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Abstract. CAM-based methods are widely-used post-hoc interpretabil-
ity method that produce a saliency map to explain the decision of an
image classification model. The saliency map highlights the important
areas of the image relevant to the prediction. In this paper, we show that
most of these methods can incorrectly attribute an important score to
parts of the image that the model cannot see. We show that this phe-
nomenon occurs both theoretically and experimentally. On the theory
side, we analyze the behavior of GradCAM on a simple masked CNN
model at initialization. Experimentally, we train a VGG-like model con-
strained to not use the lower part of the image and nevertheless observe
positive scores in the unseen part of the image. This behavior is evaluated
quantitatively on two new datasets. We believe that this is problematic,
potentially leading to mis-interpretation of the model’s behavior.

Keywords: Interpretability · Computer Vision · Convolutional Neural
Networks · Class Activation Maps.

1 Introduction

The recent advances of machine learning pervade all applications, including the
most critical. However, deep learning models intrinsically possess many param-
eters, have complicated architectures, and rely on many non-linear operations,
preventing the users to get a good grasp of the rationale behind particular deci-
sions. These models are often called “black boxes” for these reasons [1]. In this
respect, there is a growing need for interpretability of the models that are used,
which gave birth to the field of eXplainable AI (XAI). When the model to ex-
plain is already trained, our main topic of interest, this is often called post-hoc
interpretability [2, 3, 4].

In the specific case of image classification, the explanations provided to the user
often take the form of a saliency map superimposed to the original image, for
instance simply looking at the gradient with respect to the input of the network
[5]. The message is simple: the areas highlighted by the saliency maps are used
by the network for the prediction. When the first layers of the network are
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convolutional layers [6], one can take advantage of this and look at the activations
of the filters corresponding to the class prediction that we are trying to explain.
Indeed, these first layers act like a bank of filters on the input image, and the
degree to which they are activated gives us information on the behavior of the
network. Thus the first layers possess a certain degree of interpretability, even
though it can be challenging to aggregate the information coming from different
filters. In any case, the next layers generally consist in a fully-connected neural
network, thus suffering from the same caveats as other models. In addition, this
second part of the network is equally important for the prediction, but is not
taken into account in the explanations we provide if we simply look at activation
values.

To solve this problem, a natural idea is to weight each activation map depending
on how the second part of the network uses it. In the case of a single additional
layer, this is called class activation maps [CAM, 7]. The methodology was quickly
generalized by [8], using the average gradient values of the subsequent layers
instead, giving rise to GradCAM, arguably one of the most popular posthoc
interpretability method for CNNs. Many extensions are proposed in the following
years, we list them in Appendix A and refer to [9] for a recent survey. Without
being too technical, for all these methods, the explanations provided consist in
a weighted average of the activation maps.

A close inspection of each of these methods reveals that the coefficient associ-
ated to each individual map is global, in the sense that the same coefficient is
applied to the whole map. The main message of this paper is that this can be
problematic, since different parts of the activation map may be used differently
by the subsequent layers. Worse, some parts may even be unused by the
subsequent network and still highlighted in the final explanation (see
Figure 1). Thus we believe that, while giving apparently more-than-satisfying
results in practice, CAM-based methods should be used with caution, keeping
in mind that some parts of the image may be highlighted whereas they are not
even seen by the network.

1.1 Related work

This paper is inspired by a line of recent works concerned with the reliability of
saliency maps claiming that solely relying on the visual explanation provided by a
saliency map can be misleading [10, 11]. [11] introduces a method for altering the
input data with imperceptible perturbations which do not change the predicted
label, yet generating different saliency maps. On the other hand, [10] shows that
numerous saliency methods generate incorrect scores for the input features when
the model prediction is invariant to translation of the input data by a constant.
It is important to note that neither of these studies specifically challenges the
reliability of CAM-based methods.

This perspective on saliency maps is supported by the work of [12], which intro-
duces a randomization-based sanity check indicating that some existing saliency
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Fig. 1: Example of GradCAM failure on a VGG-like model trained on the Im-
ageNet dataset (masked rVGGs, see Figure 4). Left: original image; Middle:
GradCAM explanation before up-sampling; Right: original image with Grad-
CAM explanation overlayed as a heatmap. The network does not have access to
the red part of the image, but GradCAM does highlight some pixels in
this area.

methods are independent of both the model and the data. We note that Grad-
CAM passes the sanity checks proposed by [12]. [13], proposing HiResCAM,
are less positive regarding GradCAM pointing out, as we do, that the use of a
global coefficient can produce positive explanations where there should not be.
Compared to our work, they provide few theoretical explanations and perform
experiments on model which are not using parts of the input image. Posthoc
interpretability methods in the image realm (not specific to CNN architectures)
have been investigated by other works such as [14] which looked into LIME for
images [15].

Taking another angle, [16] directly attacks the reliability of GradCAM saliency
maps by adversarial model manipulation, i.e., fine-tuning a model with the pur-
pose of making GradCAM saliency maps unreliable. This is achieved by using
a specific loss function tailored to this effect. Our approach is different, as we
simply force a strong form of sparsity in the model’s parameters, not targeting
a specific interpretability method.

1.2 Organization of the paper

We start by looking at GradCAM in Section 2. For a given simple CNN archi-
tecture described in Section 2.1, we derive closed-form expressions for its expla-
nations in Section 2.2. Leveraging these expressions, we prove in Section 2.3 that
GradCAM explanations are positive at initialization, even though a large part
of the weights are set to zero.

