
HAL Id: hal-04683083
https://hal.science/hal-04683083

Submitted on 1 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring Fault Injection Attacks on CVA6 PMP
Configuration Flow

Kévin Quénéhervé, William Pensec, Tanguy Philippe, Rachid Dafali, Vianney
Lapotre

To cite this version:
Kévin Quénéhervé, William Pensec, Tanguy Philippe, Rachid Dafali, Vianney Lapotre. Exploring
Fault Injection Attacks on CVA6 PMP Configuration Flow. 27th Euromicro Conference Series on
Digital System Design (DSD), Sorbonne University, Aug 2024, Paris, France. �hal-04683083�

https://hal.science/hal-04683083
https://hal.archives-ouvertes.fr


Exploring Fault Injection Attacks on CVA6 PMP
Configuration Flow

Kévin Quénéhervé
Université Bretagne Sud
UMR 6285, Lab-STICC

Lorient, France
kevin.queneherve@univ-ubs.fr

William Pensec
Université Bretagne Sud
UMR 6285, Lab-STICC

Lorient, France
william.pensec@univ-ubs.fr

Philippe Tanguy
Université Bretagne Sud
UMR 6285, Lab-STICC

Lorient, France
philippe.tanguy@univ-ubs.fr

Rachid Dafali
DGA MI

Rennes, France
rachid.dafali@def.gouv.fr

Vianney Lapôtre
Université Bretagne Sud
UMR 6285, Lab-STICC

Lorient, France
vianney.lapotre@univ-ubs.fr

Abstract—Fault Injection Attacks (FIA) pose significant threats
to the security and reliability of embedded systems. FIAs can
be used to target an embedded processor by manipulating its
clock signal, power supply or by using electromagnetic pulses.
In this study, we analyze FIA on the Physical Memory Protection
(PMP) configuration flow of a CVA6 RISC-V core. Fault injection
campaigns targeting an FPGA implementation on an ARTY A7-
100T board are performed to characterize the fault effects. For
that purpose, we rely on clock glitches. Moreover, in order to
further characterize the induced faults, Error-Correction Code
(ECC) is considered. We extend the ID pipeline stage with
hardware modules to filter faults using Hamming code.

Experimental results demonstrate that FIA has multiple effects
on the PMP configuration registers. By classifying these effects
in regards with injection parameters, we highlight that a given
effect can be obtained with high probability by an attacker.
Furthermore, thanks to integrated ECC modules used as filters,
we confirm that single bit-flips is a prevalent effect in our
experiments. Particularly, results demonstrate that numerous
fault effects observed in the PMP configuration registers are
caused by single bit-flips in the ID stage of the CVA6 core.

Index Terms—Hardware Security, Fault Injection Attacks,
RISC-V, Physical Memory Protection, Hamming codes, FPGA

I. INTRODUCTION

Many implementations of processors based on RISC-V
open-source ISA have been proposed since the first speci-
fication was released in 2011 [1]. They have been used in
many embedded systems, with applications ranging from low-
resource-embedded systems running bare-metal applications
to embedded systems capable of running a Linux operating
system.

As security is a major concern in embedded systems, the
RISC-V foundation has a Security Standing Committee to de-
velop a consensus on best security practices. Several working
groups have discussed security extensions to the ISA, such
as the Cryptographic Extensions Task Group and the Trusted
Execution Environment (TEE) Task Group. Privileged instruc-
tions and Physical Memory Protection (PMP) are described in

the specifications [2]. The PMP mechanism is optional, but
as it plays an important role in the security of systems, it is
supported by many processor implementations. To illustrate,
the PMP is a crucial security mechanism in the construction
of TEE, such as Keystone [3] and Hex-Five [4].

