed strong performance in our experiments,
State Space Models (SSM) demonstrated rapid convergence during training, suggesting potential for future exploration
in multimodal data processing. This is in line with recent advancements in SSM for sequence modeling tasks [4].

6 Conclusion and Future Work
This study on PixelBytes highlights the potential for unified text-image generation, contributing to the growing field of
multimodal AI [1]. The performance of bidirectional RNN models with PxBy embedding underscores the importance
of capturing both spatial and contextual information in multimodal data. Future work could focus on refining the
PxByEmbed algorithm, testing on larger and more diverse datasets, exploring creative applications of multimodal
generation, and further optimizing SSM and Attention models. These efforts aim to advance multimodal sequence
modeling and generation techniques.
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