In Section 3, we demonstrate experimentally that this phenomenon remains true
after training. To this extent, we proceed in two steps. First, we train to a
reasonable accuracy a VGG-like model on ImageNet [17] which does not see
the lower part of input images, described in Section 3.1. Then, we create two
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Fig. 2: The model used for the derivation of feature importance scores, rCNNs.
The number of filters in the convolutional layer C is V P N‹. The size of the
max pooling filters k1 P N‹ is implicitly defined such that ph1, w1q “ 1

k1 ph,wq in
N‹. The fully-connected neural network F p¨q takes C1 as input and processes
it through L layers with ReLU activation functions to produce a raw score yc,
without converting this score into a “probability.”

datasets (Section 3.2) consisting in superposition of images of the same class.
We show experimentally in Section 3.3 that CAM-based methods applied
to this model wrongly highlights a large portion of the lower part of
the images, misleading the user by showing that the lower part is used for the
prediction whereas, by construction it is not. The code for training our model as
well as the datasets are provided as supplementary material. Additionally, the
code for all experiments is available online.4 We conclude in Section 4.

2 Mathematical description

The model used for the theoretical analysis done in Section 2.3 is described in
Section 2.1, the derivation of GradCAM coefficients in Section 2.2.

2.1 A simple CNN

Let us describe mathematically the model we consider, denoted by rCNNs and
depicted in Figure 2. On a high-level, rCNNs is a pL ` 1q-layers network,
consisting in a single convolution / max pooling layer, followed by a L-layers
fully-connected neural network with ReLU activations. Thus the case L “ 1
corresponds to a single convolutional / max pooling layer followed by a linear
transformation.

4 https://github.com/MagamedT/cam-can-see-through-walls

https://github.com/MagamedT/cam-can-see-through-walls
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More precisely, we consider a grayscale image ξ P r0, 1sHˆW as input. For in-
stance, if we consider the MNIST dataset [18], pH,W q “ p28, 28q. We note that
our analysis can be easily extended to RBG images. The convolutional layer C p¨q

consists of V filters F “ pF1, . . . ,FV q, represented as a collection of V matrices
of shape k ˆ k.

Formally, the output of the convolution step, A :“ C pξq P RV ˆhˆw, is given by:

@v P rV s, @pi, jq P rhs ˆ rws, A
pvq

i,j “

k
ÿ

p,q“1

ξi`p´1,j`q´1F
pvq
p,q , (1)

where ph,wq “ pH ´ k ` 1,W ´ k ` 1q.

In practice, the filter weights are initialized randomly, typically i.i.d. uniform
or Gaussian with proper scaling. There are two main trends on how to scale
the variance, either Glorot [19] (also called Xavier), or He [20]. The later with
uniform distribution is default for the CNN layer used in PyTorch. However, we
assume from now on i.i.d. Gaussian N

`

0, τ2
˘

initialization in our analysis for
mathematical convenience.

After the convolution step, we apply a ReLU non-linearity, denoted by σ :“
maxp0, ¨q. We define the rectified activation maps B :“ σ pAq P RV ˆhˆw, where
σ is applied coordinate-wise. Next, we consider a down-sampling layer, here a
(k1 ˆ k1) max pooling M p¨q. One can see that the output of the max pooling,
C :“ M pBq P RV ˆh1

ˆw1

, is given by:

@v P rV s, @pi1, j1q P rh1sˆrw1s, C
pvq

i1,j1 “ max
´

B
pvq

k1pi1´1q`1:k1i1,k1pj1´1q`1:k1j1

¯

, (2)

where ph1, w1q “ 1
k1 ph,wq. Note that we assume k1 to divide h and w for simplicity.

Finally, let us describe recursively the fully-connected part of rCNNs, denoted
by F p¨q:

F : RV h1w1

Ñ R
C1 ÞÝÑ hL

`

C1
˘

with

#

h0 pxq “ x,

hℓ pxq “ Wpℓq σ phℓ´1 pxqq for ℓ P rLs,
(3)

where Wpℓq P Rdℓˆdℓ´1 is a weight matrix connecting layer pℓ ´ 1q and ℓ with
ℓ P rLs and dℓ the size of layer ℓ. Note that we set d0 “ V h1w1, and dL “ 1,
since we see the output of our model as the un-normalized logit associated to
a given class of a prediction problem. We also, denote by apℓq :“ hℓ pC1q the
non-rectified activation of layer ℓ and rpℓq :“ σ

`

apℓq
˘

its rectified counterpart.

Summary. The model we consider can be described concisely as F pM pσ pC p¨qqqq.
As explained in introduction, given the nature of CAM-based explanations, it is
convenient to split rCNNs in two functions f and g for the computations
of the next Section 2.2. More precisely, we write

rCNNs : r0, 1sHˆW Ñ R
ξ ÞÝÑ f ˝ gpξq

with

#

gpξq :“ σ pC pξqq

fpCq :“ F pM pCqq .
(4)
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Recall that we refer to Figure 2 for an illustration.

2.2 Closed-form expression

The original idea of CAM [7] was limited to computing the saliency map as
a linear combination of the feature maps in the last convolutional layer when
L “ 1. Later, GradCAM [8] removed the architecture constraints by computing
the average gradient of each feature map with respect to B. In our notation, we
have:

Definition 1 (GradCAM). For an input ξ and model rCNNs, the GradCAM
feature scores are given by

rGCs :“ σ

˜

V
ÿ

v“1

αvB
pvq

¸

P Rhˆw
` ,

where each αv :“ GAP p∇BpvqfpBqq P R. Here, GAP denotes the global average
pooling, that is, the average of all values, and σ the ReLU as before.

Definition 1 is of course to be taken coordinate-wise. We note that, in practice,
rGCs is up-sampled and normalized to produce a saliency map with the same
shape as the input image. To be more precise, what we define as rGCs is the
middle panel of Figure 1, whereas the final user will nearly always visualize the
right panel. The most important thing to notice in Definition 1 is that α is a
global coefficient.