Embedded systems are subject to many types of physical
attacks. Among them, Fault Injection Attacks (FIA) [5], [6]
pose a significant threat to the security and reliability of
embedded systems. Several injection fault techniques exist
like voltage pulse, laser and ElectroMagnetic (EM) pulse,
temperature and clock glitching. In this context, Nashimoto
et al. [7] have shown the possibility to modify the PMP con-
figuration registers on a RISC-V processor through FIA using
clock glitching. Although PMP was not originally designed to
withstand physical attacks, we think that it would be beneficial
to investigate in more details the effect of FIA on PMP. Indeed,
many security applications depend on PMP robustness. It is
also worth noting that in the majority of cases an attacker does
not have a direct access to the clock because it is integrated.
Nevertheless, clock glitching remains an interesting case study
to characterize faults and countermeasure against FIA. As
demonstrated in [8], the faults caused by EM Fault Injection
are similar to those caused by timing glitches like the clock
glitch. In [9], a injection fault technique using the clock signal
is used in order to emulate fault caused by an EM pulse.

The process of developing solutions to protect and mitigate
the effects of fault injection on microarchitectures involves two
essential phases. The exploration phase allows the nature of the
fault and its impact on the architecture and execution flow to be
identified. The modelling phase allows the construction of the
appropriate model. Exploring the effects of faults on a hard-
ware implementation of a microarchitecture is complicated for
the following reasons: (i) The physical effect of the injection
observed may vary from one campaign to another over time
due to variations in certain factors due to changes in ambient
temperature, component aging, etc.; (ii) The impossibility of
recovering all the values of all the signals and registers during

1



an injection, because the logic used to recover this data may
also be affected by the effect of the injection; (iii) It is also very
difficult to compare two implementations, one that is immune
and another that suffers the effects of a fault on an FPGA
component. Indeed the architecture of the FPGA favours the
diffusion of the fault. These observations led us to consider
a new methodology for exploring the effects of faults on a
microarchitecture. This exploration is based on filtering to
classify observed faults effects.

The main contributions of this paper are :
• we study the impact of clock glitching on the PMP

configuration flow of the RISC-V CVA6 core [10];
• we classify the observed impacts on PMP configuration

registers regarding both fault effects and injection param-
eters;

• we introduce a novel approach based on fault filtering to
better characterize fault effects at the microarchitecture
level;

• we highlight the interest of our proposal by demonstrating
the prevalence of single bit-flips in the ID pipeline stage
of the CVA6 core by relying on ECC hardware modules
used as filters.

This article is organized as follows: Section II presents
related works. Section III presents the considered threat model
and provides background information on CVA6 PMP configu-
ration. Section IV presents our experimental environment and
results. Section V evaluates the use of an ECC-based filter in
characterizing the effects of faults. Section VI discusses the
proposed work. Section VII draws some perspectives. Finally,
Section VIII concludes this article.

II. RELATED WORK

Fault injection attacks pose a significant threat to the reli-
ability and security of embedded systems. [11]–[13] present
the different techniques of fault injection based on voltage
glitch, electromagnetic emanation, clock glitch, laser pulse and
temperature manipulation.

These types of FIA can disrupt systems in a number of
ways, such as controlling the Pointer Counter (PC) [11],
bypass secure boot [14] and modifying the memory hierarchy
and MMU [15]. Different types of Fault Injection Attacks
can lead to comparable faults. For example, faults induced
by electromagnetic injection could produce effects related to
those caused by clock offsets as shown in [9]. Moreover, its
crucial to distinguish the various effects of faults caused by
FIA, as demonstrated in [16].

In [7], Nashimoto et al. show that the PMP configuration of
an RISC-V processor is vulnerable to physical attacks by FIA
using clock glitch. Despite proposing a set of countermeasures,
none have been evaluated.

