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Zonotopic and Gaussian Information Filter for High
Integrity Localization

Mohammed Salhi and Joelle Al Hage

Abstract—The navigation of intelligent vehicles relies on high
integrity localization system capable to bound the estimation
errors. This paper introduces a zonotopic and Gaussian Kalman
filter in informational form for multi-sensor data fusion and
confidence domain computation. By integrating stochastic and set
membership uncertainties, the proposed filter ensures accurate
localization with a non pessimistic confidence domain, thus
addressing the challenges posed by traditional techniques. Taking
advantage of the informational form, a fault detection and
exclusion step is added to enhance filter robustness. Following
a zonotope reduction step, a confidence domain computation,
considering both Gaussian and zonotopic uncertainties, is pro-
posed in the context of intelligent vehicles. The accuracy and
integrity of the approach are assessed using experimental data,
including the fusion of GPS and Galileo pseudoranges with
camera measurements after a map matching step. Additionally,
a comparative analysis is conducted with the classical Kalman
filter.

I. INTRODUCTION

Ensuring accurate localization with high integrity represents
a significant challenge for the navigation of intelligent vehicles
operating on roads. Typically, the localization process relies on
the data fusion of multiple sensors including GNSS (Global
Navigation Satellite System), dead-reckoning sensors, cameras
and Lidar [1], [2].

The Kalman Filter (KF) is commonly used for merging data
from various sensors. This filter is designed to be optimal
under the assumptions of linear model and Gaussian noise. For
vehicle localization, the process of estimating the state through
multi-sensor data fusion is vulnerable to noise originating
from sensor measurements and environmental factors, such
as multipath interference from GNSS signals. The Gaussian
assumption is not always justified and can result in inconsistent
state estimation, leading to a loss of integrity.

The set-membership techniques provide a good alternative
to Bayesian methods and are particularly well suited for
bounding errors without relying on assumptions regarding the
noise distributions. The application of set-membership tech-
niques to the localization problem has already been explored
in the literature [3], [4]. Despite the interesting quality of the
set-membership methods in solving problems in a guaranteed
way, they are not well suited for high accuracy tasks and have
the drawback of being more pessimistic compared to Bayesian
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approaches. Additionally, the assumption of fully bounded
errors made by these approaches is not always verified.

Combining Bayesian and set-membership techniques has
been considered in multiple works [5]–[7]. The resulting filters
profit from the advantages of the stochastic representation,
which is efficient to deal with random noise, and the set mem-
bership representation, which is well adapted to deterministic
bounded errors.

In [6] the authors introduce an approach that combines
set membership based on ellipsoids with a KF for vehicle
localization. The filter incorporates both random and set-
membership uncertainties through a weighting parameter. This
approach needs the execution of nonlinear optimization al-
gorithm at each step, resulting in high computational cost.
In [7], an interval KF enhanced by positive definite upper
bound was proposed where the state and observation matrices
are represented as interval matrices. The complexity of this
method is impacted by the presence of numerous interlocking
matrix summations. The Zonotopic and Gaussian Kalman Fil-
ter (ZGKF) was proposed in [8] by combining set membership
principles based on zonotopes with Gaussian uncertainties.
The mathematical properties of zonotopes enable computa-
tional efficiency, facilitating a straightforward integration with
a classical KF.

In this work, we propose a multi-sensor data fusion ap-
proach based on the ZGKF to achieve high integrity localiza-
tion for intelligent vehicles. Integrity, in this context, denotes
the confidence in a navigation solution and is associated with
an error bound known as the Protection Level (PL) [9]. The
ZGKF is well suited to this problematic since it handles both
random and Unknown But Bounded (UBB) errors leading
to a consistent and non pessimistic localization solution.
Noises from GNSS pseudoranges and camera measurements
are then modeled as Gaussian and UBB errors and merged
with odometer data. The ZGKF is well adapted to model bias
that can appear on sensor measurements.

