
HAL Id: hal-04683106
https://hal.science/hal-04683106

Submitted on 1 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OpenSoT: a Software Tool for Advanced Whole-Body
Control

Enrico Mingo Hoffman

To cite this version:
Enrico Mingo Hoffman. OpenSoT: a Software Tool for Advanced Whole-Body Control. 2024. �hal-
04683106�

https://hal.science/hal-04683106
https://hal.archives-ouvertes.fr

OpenSoT: a Software Tool for
Advanced Whole-Body Control
Enrico Mingo Hoffman
Inria Nancy Grand-Est

OpenSoT

2024 IEEE 20th International Conference on Automation Science and Engineering
Workshop on Human Movement Understanding, Whole-Body Control, and Human-Robot Interfaces

Whole-Body Control

● Defines a set of low-dimensional rules, e.g. equilibrium, self collision avoidance, …
● Guarantees the correct execution of single task and/or simultaneous multiple tasks,

e.g., reaching different objects simultaneously with different end-effectors
● Exploits the full capabilities of the entire body of redundant, floating-based robots in

compliant multi-contact interaction with the environment

IEEE-RAS Technical Committee for Whole-Body Control

ieeewbc.org

http://ieeewbc.org

Open Stack of Tasks (OpenSoT)

OpenSoT is a C++ library designed to streamline the process of writing and solving QP
and LP tailored to whole-body control and robotic applications:

● focus on instantaneous (reactive) whole-body control problems
● modular, scalable, and easy-to-use
● designed for research, educational, and industrial applications

OpenSoT

https://github.com/ADVRHumanoids/OpenSo
T

https://github.com/ADVRHumanoids/OpenSoT
https://github.com/ADVRHumanoids/OpenSoT

OpenSoT

Hierarchical Cartesian Impedance Control Whole-Body Inverse Kinematics + Statics

Whole-Body Inverse KinematicsWhole-Body Inverse Kinematics

http://www.youtube.com/watch?v=Bzdun4PRXMs&t=119
http://www.youtube.com/watch?v=kbb2wasXGLE&t=108
http://www.youtube.com/watch?v=jE_hSmz8bf0
http://www.youtube.com/watch?v=cGRRnL1Mfzs&t=14

Features

● Robot-Agnostic: support to generic fixed-/floating-base systems

● Efficient: based on Eigen for fast and real-time computation

● Ready & Easy to Use: out-of-the-box library of Tasks and Constraints to create

complex control problems, efficiently solvable using dedicated Solvers

● Easy to Extend: C++ API to implement new Tasks, Constraints, and Solvers

https://eigen.tuxfamily.org/index.php?title=Main_Page

OpenSoT Development

2019-2023

OpenSoT v3.0

Closed sourced, development continued
under national & private projects, and
collaborations.

2024

OpenSoT v4.0

Major refactor, Python bindings, and
open-sourced again. Development under the
euROBIN EU Project.

2014-2015

OpenSoT v1.0

Development started with the WALK-MAN
EU Project to participate to the DARPA
Robotics Challenge (DRC). Mainly IK
engine w/ priorities.

2016-2018

OpenSoT v2.0

Porting to Eigen, ID formulation, new
solvers and tasks. Development under the
CENTAURO and COGIMON EU Projects.

Actual community:

https://gauss-robotics.de/

Introduction

OpenSoT provides an API to setup and solve generic Least-Squares like optimization
problems in the form:

Tasks to be solved
Constraints to fulfill

OpenSoT Concepts

● Tasks
● Constraints
● Stacks

● Solvers
● Front-Ends
● Back-Ends

● Variables
● Utilities

Tasks

Task
Matrix

Task
Weight

Task
Vector

Linear
Term

A Task is an atomic element denoted by:

which defines the scalar cost function:

Sum of Tasks

Multiple tasks can be summed together to form complex cost functions, for
instance:

which defines the scalar cost function:

a weighted sum of cost functions associated to each task.

Constraints

A Constraint is an atomic element denoted by:

which defines the inequality constraint: ,

or the equality constraint:

Constraint
Matrix

Lower
Bounds

Upper
Bounds

Stacks

A Stack consists in one or more tasks and constraints, and their relations.

Tasks can be in soft or hard priority relations:

Task1 Task2

Task3

Task4

low

high

relative

In hard priorities,
low level tasks
can not change
optimality of high
level tasks.

In soft priorities,
tasks are at same
level, optimality can
change according
to relative weights.

Implemented
through sum of
tasks.

Implemented
through solver
strategies.

Stacks

Example of Stack:

Stacks

Example of Stack:
Joint position

limits
Joint velocity

limits

Postural
Task

Left and Right
Cartesian

Tasks

Soft
Priority

Hard
Priority

Constraints

Solvers

A solver implements a mathematical method to resolve a Stack, i.e. one or more
QP/LP problems.