In our study, we used the same FIA technique to target
the PMP configuration on an RISC-V processor. However, in
contrast to [7], we detail the effects of the injected faults on
the PMP configuration registers in order to help the designer
to implement adapted protection schemes. Indeed, various

protection methods exist against FIA [5]: error code correc-
tion/detection [17]–[19], information and temporal redundancy
[20]–[23], randomization [24], [25], Control Flow Integrity
(CFI) [26], etc. However, some of these countermeasures can
be complex and/or expensive in term of silicon area. Con-
sequently, to propose an efficient implementation, a designer
must be aware of the actual fault injection effects in order to
to select the most area and timing efficient countermeasures.

A number of different approaches are available to char-
acterize faults effects in the microarchitecture of processors.
In [27], authors use simulation and an FPGA implementation
extended with an integrated logic analyzer to characterize
fault in RISC-V core. In [28], Trouchkine et al. propose a
method based on an ISA fault model to characterize fault at
the microarchitectural level for a modern processor. Tollec
et al. in [29] introduce a formal workflow for modeling
software/hardware systems in order to explore the effects
of fault injections and they apply their method to RISC-V
core. Our paper examines the interest of an Error-Correction
Codes-based approach, not as a countermeasure, but to further
characterize actual fault effects. To demonstrate the interest of
the proposed approach, we rely on Hamming code to filter the
occurrences of single bit-flips in the ID pipeline stage of the
CVA6 core during the PMP configuration process.

III. BACKGROUND

This section describes the considered threat model and pro-
vides background information regarding the CVA6 architecture
and its PMP configuration flow.

A. Threat Model

We assume that an attacker aims to bypass PMP mecha-
nism to access sensitive data or execute an arbitrary code.
We consider that the attacker program does not have the
privilege to modify the PMP configuration. We assume that
the attacker has physical access to the target device and can
perform FIA by relying on clock manipulation. We consider
the attacker is able to precisely synchronize its attacks by
relying, for instance, on GPIO activity. In this study, we do not
consider side-channel analysis, reverse engineering, software,
and network-based attacks.

B. CVA6 architecture and PMP configuration flow

Figure 1 shows an overview of the CVA6 core. It is a 6-
stage, single issue, in-order core that implements RV32GC or
RV64GC extensions with three privilege levels, M, S, and U,
to fully support a Unix-like operating system. In this study, we
consider a 64-bits version of this processor. RISC-V processors
rely on a hardware module called Physical Memory Protection
(PMP) to enforce access permissions to a set of memory
regions, called PMP regions.

The RISC-V processor can configure a maximum of 16
PMP regions. They are configurable using Control Status
Registers (CSR). These registers must be configured in high-
privilege (M). PMP consists of a set of configuration regis-
ters called pmpcfg and address registers called pmpaddr.

2



E
xe

cu
te

 S
ta

g
e
 P

ip
e

Is
su

e
 B

u
ff

e
r

In
st

ru
ct

io
n
 S

ca
n

CVA6 top

CVA6 core

Interrupt

Exception

Cache

controller

BHT

RAS

BTB

Re-aligner

IF ID

Instr. Queue

From 
I$

Issue Execute

CSR Buffer

FPU

PC Select

Branch

Mispredict

Privilege
Check

ALU

Branch Unit

Compressed
Decoder

Decoder

S
co

re
b
o
a
rd

CSR
Write

Regfile
Write

Commit
LogicCommit Instr.

RF Enable

Commit Ack

Commit Store

Commit CSR

Exception

CSR Data

Issue Read

Scoreboard

PTW

DTLB ITLB

LSU

MUL / DIV

CSR
Write

epc

npc

branch ?

call / ret ?

epc

4

mtvec

taken ?

PC ?

Fetch
entry

is co
m

p
re

ss
e
d E

x
p

a
n
d

e
d

In
str.

Valid

Instr. ACK
Decoded Instr.