Mathematically equivalent to the ZGKF, the Zonotopic and
Gaussian Information Filter (ZGIF) is proposed and developed
in this paper, to take advantage of its update step. Similar to the
Information Filter (IF) [10], the informational representation
of the ZGKF is well suited for multi-sensor data fusion and
fault diagnosis, where the update step is formulated as a
straightforward summation of information contributions from
each measurement. Although the ZGIF allows modeling UBB,
large errors still impact the state estimation and need to be
addressed separately. A Fault Detection and Exclusion (FDE)
procedure is then added, generating residuals based on the



Mahalanobis distance between the predicted and updated state
estimates. After the FDE step, consistent error bounds must
be computed, considering both Gaussian and bounded noises.
A new PL method based on both the zonotopic and Gaussian
uncertainties is proposed after some modifications regarding
the reduction of zonotopes.

This paper is organized as follows: Section II presents the
ZGKF principle. Section III presents the proposed ZGIF with
FDE architecture. The reduction method used for zonotopes
is also presented in this section. Section IV presents the case
study and the PL computation. Results on real experiment are
discussed in Section V.

II. MULTI-SENSOR DATA FUSION USING ZONOTOPE AND
GAUSSIAN KALMAN FILTER

A. Zonotopes

Zonotopes are a subset of polytopes that admit convexity
and symmetry properties. A zonotope Z(c,R) can be fully
described by a center point c ∈ Rn and a generator matrix
R ∈ Rn×m as [11] :

Z(c,R) = Z(c, [r1, ..., rm]) = {c +

m∑
i=1

βi.ri,−1 ≤ βi ≤ 1}

(1)
where ri ∈ R are the generator vectors.

Zonotopes are well suited for set-membership techniques
due to their properties that make them efficient for numerical
computations.

One notable property is their closure under the Minkowsky
sum described by the operator ⊕ [8]. For two zonotopes
Z1(c1, R1) and Z2(c2, R2), their sum is given by Z1(c1, R1)⊕
Z1(c2, R2) = Z(c1 + c2, [R1, R2]). Additionally, zonotopes
are closed under linear transformations: L ⊙ Z1(c1, R1) =
Z1(L.c1, L.R1).

Consider a vector x ∼ Z(c,R), the covariation of x denoted
M is defined as [8]:

M = cov(Z(c,R)) = R.RT (2)

The size indicator of a zonotope is given by the Frobenius
radius of x defined as [8] :

∥R∥F = tr(R.RT ) (3)

where tr(.) is the trace of the matrix.
Let b(R) ∈ Rn×n be a box that encloses the zonotope,

Z(c,R) ⊂ Z(c, b(R)), with:

b(R) = diag(|R|1)) (4)

|.| represents the element-wise absolute value, 1 is a ones
vector and diag(.) allows the conversion from a vector to a
diagonal matrix.

It is sometimes necessary to reduce the number of generator
vectors in the generator matrix R to maintain a reasonable

calculation time. The reduction operator, denoted ↓ q, limits
the number of generator vectors to q as described in [8]:

R = [r1, ..., ri, ..., rm], such as ∥ri∥2 ≥ ∥ri+1∥2
if m ≤ q then ↓q R = R

else ↓q R = [R1, b(R2)]

R1 = [r1, r2, ..., rq−n] and R2 = [rq−n+1, rq−n+2, ..., rm].
(5)

It is interesting to note that sorting the vectors of the matrix
R in descending order according to the L2-norm makes it
possible to approximate, by a box, the vectors having the least
influence on the zonotope size. Notice that the L2-norm can
be replaced by the L1 and the infinity norms [12]. This latter
is used in the rest of the paper.

Figure 1 summarizes the bounding box computation idea
for a zonotope of three generator vectors in a two dimensional
space: R ∈ R2×3. The obtained bounding box (in blue) is the
reduced zonotope with two generator vectors.