We now show why this can be an issue. Looking at Definition 1, whenever the
underlying model is not too complicated, one can actually hope to derive a
closed-form expression for the feature importance scores of rGCs as a function
of the model’s parameters. This is achieved by:

Proposition 1 (α coefficients for GradCAM, V “ 1). Recall that the a
vectors denote the non-rectified activation and W the weights of the linear part
of rCNNs. Then, for input ξ, the rGCs coefficient α is given by

α “
1

hw

h1,w1

ÿ

i,j“1

d1,...,dL´1
ÿ

i1,...,iL´1“1

1
a

p1q

i1
,...,a

pL´1q

iL´1
ą0

L
ź

p“1

pW
ppq

ip,ip´1
qJ ,

where we set i0 :“ pi, jq and iL “ 1.

From Proposition 1, we immediately deduce a closed-form expression for Grad-
CAM explanations. We note that Proposition 1 can be readily extended to an
arbitrary number of filters V ą 1, in which case the a and W should be inter-
preted as corresponding to the relevant v P rV s.

The proof of Proposition 1 can be found in Appendix C. In Appendix A, we
describe mathematically several other CAM-based methods in the setting of
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Fig. 3: Illustration of Theorem 1 on an MNIST [18] digit (left panel). We set to
zero the lower part of W for rCNNs, initialize the filter values and remaining
weights to i.i.d. N p0, 1q, and run GradCAM to get a saliency map (right panel).
Even though our network does not see the red part of the image, GradCAM
does highlight some pixels in this area, as predicted by Theorem 1.

rCNNs: XGradCAM [21], GradCAM++ [22], HiResCAM [13], ScoreCAM [23]
and AblationCAM [24]. A close inspection of these definitions reveals that they
also use global weighting coefficients applied to the corresponding activation
maps, with the notable exception of HiResCAM.

2.3 Theoretical analysis

Leveraging the results of Section 2.2, we are able to describe precisely the be-
havior of GradCAM at initialization for rCNNs, specifically when the classifier
part of our model comprises a single layer (L “ 1). This analysis is justified
by existing works [25, 26, 27, 28, 29] showing that, in certain regimes, neural
networks stay “near initialization” during training. As announced, we conduct
this analysis when the network does not have access to the lower part of the
image. Our main result is:

Theorem 1 (Expected GradCAM scores, L “ 1, masked rCNNs). Let
ξ P r0, 1sHˆW be an input image. Let m :“ ξi:i`k´1,j:j`k´1 be the patch of ξ
corresponding to index pi, jq P rhsˆrws. Assume that h1 is even, and W

:,´ h1

2 :,:
“

0. Assume that the filter values and the non-zero weights are initialized i.i.d.
N

`

0, τ2
˘

. Then, if the number of filters V is greater than 20, we have the fol-
lowing expected lower bound on the GradCAM explanation for pixel pi, jq:

E rrGCsi,js “ E

«

σ

˜

V
ÿ

v“1

αvB
pvq

i,j

¸ff

ě
V ´ 20

?
V

c

h1w1

16π

τ2

hw
∥m∥2 , (5)

where the expectation in the previous inequality is taken with respect to initial-
ization of the filters and the remaining weights of the linear layer.

Setting W
:,´ h1

2 :,:
to 0 disables the weights within W that are connected to the

lower half part of the activation map C
:,´ h1

2 :,:
, effectively preventing rCNNs from
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accessing the lower half of C. In turn, rCNNs does not see the lower half of ξ,
up to side effects. The main consequence of Theorem 1 is that, when the number
of filters associated to the class to explain is large enough, rGCsi,j is positive
in expectation if some pixels are activated in the receptive field associated to
pi, jq. Thus GradCAM highlights all parts of the image where there
is some “activity,” even though this information is not used by the
network in the end. We illustrate Theorem 1 in Figure 3. The main limitation
of this analysis is its focus on the behavior at initialization: we investigate in the
following whether this behavior also happens after training. Another limitation
is the restriction to a single linear layer, but we note that taking L “ 1 in the
fully connected part of rCNNs is a dominant approach since ResNet [30].

The proof of Theorem 1 can be found in Appendix D. The key ingredient of the
proof is obtaining a probabilistic control of

ř

q αqB
pqq. We note that a similar

analysis is possible for other expressions of α, thus other CAM-based methods.

3 Experiments

We know ask the following question: are the consequences of Theorem 1 true
after training, and for a more realistic model? To this extent, we train a CNN-
based model which by construction cannot access some specified part of the input
which we call the dead zone (see Figure 4, details in Section 3.1). Clearly, since
the dead zone does not influence the output, it should not contain positive model
explanations. To test whether this is true, we create two datasets (Section 3.2).
Each item of the first one is composed of two images from ImageNet with the
same label in both the seen and the unseen part of the image. The second dataset
is built using generative models on the same categories with two objects in each
image located in the seen and unseen part as well. We then check whether CAM-
based methods wrongly highlight areas in the dead zone in Section 3.3.

3.1 Model

Model definition. The CNN used in our experiments is a modification of a
classical VGG16 architecture [31] which we call rVGGs. Whereas the original
VGG16 model is composed of 5 convolutional blocks including either 2 or 3
convolutional layers with ReLU and max pooling, followed by 3 dense layers. In
rVGGs we remove the last max pooling (in the fifth convolutional block) and
we further apply a mask on selected neurons of the first dense layer so the layer
can not see the lower part of the activation maps, see Figure 4 for more details.