IMPORTANT: Solvers implements hard priorities between tasks.

Transform
the Stack
into QP(s)

front-end

Solve the
QP(s)

back-end

Solver

Stack

Solvers

Example: inequality Hierarchical QP (iHQP) [1]

[1] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task,”
IEEE Transactions on Robotics, vol. 27, no. 4, pp. 785–792, 2011.

1st priority is resolved in 1st QP 2nd priority is resolved in 2nd QP,
constrained by solution of 1st QP

solution

Variables

An affine variable is defined as:

which can be used to:

● select variables in complex problems:

● derive complex variables:

API (C++)

● Tasks/Constraints:

○ base classes to write new components

○ library of out-of-the-box components (velocity/acceleration/force/wrench formulations)

● Variables:

○ API to simplify the writing of complex problems, i.e. floating-base ID

● Operators:

○ creation of stacks using mathematical operators applied to tasks and constraints

● Solvers:

○ base classes to write new solvers and front-/back-ends

○ library of out-of-the-box front-ends and back-ends with SoA QP/LP solvers

Library of Tasks, Constraints, and Solvers

* Mostly used as equality constraints

Operators (Math of Tasks)

Example: Whole-Body Inverse Dynamics (Python)

from xbot2_interface import pyxbot2_interface as xbi
from pyopensot.tasks.acceleration import Cartesian, CoM, DynamicFeasibility, Postural
from pyopensot.constraints.acceleration import JointLimits, VelocityLimits
from pyopensot.constraints.force import FrictionCone
import pyopensot as pysot

...
model = xbi.ModelInterface2(urdf)
...
model.setJointPosition(q)
model.setJointVelocity(dq)
model.update()

● Imports, model creation and update

Example: Whole-Body Inverse Dynamics (Python)

contact_frames = ["left_foot_upper_right", "left_foot_lower_right",
 "left_foot_upper_left", "left_foot_lower_left",

 "right_foot_upper_right", "right_foot_lower_right",
 "right_foot_upper_left", "right_foot_lower_left"]

variables_vec = dict()
variables_vec["qddot"] = model.nv
for contact_frame in contact_frames:
 variables_vec[contact_frame] = 3
variables = pysot.OptvarHelper(variables_vec)

● Variables creation

Example: Whole-Body Inverse Dynamics (Python)

Tasks
com = CoM(model, variables.getVariable("qddot"))
...
base = Cartesian("base", model, "world", "base_link", variables.getVariable("qddot"))
...

Constraints
force_variables = list()
for c in contact_frames:
 force_variables.append(variables.getVariable(c))
fb = DynamicFeasibility("floating_base_dynamics", model, variables.getVariable("qddot"),
force_variables, contact_frames)
...
jlims = JointLimits(model, variables.getVariable("qddot"), qmax, qmin, dqmax, dt)
...

● Tasks & Constraints creation

Example: Whole-Body Inverse Dynamics (Python)

Creates 1st priority level
lv1 = (0.1*com + 0.1*(base%[3, 4, 5]))
for i in range(len(cartesian_contact_tasks_frames)):
 lv1 = lv1 + 10.*contact_tasks[i]

Creates Stack
stack = (lv1/posture) << fb << jlims << VelocityLimits(model,
variables.getVariable("qddot"), dqmax, dt)
...

Creates Solver
solver = pysot.iHQP(stack, be_solver=OpenSoT::solvers::solver_back_ends::qpOASES)

● Stack & Solver creation

Example: Whole-Body Inverse Dynamics (Python)

while ok():
model.setJointPosition(q)
model.setJointVelocity(dq)
model.update()

com.setReference(com_ref)
...
stack.update()

x = solver.solve()
 qddot= variables.getVariable("qddot").getValue(x)
 ...

● Control loop

Example: Whole-Body Inverse Dynamics (Python)

https://www.youtube.com/watch?v=qs6D17cXTxw&t=8s
http://www.youtube.com/watch?v=qs6D17cXTxw

Tele-Operation w/ Self-Collision Avoidance

http://www.youtube.com/watch?v=ujg-4nb-vkM

Conclusions

● OpenSoT is a mature library for Whole-Body Control based on optimization
● Add-ons:

○ CartesI/O for high-level interfaces based on ROS (ROS2 is coming…)
○ Visual Servoing based on Visp
○ …

● Try it on Docker!

https://github.com/hucebot/opensot_docker

https://github.com/hucebot/opensot_docker

Thank You!

enrico.mingo-hoffman@inria.fr

2024 IEEE 20th International Conference on Automation Science and Engineering
Workshop on Human Movement Understanding, Whole-Body Control, and Human-Robot Interfaces