Fig. 1: The bounding box of the zonotope (in blue). ZO the
zonotope frame.

B. System modeling

Consider a system with stochastic and UBB uncertainties.
The system can be described by the following evolution and
observation models:

xk+1 = f(xk,uk) + Ez,k.vz,k + Eg,k.vg,k (6)
zk = h(xk) + Fz,k.wz,k + Fg,k.wg,k (7)

With :
• x the state vector,
• u the input vector, for example, speed
• z the observation vector,
• Egvg ∼ N(0, Qvg) and Fgwg ∼ N(0, Qwg) the process

and observation noises modeled as white Gaussian noises
with zero means and covariances Qvg = EgE

T
g and

Qwg = FgF
T
g respectively,

• Ezvz ∼ Z(0, Evz) and Fzwz ∼ Z(0, Ewz) the process
and observation bounded noises modeled as zonotopes
with zero means and covariations Qvz = EzE

T
z and

Qwz = FzF
T
z , respectively.

The choice of zonotope shape is justified by the computational
and combination simplicity with the classical KF equations as
it will be detailed in the next section.



C. Zonotopic and Gaussian Kalman Filter

The ZGKF was initially introduced in [8]. The derivation
of the ZGKF is done based on Luenberger observer structure.
Given a nonlinear model, the equations of the extended ZGKF
will be directly given in this section.

The true state vector at instant k can be written as :

xk = xk + gk + sk (8)

With xk the estimated state vector at epoch k, gk ∼ N(0, Pk)
the white Gaussian noise with zero mean and covariance P ,
sk ∼ Z(0, Rk) the zonotope bounded disturbance with zero
mean and generator matrix R.

The ZGKF observer structure leads to the estimated state
vector [8], [13], [14]:

xk+1 = (Ak −GkHk)xk +Bkuk +Gkzk (9)

with generator matrix

Rk+1 = [(Ak −GkHk)R̄k, Ez,−GkFz] (10)

and covariance matrix

Pk+1 = (Ak−GkHk)Pk(Ak−GkHk)
T+Qvg,k+GkQwg,kG

T
k

(11)
R̄k is the generator matrix after a reduction step. Ak =
∂f
∂x |xk,uk

, Bk = ∂f
∂u |xk,uk

and Hk = ∂h
∂x |xk,uk

are the Jacobian
matrices used for linearization. G is the observer gain.

It can be observed from Equation 10 that the matrix R
undergoes an update through concatenation, resulting in an
increase in the number of generator vectors. The reduction
step can be applied to limit the number of generator vectors.

Regarding the observer gain G, in the case of KF, it is
obtained by minimizing the trace of the covariance matrix
which is equivalent to minimizing the mean squared error.
In the case of ZGKF, the optimal gain G is obtained by
minimizing both zonotopic and Gaussian uncertainties. This
can be done by minimizing a multi objective function as
proposed in [8] :

J = (1− η)tr(Mk) + ηtr(Pk) (12)

where M = RRT is the covariation matrix and η ∈ [0, 1].
η adjusts the weighting between the zonotopic and Gaussian
components within the overall solution. The optimal gain is
then:

Gk = AkKk (13)

where
Kk = PMP,kH

T
k S

−1
k (14)

is analog to the classical Kalman gain and

Sk = HPMP,kH
T
k +Qw,k (15)

is the analog to the innovation matrix. PMP is the matrix
that combines the covariance P (equation 11) and covariation
M = RRT (equation 10) associated to the state vector:

PMP,k = (1− η)Mk + ηPk (16)

Qw,k is the covariance and covariation matrix combination of
the observation uncertainty such as Qw,k = (1− η).Qwz,k +
η.Qwg,k.

The ZGKF can be now divided into the prediction and the
update steps.