FU
Data

S
B

 F
u
ll

Fo
r 

w
D

a
ta

Fo
r

w
R

e
q

u
e
st

Valid

Issue Ack

Valid

Issue Entry

imm ?

from MMU

E
P
C

C
A

U
S
E

V

from Decoder

E
P
C

C
A

U
S
E

V

Is
su

e
 A

ck

To/From
Commit

Commit

Fig. 1: CVA6 core architecture overview. Boxes in grey highlight registers involved into the PMP configuration flow along the
CVA6 pipeline. ID: Instruction Decode. IF: Instruction Fetch

pmpcfg define the access permissions to a set of memory
region which is defined through 0 or to 2, pmpaddr registers
depending on the addressing mode.

The RISC-V specification [2] defines the structure of
pmpcfg. Each PMP region is configured through an 8-bit
vector called pmpicfg with 0 ≤ i ≤ 15. 8 configurations
are grouped, forming a 64-bit register refers as pmpcfgj.
The 64-bit CVA6 core implements 2 pmpcfg registers named
pmpcfg0 and pmpcfg2. Each pmpicfg configures the fol-
lowing permissions: L, A, X, W and R. Among them, X, W
and R represent execute, write and read access permissions
respectively. L signifies PMP region configuration is locked,
i.e. any attempt to write in the corresponding configuration
register is ignored. Locked PMP regions remain locked until
the hart is reset. When the L bit is set, access permissions
are enforced for all privilege modes. The A bit represents the
addressing mode. Usually either NAPOT (Naturally Aligned
Power-Of-Two) or TOR (Top Of Range) mode is used. In
NAPOT mode, pmpaddri stores both memory region size and
base address. In TOR mode, pmpaddri stores the address of
the top of the memory region, and pmpaddri-1 stores the
address of the bottom of the memory region.

PMP configuration registers are stored in CSR registers in
the Commit stage of the CVA6 core (module CSR Write in Fig-
ure 1). A CSR instruction is used to write these registers. For
each load/store operation performed by the Load/Store Unit
(LSU), the source/destination memory address is confronted
with the PMP configuration to check the access permissions.

Figure 1 highlights, with grey boxes, hardware modules
involved into the PMP configuration flow along the CVA6
pipeline.

In the Instruction Fetch (IF) stage, a CSR instruction is
fetched from the memory cache, re-aligned if necessary, and
stored for later decoding. Then, in the Instruction Decode
(ID) stage, the CSR instruction is decompressed if necessary
and decoded. During the Issue stage, components such as
the scoreboard and issue read manage further processing,
facilitating instruction scheduling and dependency resolution.
In the Execute stage, the index of the targeted CSR register
is determined and stored in the CSR Buffer register. Finally,
in the Commit stage, the instruction payload is stored in the
corresponding PMP configuration register included in the CSR
Write module.

This analysis shows that each pipeline stage is involved for
processing CSR instructions in order to configure the CVA6
PMP. Therefore, a fault injection at any stage can affect the
PMP configuration. The next section details our experiments
to further analyze the effects of fault injections on the CVA6
PMP configuration flow.

IV. EXPERIMENTS

This section describes the experimental setup and the sce-
nario for fault evaluation during PMP configuration. Then, it
analyzes the impacts of faults encountered when targeting the
CVA6 core. To deepen our analysis, we propose to extend
the ID stage with ECC modules to filter single bit-flips
at the microarchitectural level. To achieve this, we rely on
Hamming code-based ECC. Finally, we analyze the impact of
the proposed filtering methodology on observed fault effects
at the PMP configuration level.

3



Clock
Signal

Trigger
Signal

Pulse Trigger

External Offset Width

Offseta cycle

Repeat = 2

Glitch

Fig. 2: Glitch clock principle ex. Repeat = 2

A. Evaluation setup

We built a system-on-chip (SoC) with the Litex frame-
work [30]. The SoC includes a CVA6 core, a RAM memory,
GPIOs, and an UART. This SoC is implemented on a Digilent
Arty A7-100T FPGA board [31].

Fault injection is realized using the Chipwhisperer Lite [32]
and its associated software suite [33]. In order to produce clock
gliching the Chipwhisperer Lite [32] provides a 25 MHz
clock signal to the target FPGA board.