Masking. We forbid the network from seeing the dead zone in a very simple way:
in the first dense layer W, which has size 4096ˆp256ˆ14ˆ14q, we permanently
set to 0 a band of height 9 corresponding to the lower weights. Formally, this
means setting W:, :, ´9:, : “ 0, which is denoted in red above W in Figure 4.
Effectively, we are building a wall that stops all information flowing from the
last convolutional layer to the remainder of the network. Since the weights W
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r0, 1s3ˆ224ˆ224

ξ

ˆ2 Ñ ˆ3

ˆ2 Ñ ˆ3

W1W1

conv ` ReLU
3 ˆ 3

max-pool
2 ˆ 2

R4096ˆp256ˆ14ˆ14q

W

R4096

R1000

y

Fig. 4: Our masked VGG16-based model trained on ImageNet with 87.0% top-
5 accuracy. The down weights W:, :, ´9:, : are set to 0 and not updated during
training. Only the up weights W:, :, :5, : and the other parameters undergo train-
ing. This setting implies that every red part in the channels does not impact
the prediction scores, meaning that they are not used. Symbol ˆ2 Ñ ˆ3 means
the model first uses the green block twice, with each time having 2 consecutive
convolutions. Then, it uses the green block three times, with each time having 3
consecutive convolutions. There is no max pooling after the last convolution.

are directly connected to the final activation map B P R256ˆ14ˆ14
` , this masking

effectively zeroes out the lower sections in each channel denoted by B:, ´9:, :.
We can trace back the zeroed activations in B to the preceding activation map
C, pinpointing the exact patches in C that correspond (after convolution) to
the features observed in the zeroed activation of B. Because of the side effects
in the computation of convolutions, this area of C is slightly smaller: some
pixel activation will still play a role in the model’s prediction. Repeating this
process until we reach the original image yields a dead zone of height 54 pixels,
highlighted in red above ξ in Figure 4, which covers 24% of the image area. As
we mentioned earlier, the other main difference with VGG16 is the removing
of the final max pooling layer. This leads to a larger activation layer, allowing
us to set weights to zero without hindering too much the network’s ability, see
Figure 5. We note that rVGGs bears a strong resemblance to rCNNs. The
main difference is that the convolutional layer of rCNNs is replaced by several
convolutional blocks in rVGGs, see Figure 4.

Training. We train rVGGs on Imagenet-1k [17] using classical data augmen-
tation recipe, i.e., random flip and random crop. As optimization algorithm, we
use stochastic gradient descent with momentum, weight decay, and a learning
rate scheduler. To observe the slight accuracy drop induced by masking a signif-
icant part of images, we train a baseline model without masking. We report the
train loss and the validation accuracy across training in Figure 5.
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Fig. 5: Plots of the training loss and the top-5 validation accuracy of our un-
masked and masked VGG16-like models on Imagenet-1k (2012) [17]. The un-
masked rVGGs (baseline) and our masked rVGGs yield 87.0%, resp. 90.4%
top-5 accuracy and 66.5% resp. 71.5% top-1 accuracy on the validation set.

Comparison to SOTA. We also compare the validation top-1 and top-5 accuracy
of the VGG16 model found in the PyTorch repository. Our rVGGs without max
pooling and no masking offers the same performance: 71.5% top-1 and 90.4%
top-5 accuracy on the validation set. As we mention in Figure 5, our model
rVGGs with masking has lower performance, which is expected as a fourth of
the input image, ξ:, 171:224, :, is unseen by the model. We obtain 66.5%, resp.
71.5%, top-1 and 87.0%, resp. 90.4%, top-5 accuracy on the validation set for
our masked rVGGs, resp. unmasked rVGGs. Nevertheless, we see that rVGGs

is a realistic network able to predict ImageNet classes with reasonable
accuracy. We believe that the drop in accuracy is only minor because ImageNet
images are centered, and there is enough information in the upper part of the
image to achieve near-perfect prediction.

3.2 Proposed datasets

Objective. To assess how much CAM-based saliency maps emphasize irrele-
vant areas of an image, we introduce two new datasets in which we control the
positions of the image elements using two techniques: cutmix [32] and genera-
tive model. More precisely, we produce two datasets, called STACK-MIX and
STACK-GEN. Where each image contains two objects, one in the bottom part
of the image which is the dead zone for rVGGs, and the second subject at the
top of the image. Therefore, the subject at the center of the image will be mainly
responsible for the top-1 predicted score by our masked rVGGs.

STACK-MIX. We first generate labels for our datasets by ramdomly sampling
100 classes from the 398 first labels of Imagenet, which corresponds to animals.
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Fig. 6: Sampled images from both of our datasets, i.e., STACK-MIX and
STACK-GEN.

The first dataset, called STACK-MIX, consists of 100 images featuring one
image from each of the 100 classes. Each example ξ is created by mixing, in a
cutmix [32] fashion, two images pξ1, ξ2q with same label and sampled randomly
in the validation set of Imagenet as follows:

ξ :“

ˆ

pξ1q:, :170, :

pξ2q:, 171:224, :

˙

P r0, 1s3ˆ224ˆ224 , (6)

meaning that we create a composite image ξ by superposing an upper vertical
slice, taken from the top region of ξ1 with size 3 ˆ 170 ˆ 224, with a lower
vertical slice, taken from the bottom region of ξ2 with size 3ˆ 54ˆ 224. Finally,
the quality of the generated images is verified through manual inspection. This
dataset lacks realism due to the distinct separation between the two subjects.
We address this issue with the help of generative models.