Prediction step: The predicted state vector xk+1|k =
f(xk|k,uk) has a generator matrix

Rk+1|k = [AkRk|k, Ez,k] (17)

leading to a covariation matrix :

Mk+1|k = AkMk|kA
T
k +Qvz,k . (18)

The predicted covariance matrix is computed in a similar
way to the KF:

Pk+1|k = AkPk|kA
T
k +Qvg,k (19)

As discussed before, the reduction is applied to Rk+1|k to
limit the size of the generator matrix :

Rk+1|k =↓q Rk+1|k (20)

and Mk+1|k = Rk+1|kR
T

k+1|k.
The combination of the Gaussian covariance matrix with

the covariation matrix leads to:

PMPk+1|k = (1− η)Mk+1|k + ηPk+1|k (21)

Update step: The updated state vector for the extended
ZGKF is given by:

xk|k = xk|k−1 +Kk.(zk − h(xk|k−1,uk)) (22)

where the zonotopic Gaussian Kalman gain is:

Kk = PMP,k|k−1H
T
k S

−1
k (23)

Sk = HkPMP,k|k−1H
T
k +Qw,k (24)

The updated generator matrix is:

Rk|k = [(I −KkHk)Rk|k−1,−KkFz,k] (25)

with associated covariation:

Mk|k = (I −KkHk)Mk|k−1(I −KkHk)
T +KkQwz,k

KT
k

(26)
The covariance matrix associated to the Gaussian noise is:

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)
T+KkQwg,k

KT
k (27)

PMP,k|k can be obtained in a similar way to equation 16.
Regarding the multi-objective function, in our scenario and

in absence of prior knowledge about the noises, there is no
justification to favor either the Gaussian or UBB uncertainties.
This corresponds to η being equal to 0.5. The multi-objective
optimization with η = 0.5 is thereby simplified to mono-
objective optimization, where the function J is:

J = tr(M) + tr(P ) (28)

This problem leads to the same prediction and update steps as
for η = 0.5.



III. ROBUST ZONOTOPIC AND GAUSSIAN INFORMATION
FILTER

A. Zonotopic and Gaussian Information Filter

In this section, we introduce and develop the informational
form of the ZGKF, denoted as Zonotopic and Gaussian Infor-
mation Filter (ZGIF). The ZGIF can be derived in a similar
manner to the Information Filter (IF) [10]. The formulation
is specifically well suited for multi-sensor data fusion and
simplifies the management of sensor faults thanks to the
summation of information contributions [15].

The ZGIF is mathematically equivalent to the ZGKF.
However, it operates with an information matrix, Yk, and
information vector, yk, which are provided respectively as:

Yk = PMP
−1
k (29)

yk = PMP
−1
k xk (30)

PMPk is the combination of the covariance and covariation
as in equation 16.

The prediction step of the ZGIF is similar to the ZGKF,
with the addition of a step to transform from the state space
to the informational space. For the update step, PMPk|k can
be simplified to [8]:

PMPk|k = (I −KkHk)PMPk|k−1 (31)

Then,
(I −KkHk) = PMPk|kPMP

−1
k|k−1 (32)

Based on equation 23 and substituting (I − KkHk) with
equation 32, the zonotopic and Gaussian Kalman gain can
be reorganized as follows:

Kk = PMPk|kH
T
k Q

−1
w,k (33)

Using these equations, the derivation of the ZGIF follows
a similar approach to the IF [10]. The updated information
matrix is then:

Yk|k = Yk|k−1 +HT
k Q

−1
w,kHk (34)

Notice that Yk|k includes the Gaussian (P ) and zonotopic parts
(M).