For each fault injection campaign, we explore the injection
parameters presented in Figure 2: 1) Width refers to the
percentage of a single clock period ranging from −49 to 49
that determines the width of the the glitch; 2) Offset refers
to the percentage of a single clock period ranging from −49
and 49 that determines the placement of the glitch within the
glitched period; 3) External Offset determines the duration of
the delay between a trigger and a glitch, expressed in clock
cycle from 0 to 200; 4) Repeat refers to the number of times
the glitch will be repeated on subsequent clock cycles, as
shown in Figure 2 with Repeat equals 2. In our experiments,
this parameter is set to 5. As a result, a fault injection campaign
leads to a total of 1,970,001 injections.

The software running on the CVA6 core used in this
evaluation has been instrumented to generate a trigger sig-
nal via a dedicated GPIO. Furthermore, the UART is used
for communicating with the target device to read the PMP
configuration state following each fault injection.

B. Evaluation scenario

For this evaluation, we consider a dedicated software, run-
ning in M-MODE, that first configures a protected PMP region
in NAPOT mode as in [7]. For that purpose, CSR instructions
are executed to writes 0x99 into pmpcfg0 and 0x800018F
into pmpaddr0. The other PMP configuration registers are
not configured (i.e. their value is null). This configuration
fixes a read-only permission on a 128-bytes memory region
starting from address 0x20000600. Moreover, it locks the
PMP configuration. Thus, following these CSR instructions,
the PMP configuration cannot be modified anymore. Once the
configuration process is done, the software attempts to write
into the protected memory region (this action is considered
to be a malicious operation that is being performed by an
attacker). This operation leads to a exception as it is not
allowed by the PMP configuration. However, in presence of
faults disturbing the PMP configuration flow, the resulting
configuration could allow accesses to the protected memory

No E
ffe

ct

1 b
it-

flip

2 b
its

-fli
p

> 2 
bit

s-f
lip

Res
et Set

Shif
t

Effects on pmpaddr0

Shift

Set

Reset

> 2 bits-flip

2 bits-flip

1 bit-flip

No Effect

E
ff

ec
ts

 o
n 

pm
pc

fg
0

0 103 0 0 41 0 0

27 0 0 41 0 0 0

0 583 0 101 592 0 0

40 550 0 36 44 0 0

121 39 2 14 0 0 0

206 47 44 56 0 12 0

1e6 591 84 592 390 40 0

0

20

40

60

80

100
%

Fig. 3: Fault injection effect combinations - groups G2 & G3

region. Finally, the software communicates, for each execu-
tion, the state of the PMP configuration through a the serial
communication.

It is worth noting that the fault injection timing is triggered
through a GPIO raised before the PMP configuration. In the
next section, we rely on this scenario to analyze the effect of
faults injected during the PMP configuration.

C. Effects of FIA on PMP configuration

The study conducted by [7] highlighted the vulnerability
of the PMP configuration to FIA, but it does not provide a
detailed analysis of the fault effects on PMP configuration reg-
isters. Consequently, we performed a fault injection campaign
relying on the experimental setup and the scenario presented
in section IV-A and IV-B respectively. Among 1,970,001
fault injections, 5,561 lead to a modification of the PMP
configuration including 4,267 allowing the executed program
to write into the protected memory region. We group these
5,561 fault injections in three groups.

The first group (G1) gathers faults that lead to complex
effects leading, for instance, to the storage of random values
into one or several PMP configuration registers, the storage of
a faulty value into several PMP configuration registers or the
storage of the correct value in a PMP configuration register
which is not the targeted one. 1,165 fault injections over 5,561
are classed in this group.