STACK-GEN. The second dataset, called STACK-GEN, consists of 100 images
featuring one image from each of the same 100 classes. It was generated using
ChatGPT + DALL·E 3 [33, 34] by sampling prompts of the following form:
“A photo of {animal name} stacked on top of {same animal name}”. The word
“stacked” determines the positions of the subjects in the generated image, which
proceeds as follows: first, ChatGPT refines the original prompt to enhance its
suitability for DALL·E 3, then the image is generated. We then preprocess the
generated images by selectively editing them to minimize the background and
centering the focus on the two animals. This editing involves cropping the images
to a 1:1 ratio, ensuring one animal is predominantly within the dead zone as
defined by our rVGGs, while the other is positioned in the upper part of the
new image. Figure 6 shows examples of the created images. Note that both
datasets are provided in the supplementary material and online.5

5 https://github.com/MagamedT/cam-can-see-through-walls

https://github.com/MagamedT/cam-can-see-through-walls
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Table 1: Activity in the unseen part of the image, measured by µp¨q ˆ 100 for
several CAM-based methods on both proposed datasets (only images in the
validation set are considered).

methods STACK-MIX Ó STACK-GEN Ó

GradCAM [8] 22.7 ˘ 13.4 21.6 ˘ 11.6

GradCAM++ [22] 28.8 ˘ 8.1 28.5 ˘ 7.9

XGradCAM [21] 23.8 ˘ 9.0 22.8 ˘ 9.0

ScoreCAM [23] 19.9 ˘ 10.3 18.5 ˘ 10.6

Opti-CAM [9] 32.7 ˘ 7.9 32.0 ˘ 7.8

AblationCAM [24] 21.0 ˘ 9.9 20.8 ˘ 9.6

EigenCAM [35] 51.7 ˘ 19.7 55.8 ˘ 21.6

HiResCAM [13] 0.0 ˘ 0.0 0.0 ˘ 0.0

3.3 Results

For our rVGGs, we generate saliency maps from various CAM-based methods
on our two datasets, STACK-MIX and STACK-GEN, using the predicted
category for each example. We used publicly available implementations whenever
possible. Regarding Opti-CAM, since our model differs from the one described by
[9], we have adjusted the learning rate and number of epochs of the optimization
step to achieve a low average drop, as described in the original paper. For each
method, we measure how much of the CAM-based saliency maps emphasize the
unseen part, i.e., the dead zone. We use the metric µp¨q defined for a upscaled
saliency map Λ P R224ˆ224

` as follows:

µpΛq :“
∥Λ171:224, :∥2

∥Λ∥2
, (7)

where ∥¨∥2 is the ℓ2-norm and the lower part of the image ξ:, 171:224, : is unseen
by our rVGGs. We note that for a saliency map Λ, the lower µpΛq, the better.

The results can be found in Table 1, Figure 7 and 8. We observe that every
CAM-based methods, except HiResCAM, highlights unseen parts of an image
to some extent. Moreover, the observation are consistent over both datasets.

We believe that HiResCAM avoids this problem because of how its weighting
coefficients are computed. Following the notation of Section 2.1, these can be
written α

p4q
v :“ ∇BpvqfpBq P R14ˆ14, and are applied globally to Bpvq (see Defi-

nition 4 in the Appendix for more details). Because of the masking used in our
model, the lower part of αp4q

v is zeroed out, and therefore HiResCAM does not
show activity in the lower part of the image.

We notice that, while at first glance HiResCAM appears to perform well in our
setting, it has another issue: since pα

p4q
v q´9:, : “ 0, the upscaled HiResCAM’s
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saliency map Λ P R224ˆ224
` will be zero out in a larger area than the deadzone.

Namely, Λ89:224, : “ 0 which represents 61% of the input image area compared
to the 24% of the deadzone. This issue can be observed in Figure 7.

4 Conclusion

In this paper, we looked into several CAM-based methods, with a particular
focus on GradCAM. We showed that they can highlight parts of the input image
that are provably not used by the network. This was also showed theoretically,
looking at the behavior of GradCAM for a simple, masked CNN at initialization:
the saliency map is positive in expectation, even in areas which are unseen by
the network. Experimentally, this phenomenon appears to remain true, even on
a realistic network trained to a good accuracy on ImageNet.

As future work, we would like to extend the theory to a ResNet-like architecture
and other CAM-based methods, such as LayerCAM [36]. We also would like to
multiply the number of images in our two new datasets, with the hope that this
framework can become a standard check for saliency maps explanations.
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Fig. 7: Saliency maps given by the considered CAM-based methods for rVGGs.
With the notable exception of HiResCAM, all method highlight parts of images
from STACK-GEN and STACK-MIX which are unseen by the network. The
lower part in red is unseen by the model.
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Fig. 8: Saliency maps given by the considered CAM-based methods for rVGGs.
With the notable exception of HiresCAM, they all highlight parts of images
from STACK-GEN which are unseen by the network (this is denoted by the
red, rectangular shape in the lower part of the image).
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A Other definitions

The work of [21] proposed an alternative to rGCs by re-scaling the gradient
in the weighting coefficient α. The main objective of this alternative is to ob-
tain a method that satisfies two axioms (sensitivity and conservation properties)
defined by [21], which, according to their findings, enhances visualization per-
formance w.r.t. specific metrics.

Definition 2 (XGradCAM). In our notation, for an input ξ and model rCNNs,
the XGradCAM feature scores are given by

rXCs :“ σ

˜

V
ÿ

v“1

αp2q
v Bpvq

¸

P Rhˆw
` ,

where each α
p2q
v :“ GAP

ˆ

Bpvq

∥Bpvq∥
1

d ∇BpvqfpBq

˙

is the global average pooling

of the gradient of f at Bpvq rescaled by the normalized activation Bpvq

∥Bpvq∥
1

.

GradCAM++ [22] then modified GradCAM by computing rectified gradient
together with second and third order derivative information. This alternative
appears to produce better saliency maps in cases where the input image contains
multiple subjects.

Definition 3 (GradCAM++). In our notation, for an input ξ and model
rCNNs, the GradCAM++ feature scores are given by

rC`s :“ σ

˜

V
ÿ

v“1

αp3q
v Bpvq

¸

P Rhˆw
` ,

where each α
p3q
v :“ GAP

ˆ

B
2

BpvqfpBq

2B2

Bpvq
fpBq`∥Bpvq∥

1
B3

Bpvq
fpBq

d σ p∇BpvqfpBqq

˙

is the

global average pooling of the gradient of f at Bpvq rescaled by second and third
order derivatives defined as

Bn
BpvqfpBq :“

ˆ

Bn

B
pvq

i,j

fpBq

˙

i,jPrhsˆrws

.