Using equations 32 and 33, the generator and covariation
matrices (equations 25 and 26) can be written based on the
informational form:

Rk|k = [Y −1
k|k Yk|k−1Rk|k−1, −Y −1

k|kH
T
k Q

−1
w,k.Fz,k] (35)

Pk|k = Y −1
k|k Yk|k−1Pk|k−1Yk|k−1Y

−1
k|k

+ Y −1
k|kH

T
k Q

−1
w,kQwg,k

Q−1
w,kHkY

−1
k|k

(36)

As in the case of the IF, the information vector for linear
system is obtained as

yk|k = yk|k−1 +HT
k Q

−1
w,kzk (37)

Given the nonlinear system in section II-B, the information
vector becomes

yk|k = yk|k−1 +HT
k Q

−1
w,k(zk − h(xk|k−1) +Hxk|k−1). (38)

In the case of multi-sensor data fusion with uncorrelated
measurement noises, and following a similar approach to the
IF, the information matrix and information vector can be
modeled as:

Yk|k = Yk|k−1 +

N∑
j=1

Ijk (39)

yk|k = yk|k−1 +

N∑
j=1

ijk (40)

where N is the number of measurements, Ij,k and ij,k are the
information contributions of observation zj,k:

Ijk = HT
j,kQ

−1
w,jHj,k (41)

ijk = HT
j,kQ

−1
w,j(zj,k − hj(xk|k−1) +Hj,k.xk|k−1) (42)

Equations 39 and 40 distribute the computation of Ij,k and
ij,k efficiently thanks to the summation component. Equation
39 is then used for the computation of Rk|k and Pk|k.

B. PCA based reduction step

The reduction step allows to limit the number of columns
of the generator matrix which increases at each step due to
the concatenation in equations 17 and 25. This reduction is
essential for computational efficiency.

The reduction step can be seen as an over-approximation of
the original zonotope by another zonotope Zred of a smaller
order. It is crucial that this over-approximation is as close-
fitting as possible to ensure a high-quality state estimation
and accurate representation of associated uncertainty values
[16]. The classical reduction method presented in equation
5 involves a bounding box that is not oriented with the
zonotope, as illustrated in figure 1. This reduction can lead to
unnecessary large box. Furthermore, Zred does not hold any
information about the original zonotope orientation. To address
this issue, in this paper, a principal components analysis (PCA)
based oriented bounding box is applied as proposed in [12],
to replace b(R2) in equation 5.

Consider a zonotope Z of dimension n and a generator
matrix R of m generator vectors such as m > n. The PCA
based over-approximation of Z, noted as bpca(R), consists in
finding a matrix that transforms Z into a multidimensional
oriented box [12]. This transformation matrix is obtained
by finding the n most important directions by applying the
singular value decomposition (SVD) on the matrix X obtained
from the generator matrix R as follows:

L = [R,−R] (43)

X = LLT (44)

The transformation matrix U is obtained as:

USV T = svd(X) (45)

bpca(R) is then

bpca(R) = U.b(UT .R) (46)



where b(.) is given in equation 4.
Figure 2 summarizes the PCA zonotope bounding box

process. This PCA bounding box is used to perform the
reduction during the ZGIF steps. Also, it will be used for
bounding the errors as it will be detailed in section IV-B.

Fig. 2: The PCA zonotope reduction process steps. Step 1 to 2:
the bounding box obtained from the most important directions.
Step 2 to 3: the oriented bounding box of the zonotope.

C. Fault detection and exclusion

Even if the ZGIF can handle unknown but bounded errors,
large errors can significantly impact the filter’s state estima-
tion. Therefore, we propose incorporating an FDE step to
remove these errors from the fusion procedure.

The FDE architecture is based on a fault detection step using
a global residual computed from the Mahalanobis distance
between the predicted and the updated state vectors:

rk = (xk|k − xk|k−1)Yk|k(xk|k − xk|k−1)
T (47)

For the computation of r, all the measurements in the system
are taken into account and Yk|k is given in equation 39.
Since this residual incorporates both Gaussian and zonotope
modeling, determining a theoretical threshold value based on
a false alarm probability is not straightforward. Hence, for this
work, the residual is compared to a threshold thglob defined
in an empirical way.