The second group (G2) gathers faults that impact a sin-
gle register among all PMP configuration registers. In this
group, either pmpcfg0 or pmpaddr0 are impacted (these
two registers are the ones configured by the executed software)
while others PMP configuration are not impacted. 2,091 fault
injections over 5,561 are classed in this group. The First
column and the last row of Figure 3 details, for this group,
the number of fault injections leading to a specific fault effect.
It shows that a fault injection can lead to bit(s)-flip and
register set or reset. We observe that for both pmpcfg0 and
pmpaddr0, single bit-flip is the most common effect. The

4



-45 -35 -25 -15 -5 0 5 15 25 35 45
Width

-45

-35

-25

-15

-5
0
5

15

25

35

45
O

ff
se

t
G1
> 2 bits-flip
1 bit-flip
reset register
set register
shift
2 bits-flip

Fig. 4: Fault effects in regards with injection parameters
between Width and Offset

-45 -35 -25 -15 -5 0 5 15 25 35 45
Width

0

20

40

60

80

100

120

140

160

180

200

E
xt

er
na

l O
ff

se
t

G1
> 2 bits-flip
1 bit-flip
reset register
set register
shift
2 bits-flip

Fig. 5: Fault effects in regards with injection parameters
between Width and External Offset

second and third most common effects are multiple bits-flip
and register reset.

The third group (G3) gathers faults that impact both
pmpcfg0 and pmpaddr0 but do not impact other PMP
configuration registers. 2,305 fault injections over 5,561 are
classed in this group. Figure 3 shows that a fault injection can
lead to couple of effects in the two configured registers. These
couple of effects are built around bit(s)-flip, register reset or
value shift in the configured register. It is worth noting that
1,322 injections over 2,305 lead to single bit-flips in a least
one register.

Figure 4 highlights the relation between the observed fault
effects and the Width and Offset injection parameters. We
observe 6 sensitive zones where all fault effects can be
observed (two symbols are used for fault effects of group
G3, i.e. one symbol per faulty register). Furthermore, Figure 4
shows that in each sensitive zone, sub-zones corresponding to
parameters leading to a specific effect can be delimited. This
is particularly true for the single bit-flip effect which mainly
appears on the border of each zone.

Figure 5 illustrates the relationship between observed fault
effects and the injection parameters Width and External Offset
and Figure 6 shows the relation between observed fault effects
and the Offset and External Offset injection parameters. These
figures facilitate the observation of the impact induced by the
External Offset parameter on fault injection effects. As pre-
sented in Figure 2, this parameter allows an attacker to reach
specific clock cycles from the trigger signal. Figure 5 and
Figure 6 show that the occurrences of some effects are highly

-45 -35 -25 -15 -5 0 5 15 25 35 45
Offset

0

20

40

60

80

100

120

140

160

180

200

E
xt

er
na

l O
ff

se
t

G1
> 2 bits-flip
1 bit-flip
reset register
set register
shift
2 bits-flip

Fig. 6: Fault effects in regards with injection parameters
between Offset and External Offset

correlated to this parameter and then, the set of instruction
treated in each pipeline stages when a fault injection occurs.
Moreover, by analysing Figure 4, Figure 5 and Figure 6, one
can conclude that an attacker would be able, with a high
probability, to produce the desire effect by tweaking injection
parameters. For instance, by setting External Offset between
80 and 100, Offset close to 25 and Width close to -5, an attacker
would expect a multi-bits fault effect while, by setting External
Offset around 40, Offset close to 35 and Width close to -5, he
would expect a value shift effect.

In this section, we have studied the fault injection effects
on the PMP configuration registers. However, the previous
analysis does not provide information regarding the faults
locations and effects at the microarchitectural level leading
to the observed effects in the PMP configuration registers. In
order to further study these effects, the next section introduces
an original approach based on fault filtering used to link fault
effects observed at the PMP configuration registers level with
a given fault effect at the microarchitectural level.