More recently, HiResCAM [13] proposed to replace the averaging of the gra-
dient over the map by the element-wise multiplication between gradient and
activation. In our notation:

Definition 4 (HiResCAM). For an input ξ and model rCNNs, the HiResCAM
feature scores are given by

rHCs :“ σ

˜

V
ÿ

v“1

αp4q
v d Bpvq

¸

P Rhˆw
` ,

where α
p4q
v :“ ∇BpvqfpBq P Rhˆw and d is the element-wise matrix product.
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The work of [23] got rid of the dependency on gradients of the weighting coeffi-
cients α.

Definition 5 (ScoreCAM). In our notation, for an input ξ and model rCNNs,
the ScoreCAM feature scores are given by

rSCs :“ σ

˜

V
ÿ

v“1

αp5q
v Bpvq

¸

P Rhˆw
` .

In the previous display, αp5q “ softmaxpβp5qq, where β
p5q
v :“ rCNNs

`

ξ d Hpvq
˘

´

rCNNs pξbq, Hpvq :“ s
`

Up
`

Bpvq
˘˘

the upsampled and normalized activation
map Bpvq, sp¨q a normalization function that maps matrix values into r0, 1s, and
Upp¨q an upsampling function which resize a matrix to the size of ξ. The baseline
input image ξb can be taken as ξb :“ ξ.

Similar to ScoreCAM, the work of [9] introduces Opti-CAM, a method that uses
optimization to compute the weighting coefficient α.

Definition 6 (Opti-CAM). Define

Hβ :“ s

˜

Up

˜

V
ÿ

v“1

softmaxpβqvB
pvq

¸¸

,

where sp¨q is a normalization function that maps matrix values into r0, 1s, and
Upp¨q an upsampling function which resizes a matrix to the size of ξ. Take αp6q “

softmaxpβ‹q, where β‹ is solution to the optimization problem

Maximize
βPRV

rCNNs pξ d Hβq .

Then, for an input ξ, the Opti-CAM feature scores are given by

rOCs :“ σ

˜

V
ÿ

v“1

αp6q
v Bpvq

¸

P Rhˆw
` .

It is evident from the definitions of ScoreCAM and OptiCAM that the ReLU
function σp¨q is redundant when B represents the rectified activation maps, since
they are already positive.

Finally, AblationCAM [24] removes each activation to observe the impact on the
prediction. Ablations resulting in larger drops receive higher weights. Ablation-
CAM is similar to ScoreCAM: a sort of masking is performed to observe changes
in prediction and no gradient is required. However, both methods require lots of
forward passes through the network.
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Definition 7 (AblationCAM). In our notation, for an input ξ and model
rCNNs, the AblationCAM feature scores are given by

rACs :“ σ

˜

V
ÿ

v“1

αp7q
v Bpvq

¸

P Rhˆw
` ,

where each α
p7q
v :“ y´yv

y , y :“ rCNNs pξq the predicted score by our model and
yv is the output of rCNNs when the activation map Bpvq is zero out.

It should be clear that the method we use to compute the weighting coefficients
α of rGCs, in Proposition 1, yields the coefficients αp4q for rHCs and αp2q for
rXCs, since in proving Proposition 1 we have computed ∇BpvqfpBq, which is the
challenging part.

B Technical results

As a consequence of Eq. (1), A (seens as a vector of size h ˆ w) is a centered
Gaussian vector, with covariance matrix given by

@pi, jq, pi1, j1q P prhs ˆ rwsq2,
`

ΣA
˘

pi,jq,pi1,j1q
“ Tr

`

ξJ
i:i`k,j:j`kξi1:i1`k,j1:j1`k

˘

.

(8)
Because of this simple remark, we can describe precisely the distribution of A
(and, further, B), thanks to the following lemmas. We denote by ϕ the density of
the standard Gaussian distribution and Φ its cumulative distribution function.

Lemma 1 (Expectation of rectified Gaussian). Let X „ N
`

µ, τ2
˘

, we get
the following expectation for the rectified Gaussian X` :“ σ pXq:

E
“

X`
‰

“ µΦ
´µ

τ

¯

` τϕ

ˆ

´µ

τ

˙

.

Proof. See [37]. [\

Lemma 2 (Law of convolution). Let m P Rkˆk and F „ N
`

0, τ2Idk
˘

, then
the convolution F ‹ m has distribution N

`

0, pτ ∥m∥2q2
˘

.

Proof. First let us remind that:

F ‹ m “

k
ÿ

i,j“1

Fi,jmi,j .

This lemma is derived from rapid calculations that proceed as follows, utilizing
the fact that the elements pFi,jqi,j are independent and identically distributed
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(i.i.d.):

E rF ‹ ms “ 0 ,

Var pF ‹ mq “ τ2
k

ÿ

i,j“1

m2
i,j “ τ2 ∥m∥22 .

[\

Straightforward computations yields:

Lemma 3 (Moments of squared rectified Gaussian). Let X „ N
`

0, τ2
˘

of
density fp¨q, we get the following two moments for the squared rectified Gaussian
pX`q2:

E
“

pX`q2
‰

“
τ2

2
and Var

`

pX`q2
˘

“
5

4
τ4 .

C Proof of Proposition 1

Notation. Before starting the proof, let us recall some notation. In Section 2.1,
we defined apuq :“ hu pC1q the non-rectified activation of layer u, rpuq :“ σ

`

apuq
˘

its rectified counterpart. We also defined C the max pooled rectified activation
MpBq. In this proof, we write fu the function that maps the input of the u-
th layer rpu´1q to its output rpuq as follows fuprpu´1qq :“ σ

`

Wpuqrpu´1q
˘

with
u P rLs.