If a fault is detected using the global residual r, a bank of
ZGIF is then employed to compute local residuals rj , where
each ZGIF in the bank uses only one observation zj,k:

rj,k = (xj,k|k − xk|k−1)Yj,k|k(xj,k|k − xk|k−1)
T (48)

xj,k|k and Yj,k|k are obtained from the ZGIF filter which uses
only the observation zj,k.

The residuals rj are then compared to a local defined
threshold. If rj exceeds the threshold, the faulty measurement
zj is excluded by subtracting its information contribution from
equations 39 and 40. The new value of Yk|k is used to update
the covariance and generator matrices (equation 35 and 36).
It is important to note that Rk|k and Pk|k are only computed
when no more faults are detected in the system.

IV. CASE STUDY

A. Localization of intelligent vehicles

Let’s consider the localization of an intelligent vehicle
equipped with wheel-speed sensors, a yaw-rate gyro, a GNSS
receiver for pseudo-range measurements (with the antenna
located at frame RG, see figure 3), an intelligent camera for
lane-marking detection, and an HD map. The localization task
is defined relative to a local ENU frame (East, North, Up)
denoted RO. The vehicle’s pose is defined in the body frame
positioned at the midpoint of the rear wheel axis RB (figure
3).

Fig. 3: RB , RG and RC are the vehicle, GNSS and camera
frames, respectively. The camera detects a lane marking [AB].

The state vector at epoch k in a tightly coupled architecture
is represented as:

xk = [x, y, z, θ, cdt, cḋt]k (49)

In addition to the vehicle’s position and heading, it includes
the receiver clock offset cdt and clock drift cḋt with respect
to GPS time [17].

The GNSS observation model is given by :

zj = dj + cdt+ Fz.wz + Fg.wg (50)

where dj is the Euclidean distance between the GNSS receiver
and the satellite j as given in [18]. In this work, we consider
GPS and Galileo constellations. The noise associated with each
observation is modeled using Gaussian and bounded noises, as
detailed in section II-B. We leverage this modeling to enhance
the integrity of the state estimation.

Another observation model based on the smart camera is
used to improve localization in the cross-track direction by
detecting lane markings. The camera can simultaneously detect
up to four lane markings (two on each side) and provides a
lateral distance (C0). C0 corresponds to the distance between
the frame RC and the intersecting point L on the map-matched
segment [AB] (figure 3).



The observation model associated to the camera is then :

zcam = C0 + Fz.wz + Fg.wg (51)

where the lateral distance C0 is given as [19]:

C0 =
(l sin θ + y − yA)xAB − (l cos θ + x− xA)yAB

xAB cos θ + yAB sin θ
.

(52)
l is the distance between RB and RC . More details can be
found in [20]. The noises associated to the camera measure-
ments are also modeled as Gaussian and bounded errors. In
this case, the zonotope bounded noises are well-suited for
addressing camera calibration issues.

For state estimation, the ZGIF with FDE proposed in section
III is used. The prediction step uses the odometer data as input
and models the noises as Gaussian and zonotopic bounded
noises. The zonotopic noises are specifically adapted to ac-
count for gyro biases. The GNSS and camera measurements
are used in the update step by computing their information
contributions. Camera measurements are not always available,
as the camera cannot detect markings on highly curved roads.

If a fault is detected using the global residuals (equation
47), a set of residuals rj is computed as in equation 48 for
each measurement (pseudo-range or camera). If rj exceeds
the threshold, the corresponding measurement is excluded by
subtracting its information contribution from the main ZGIF
filter, which uses all the observations.

B. Protection Level computation

In addition to achieving required accuracy, ensuring the
integrity of localization of intelligent vehicles requires the
computation of a consistent confidence interval. Originally
developed for aeronautical applications, external localization
integrity provides confidence in GNSS navigation solutions
[9]. It includes a Target Integrity Risk (TIR), indicating the
maximum probability of the Position Error (PE) exceeding
a limit without alerting the user. This limit is known as the
Protection Level (PL) :

p(PE > PL) ≤ TIR. (53)

In the context of intelligent vehicles, the PL must take into
account all available sensors and potential errors that may arise
in urban environments.