V. HAMMING CODE AS A FILTER IN THE PMP
CONFIGURATION FLOW

The previous section has shown that FIA, relying on clock
glitching, can lead to numerous effects in the resulting PMP
configuration. In this section, we consider a lightweight ECC
based on Hamming Code to correct single bit-flips impacting
registers participating to the PMP configuration flow of the
CVA6 core. In the community, this approach is commonly
used to protect registers from the effects of fault injections.
Our objective is different. Indeed, we use it to filter faults at
different location in the CVA6 ID pipeline stage in order to
better characterize the observed fault effects by linking a fault
effect at the microarchitecture level to observed faults at the
PMP configuration level. Therefore, the rest of this article will
not refer to protection but to filtering.

Hamming Code is a class of linear error-correcting codes
proposed by Richard W. Hamming [17] in 1950. The main use
of this code is to detect and correct errors. It is mostly used
in digital communication and data storage systems as error
control codes. Hamming Code can detect and correct single-
bit errors or detect double-bits errors. Regarding hardware

5



implementation, we rely on the solution presented in [34].
Such a solution relies on an Encoder module in charge of
generating the redundancy, a register to store this information
and a Decoder to detect and eventually correct faults.

As presented in III-B, the PMP configuration flow involves
a set of components in all pipeline stages (see Figure 1,
grey boxes). In order to further analyze the cause of the
observed fault effects, we choose to focus on the ID stage since
instruction decoding is a highly sensitive process. Thus, we
extend ID stage registers involved in the configuration flow of
the PMP. To demonstrate the interest of the proposed approach
we focus, in this paper, on single bit-flips by relying on a
Hamming Code-based solution.

Table I lists the ID stage registers that are extended to
filter single bit-flips induced by fault injections. Table II shows
implementation results targeting the Xilinx Artix-7 of the Dig-
ilent Arty A7-100T development board for Hamming Code-
based filter implemented in ID stage only. Implementation
results are obtained using Vivado 2019.1. Results presented
in Table II show that the resources overhead of the filters
implemented in the ID stage is 5.6% for LUTs and 1.9% for
FFs.

In order to evaluate the interest of the proposed filtering
approach to further analyze the fault injection effects at
the microarchitectural level, we perform an additional fault
injection campaign targeting the extended version of the CVA6
core and relying on the evaluation setup and scenario presented
in section IV-A and IV-B. Table III compares fault injection
results for the baseline CVA6 core and a version in which
single bit-flips are filtered in the ID stage. Crash column
indicates the number of system failures encountered during
the experiment. Silent column represents the number of silent
fault, i.e. fault injections that did not cause a faulty PMP
configuration on pmpcfg0 and pmpaddr0. Faults indicates
the number of faults observed on PMP configuration registers
(i.e. pmpcfg0 and pmpaddr0).

Results presented in Table III shows that filtering single bit-
flits in the ID pipeline stage allows to reduce the total number
of observed faults in PMP configuration registers from 5,561
to 1,783 (-68%). These results confirm that the single bits-flip
effect prevails in the ID stage since the proposed Hamming
Code-based filters single bit-flips only. Among the 1,970,001
fault injections, 1,783 leads to a modification of the PMP
configuration. We group these 1,783 fault injections in three
groups as presented in section IV-C.

The first group (G1) gathers faults that lead to complex
effects. 248 fault injections over 1,783 are classed in this
group. The second group (G2) gathers faults that impact a
single register, either pmpcfg0 or pmpaddr0. 487 fault
injections over 1,783 are classed in this group. The third
group (G3) gathers faults that impact both pmpcfg0 and
pmpaddr0. 1,048 fault injections over 1,783 are classed in
this group. Table III allows a comparison with results obtained
considering the CVA6 baseline core. We observe that filtering
single bit-flips in the ID stage leads to a significant reduction

of faults occurrences in each groups (G1, G2, G3).
Figure 7 compares the different types of fault effects of

groups G2 and G3 considering the baseline CVA6 core and
the CVA6 core extended with the proposed filters in the
ID pipeline stage. Results show that filtering single bit-
flips in the ID stage leads to reducing the occurrences of
almost all fault effects observed in the PMP configuration
registers. For instance, the “No Effect/>2 bits-flip”
fault effect decreases from 592 to 49 occurrences. Such results
demonstrate that single bit-flips in the ID stage actually lead
to more complex faults in the PMP configuration registers.
Consequently, implementing such filter provides a promising
solution to identify the actual fault effect at the microarchitec-
tural level and develop tailored countermeasures.