Now let us turn to the computation of ∇BfpBq P Rphˆwqˆ1 with B P Rhˆw. By
the chain rule, we get ∇BfpBq “ ∇B pF ˝Mq pBq “ ∇BM ¨ ∇MpBq F where:

∇C F “ ∇Cf1 ¨ ∇f1pCq

´

WpLqfL´1 ˝ ¨ ¨ ¨ ˝ f2

¯

“ p∇Cf1q ¨ p∇rp1qf2q ¨ ¨ ¨ p∇rpL´2qfL´1q ¨

´

WpLq
¯

.

We compute ∇rpiqfi`1 P Rdiˆdi`1 as follows:

∇rpiqfi`1 “ ∇rpiq σ
´

Wpi`1qrpiq
¯

“

´

Wpi`1q
¯J

∇api`1q σ
´

api`1q
¯

.

Now let us remark that, for all x P Rd, Bi σ pxqj “ Bi σ pxjq “ 1xją01i“j , since
σ is applied element-wise. Thus

∇api`1q σ
´

api`1q
¯

“

¨

˚

˚

˚

˚

˝

1
a

pi`1q

1 ą0
0 ¨ ¨ ¨ 0

0 1
a

pi`1q

2 ą0
¨ ¨ ¨ 0

...
...

. . .
...

0 0 0 1
a

pi`1q

di`1
ą0

˛

‹

‹

‹

‹

‚

.
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Finally,

∇rpiqfi`1 “

´

W
pi`1q

J

1, : ¨ ¨ ¨ W
pi`1q

J

di`1, :

¯

∇api`1q σ
´

api`1q
¯

“

ˆ

1
a

pi`1q

1 ą0
W

pi`1q
J

1, : ¨ ¨ ¨ 1
a

pi`1q

di`1
ą0

W
pi`1q

J

di`1, :

˙

.

Now to compute ∇C F let us start from the end with ∇rpL´2qfL´1W
pLq

J

:

∇rpL´2qfL´1W
pLq

J

“

ˆ

1
a

pL´1q

1 ą0
W

pL´1q
J

1, : ¨ ¨ ¨ 1
a

pL´1q

dL´1
ą0

W
pL´1q

J

dL´1, :

˙

WpLq
J

“

ˆ

řdL´1

iL´1“1 1a
pL´1q

iL´1
ą0

W
pL´1q

J

iL´1, :
W

pLq

1,iL´1

˙

.

Similarly,

∇rpL´3qfL´2 “

ˆ

1
a

pL´2q

1 ą0
W

pL´2q
J

1, : ¨ ¨ ¨ 1
a

pL´2q

dL´2
ą0

W
pL´2q

J

dL´2, :

˙

,

so the next computation gives

∇rpL´3qfL´2∇rpL´2qfL´1W
pLq

J

“ ∇rpL´3qfL´2

ˆ

řdL´1

iL´1“1 1a
pL´1q

iL´1
ą0

W
pL´1q

J

iL´1, :
W

pLq

1,iL´1

˙

“ ∇rpL´3qfL´2

¨

˚

˚

˚

˚

˝

řdL´1

iL´1“1 1a
pL´1q

iL´1
ą0

W
pL´1q

J

iL´1, 1
W

pLq

1,iL´1

...
řdL´1

iL´1“1 1a
pL´1q

iL´1
ą0

W
pL´1q

J

iL´1, dL´2
W

pLq

1,iL´1

˛

‹

‹

‹

‹

‚

“

ˆ

řdL´2,dL´1

iL´2,iL´1“1 1a
pL´2q

iL´2
, a

pL´1q

iL´1
ą0

W
pL´2q

J

iL´2, :
W

pL´1q
J

iL´1, iL´2
W

pLq

1,iL´1

˙

.

Now we can conclude by straightforward induction:

∇C F

“

´

řd1,...,dL´1

i1,...,iL´1“1 1a
p1q

i1
,...,a

pL´1q

iL´1
ą0

pW
p1q

i1,:
qJpW

p2q

i2,i1
qJ . . . pW

pL´1q

iL´1,iL´2
qJW

pLq

1,iL´1

¯

.

Now to finish we need to compute ∇BMpBq, to do so, we suppose that the
convolutional layer C returns an reshaped rectified activation map B such that
we get the following gradient:

¨

˚

˚

˚

˝

D1 0 0
0 D2 0
...

...
0 ¨ ¨ ¨ Dh1ˆw1

˛

‹

‹

‹

‚

P Rppk1
q
2

ˆh1
ˆw1

qˆph1
ˆw1

q “ Rphˆwqˆph1
ˆw1

q
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with Di P Rpk1
q
2

ˆ1 being the i-th block of indicator functions defined as follows:

Di :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1maxmi“mi,p1,1q

1maxmi“mi,p1,2q

...
1maxmi“mi,p2,1q

...
1maxmi“mi,pk1,k1q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where mi,pp,qq :“ pmiqp,q and mi :“ Bk1pi1´1q`1:k1i1,k1pj1´1q`1:k1j1 P Rk1
ˆk1

` , pi1, j1q :“
ppi´ 1q{k1 ` 1, pi´ 1 mod k1q ` 1q is the i-th patch of B (the patch are ordered
from left to right, starting from the top of B). Also note that ¨{¨ is the integer
division.

Finally, we can compute ∇BfpBq as follows:

∇BfpBq “ ∇BM ¨ ∇MpBq F

“

¨

˚

˝

D1ρ1
...

Dh1ˆw1ρh1ˆw1

˛

‹

‚

P Rphˆwqˆ1

(9)

where ρb P R, b P rh1 ˆ w1s is defined as follows:

ρb :“

d1,...,dL´1
ÿ

i1,...,iL´1“1

1
a

p1q

i1
,...,a

pL´1q

iL´1
ą0

pW
p1q

i1,b
qJpW

p2q

i2,i1
qJ . . . pW

pL´1q

iL´1,iL´2
qJW

pLq

1,iL´1
.