In this paper, the computation of PL considers the ZGIF
modeling, incorporating both Gaussian and zonotopic compo-
nents. The purpose is to take advantage of stochastic and set-
membership modeling to compute a consistent PL that avoids
underestimation resulting from undetected errors after the FDE
step, non Gaussian distributions, or model linearization. The
confidence box obtained from the ZGIF for a given confidence
level α verifies:

p(er ∈ [−PL,PL]) ≥ 1− α (54)

er = xk−xk|k is the difference between the true state and the
estimated state (obtained from the ZGIF). As demonstrated in
[8], the inequality relation results from the zonotope part s ∼

Z(0, R) that must verify p(s ∈ Z(0, R)) = 1. The Gaussian
part bounds verifies the equality 1− α. This equation can be
written in an equivalent manner to equation 53:

p(|er|> PL) ≤ α (55)

In [8], the authors determine the uncertainty region by
using the bounding box presented in equation 4. However, the
obtained bounding box is not aligned with the zonotope. In this
paper, we propose to use the PCA bounding box, as defined in
equation 46. Indeed, for intelligent vehicles, ensuring proper
orientation of the bounding box is crucial when computing the
PL. Specifically, for this case, it is essential to bound errors
in both the along-track (AT) and cross-track (CT) directions.
The protection level can be divided to:

PLxT = PLxT,g + PLxT,z (56)

The index xT refers to the AT or CT direction, PLxT,g is
associated to the Gaussian part with TIR = α and PLxT,z is
associated to the zonotope part.

The computation of PLg in the AT and CT directions is
done in a similar manner to [20], by projecting the eigen-
vectors of the covariance Pk|k into the AT and CT directions
(based on the orientation of the vehicle). The same idea is
applied to the zonotope part (PLz) where the eigenvectors
[U1, U2]

T are directly obtained from the PCA step (equation
46). Therefore,

PLAT,z = max(∥r1∥2 |U1,AT |, ∥r2∥2 |U2,AT |) (57)
PLCT,z = max(∥r1∥2 |U1,CT |, ∥r2∥2 |U2,CT |) (58)

[r1, r2] is the generator matrix associated to the non
oriented bounding box b(UTR) (figure 2 step 2) and
[U1,AT , U1,CT ]

T , [U2,AT , U2,CT ]
T are the eigenvectors in

the (AT, CT) frame.

V. EXPERIMENTAL RESULTS

In this section, the proposed approach is evaluated using
experimental data acquired from a Zoe vehicle navigating in
a suburban environment over a trajectory of approximately 6
km, as illustrated in figure 4.

The vehicle was equipped with a Septentrio AsteRx SB PRO
Connect for Galileo and GPS pseudorange measurements,
wheel-speed sensors, a yaw-rate gyro, a Mobileye camera
for lane marking detection, a SPAN CPT for ground truth,
and an HD map. Acquisitions were conducted at 50Hz for
dead reckoning, 3.5Hz for the camera, and 1Hz for GNSS
measurements. The localization is delivered at 50Hz.

The performance of the ZGIF in terms of accuracy and
integrity is evaluated both with and without the FDE proce-
dure. Figure 5 illustrates the errors of the ZGIF in the AT
and CT directions, before and after the FDE step. A notable
improvement in localization accuracy can be seen after the
FDE step, especially around t = 0.5 × 104, where camera
faults are detected. Figure 6 presents the residual used for
fault detection, while figure 7 shows the residuals used to
exclude camera faults. The faults mainly arise in camera



Fig. 4: Experimental trajectory (in blue) in Compiègne.

measurements, which may be prone to association issues with
the HD map or may experience poor quality detection. For
GNSS, fewer measurements are excluded. For example, a GPS
pseudorange is excluded at the beginning of the trajectory
due to low satellite elevation. Another GPS measurement is
excluded around t = 1.8 × 104 where the vehicle navigates
around the university campus, encountering tall buildings that
create a challenging GNSS environment.
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Fig. 5: Errors in the AT and CT directions before FDE (in
blue) and after FDE (in red).

Table I presents the performance evaluation of the ZGIF
regarding integrity and accuracy, including mean error and
absolute error in both the AT and CT directions. It also
provides a comparison to the classical IF (informational form
of the KF).

The ZGIF and IF exhibit similar accuracy behaviors,
with a slight improvement observed for the ZGIF. However,
the ZGIF demonstrates superior integrity performance for a
TIR = 10−3. Without FDE, the ZGIF successfully verifies
the integrity in the AT direction, with IR = p(PE >
PL) = 0 < 10−3, whereas the IF fails in this aspect. In
the CT direction, while the ZGIF does not verify integrity, it
demonstrates superior performance compared to the IF, that
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Fig. 7: Camera residuals for fault exclusion (first measurement
in blue, second in red). Threshold in purple.

shows high sensitivity to camera faults, resulting in an IR
value significantly deviating from 10−3. After the FDE step,
the ZGIF meets the desired TIR in the AT and CT directions,
while the IF does not. The interesting performance of the ZGIF
originates from the modeling step that takes into account both
Gaussian and bounded error.

Figure 8 shows the errors and PLs in the AT and CT
directions. The PLs present mean values of 2.8m in the AT
direction and 1.61 m in the CT direction. Compared to the IF,
these values increased by 0.9m and 0.6m in the AT and CT
directions, respectively. This increase is still acceptable. While
the ZGIF enhances integrity, it manages to avoid the pessimism
often associated with purely set-membership approaches. In

ZGIF no FDE ZGIF FDE IF no FDE IF FDE

|AT error| (m) 0.61 0.60 0.63 0.60

|CT error| (m) 0.27 0.24 0.27 0.24

|Mean error| (m) 0.72 0.69 0.74 0.70

IRATIRATIRAT (×10−3) 0 0 6.79 6.51

IRCTIRCTIRCT (×10−3) 7.85 0.54 37.9 15.1

TABLE I: Errors and Integrity Risk (IR) (per sample) for IF
and ZGIF in the AT and CT directions (TIR = 10−3). In
green, integrity is verified.



the CT direction, the errors and PLs are influenced by the
camera when detecting the markings, leading to a decrease
in these values. It is worth noting that the camera does not
influence the AT direction.

Regarding the choice of the zonotope reduction parameter,
we opted for q = 800 to limit computational cost. However,
selecting a smaller value of q would impact accuracy and lead
to pessimistic PL values. For instance, without the FDE step,
choosing q = 25 results in PLs with mean values of 4.57m in
the AT direction and 2.91m in the CT direction. Furthermore,
the ZGIF shows an increase in IR compared to q = 800, with
values around 11× 10−3 in both AT and CT directions. This
result is mainly attributed to a decrease in accuracy, where the
mean error increases from 0.74m with q = 800 to 0.96m with
q = 25.
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Fig. 8: Errors and PLs for ZGIF and EIF with FDE.

VI. CONCLUSION

In this paper, a novel robust ZGIF for multi-sensor data
fusion and PL calculation was proposed. The filter exhibits
the ability to handle random noise and set membership uncer-
tainties. To enhance filter robustness and ensure high integrity
localization, an FDE architecture is proposed. This step takes
advantage of the ZGIF update step, which is modeled as a
summation of information contributions. Experimental results
conducted on an automated vehicle and using raw sensor
data demonstrate the effectiveness of the proposed method
in improving integrity compared to traditional KF without an
overestimation of the uncertainty values.

The filter performance is highly dependent on filter parame-
ters, e.g. noises covariance and covariation, detection threshold
and reduction parameter. Future work will focus on parameter
tuning based on data driven approach.
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