To compute α, we simply take the average of the components of the previous
display, ∇BfpBq, which yields

α “
1

hw

pk1
q
2

ÿ

k“1

h1
ˆw1
ÿ

j“1

Dj,kρj

“
1

hw

h1
ˆw1
ÿ

j“1

¨

˝

pk1
q
2

ÿ

k“1

Dj,k

˛

‚ρj

“
1

hw

h1
ˆw1
ÿ

j“1

ρj ,

since
řpk1

q
2

k“1 Dj,k “ 1 with fixed j (it is also the case in practice when using
automatic differentiation) and Dj,k :“ pDjqk. [\
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D Proof of Theorem 1

Before jumping into the proof, let us remark that the left-hand side of Eq. (5) is
non-negative, thus there is nothing to prove if ∥m∥2 “ 0. Thus we will assume
that ∥m∥2 ą 0 from now on.

Separating the randomness. There are two sources of randomness: the weights
of the filters F “ pFp1q, . . . ,FpV qq and the coefficients of the linear layer W. We
start this proof by dissociating these two sources of randomness. More precisely,
following Definition 1, and using the law of total expectation, we compute the
expected GradCAM heatmap at coordinates pi, jq as

E

«

σ

˜

V
ÿ

q“1

αqB
pqq

i,j

¸ff

“ E

«

E

«

σ

˜

V
ÿ

q“1

αqB
pqq

i,j

¸
ˇ

ˇ

ˇ

ˇ

ˇ

F

ffff

. (10)

Using the computed GradCAM coefficient in Proposition 1 with L “ 1, we get
αq “ 1

hw

řh1w1

p“1 W
pqq
p . Since we assume that the weights of the linear layer are

i.i.d. N
`

0, τ2
˘

, for the upper part, and 0 for the lower part, αq is a centered
Gaussian with variance p τ

hw q2 h1w1

2 . Now, we recall that B does not depend on
W. Therefore, conditionally to Fpqq, αqB

pqq

i,j is a centered Gaussian with variance

´

B
pqq

i,j

¯2 ´ τ

hw

¯2 h1w1

2
.

We deduce that

V
ÿ

q“1

αqB
pqq

i,j |F „ N

˜

0,
V
ÿ

q“1

´

B
pqq

i,j

¯2 ´ τ

hw

¯2 h1w1

2

¸

. (11)

Computing expectations. Since, conditionally to F,
ř

q αqB
pqq is a a centered

Gaussian with variance given by Eq. (11), we can use Lemma 1 to compute

E

«

σ

˜

V
ÿ

q“1

αqB
pqq

i,j

¸
ˇ

ˇ

ˇ

ˇ

ˇ

F

ff

“

g

f

f

e

´ τ

hw

¯2 h1w1

2

V
ÿ

q“1

´

B
pqq

i,j

¯2

ϕp0q

“
τ

2hw
?
π

g

f

f

eh1w1

V
ÿ

q“1

´

B
pqq

i,j

¯2

.

Coming back to Eq. (10), we deduce that

E

«

σ

˜

V
ÿ

q“1

αqB
pqq

i,j

¸ff

“
τ

2hw
?
π

?
h1w1 E

»

–

g

f

f

e

V
ÿ

q“1

´

B
pqq

i,j

¯2

fi

fl . (12)
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Lower bound. Up to the best of our knowledge, there is no closed-form expression
for Eq. (12), and we now proceed to find a lower bound to this expression. Let

Y :“
řV

q“1

´

B
pqq

i,j

¯2

. By Lemma 2 and 3, E rY s “ V
pτ∥m∥2q

2

2 and Var pY q “

5
4V pτ ∥m∥2q4 with m :“ ξi:i`k´1,j:j`k´1 a patch at index pi, jq in the image ξ.
By Chebyshev’s inequality, for any t ą 0,

P pY ě E rY s ´ tq ě 1 ´
Var pY q

t2
. (13)

Let us set t “
ErY s

2 ą 0 in the previous display, in this way

Var pY q

t2
“

5

4
V τ4 ∥m∥4 ¨

˜

V 2τ4 ∥m∥4

22 ¨ 22

¸´1

“
20

V
.

Since ∥m∥2 ą 0,

P
ˆ

Y ě
E rY s

2

˙

ě 1 ´
20

V
.

We now conclude the proof writing

E

«

σ

˜

V
ÿ

q“1

αqB
pqq

i,j

¸ff

“
τ

2hw
?
π

?
h1w1

ˆ

E
„

?
Y

ˇ

ˇ

ˇ

ˇ

Y ě
E rY s

2

ȷ

P
ˆ

Y ě
E rY s

2

˙

`E
„

?
Y

ˇ

ˇ

ˇ

ˇ

Y ă
E rY s

2

ȷ

P
ˆ

Y ă
E rY s

2

˙˙

ě
τ

2hw
?
π

?
h1w1E

„

?
Y

ˇ

ˇ

ˇ

ˇ

Y ě
E rY s

2

ȷ

P
ˆ

Y ě
E rY s

2

˙

(since Y ą 0)

ě
τ

2hw
?
π

?
h1w1 E

«

c

E rY s

2

ff

ˆ

1 ´
20

V

˙

“

?
V h1w1

4
?
π

τ2

hw

ˆ

1 ´
20

V

˙

∥m∥2 .

[\

E Additional Experiments

In this section, we present an additional set of experiments on STACK-MIX
(Figure 9).
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Fig. 9: Saliency maps given by the considered CAM-based methods for rVGGs.
With the notable exception of HiresCAM, they all highlight parts of images
from STACK-MIX which are unseen by the network (this is denoted by the
red, rectangular shape in the lower part of the image).
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