VI. DISCUSSION

The results provided in Section IV demonstrate that FIA
relying on clock glitches has multiple effects on the final PMP
configuration of the CVA6 core. Our work shows that observed
fault effects can be associated to a set of injection parameters.
Furthermore, it demonstrates that single bit-flips are a common
effect of such injections.

The set of experiments proposed in this paper show that
using ECC can help to characterize fault effects. Indeed,
relying on Hamming Code allows us to confirm that single bit-
flips in the ID stage are one of the fault effects leading to divers
PMP configuration divergences including fault effects such as
register set, multiple bit-flips, value shift, etc. Thus, we believe
that a methodology for fault effect characterization relying on
similar approaches should be explored (e.g., relying on more
complex ECC, such as BCH, Reed-Solomon, etc [17]–[19]).

VII. FUTURE WORKS

In this paper, we focus our analysis on the single bit-
flip fault effect to demonstrate the interest of the proposed
approach. We are conscious that additional studies are nec-
essary to reinforce and extend this work to tackle multiple
bit-flips, shift, register set/reset and complex (group G1 in the
paper) fault effects. Regarding register reset, the instruction
skip fault model can also explain this behavior. In this case,
we believe that a dedicated detection mechanism could allows
to identify this fault effect. Considering the complex fault
effects, faulty control signals or register indexes could be
the main causes. The proposed ECC-based filters should also
be able to filter most of these fault effects as demonstrated
by our experiments considering the ID stage in which the
number of complex fault effects has been reduced from
1,165 to 248 using single bit-flip filters. However, additional
experiments are required to confirm these claims. We plan
to apply the proposed approach to other pipeline stages of
the CVA6 core, consider more complex filters to enhance the
proposed characterization methodology and consider different
processor cores and implementations. Furthermore, based on
the proposed characterization we will investigate the design of
dedicated FIA countermeasures taking into account area and
energy constraints.

6



TABLE I: Summary of Filtered Registers by Hamming Codes in ID stage

Registers width Meaning

Valid 1 issue entry is valid
rs1 6 register source address 1
rs2 6 register source address 2
trans id 3 this can potentially be simplified, we could index the scoreboard entry
use imm 1 should we use the immediate as operand b?
use zimm 1 use zimm as operand a
use pc 1 set if we need to use the PC as operand a, PC from exception
valid 1 -
cf 3 type of control flow prediction
predict address 64 branch predict scoreboard data structure
cause 64 cause of exception
op 7 operation to perform in each functional unit
pc 64 PC of instruction
rd 6 register destination address
result 64 for unfinished instructions this field also holds the immediate
valid 1 is the result valid
tval 64 additional information of causing exception (e.g.: instruction causing it),

address of LD/ST fault
fu 4 functional unit to use
is compressed 1 signals a compressed instructions, we need this information at the commit

stage if we want jump accordingly
is ctrl flow 1 the instruction we issue is a control flow instructions

Total 363

Number of Redundancy Bits for Hamming Code 10

No E
ffe

ct/
1 b

it-f
lip

No E
ffe

ct/
2 b

its-
flip

No E
ffe

ct/
> 2 

bit
s-f

lip

No E
ffe

ct/
Re

set

No E
ffe

ct/
Se

t

1 b
it-f

lip/
No E

ffe
ct

1 b
it-f

lip/
1 b

it-f
lip

1 b
it-f

lip/
2 b

its-
flip

1 b
it-f

lip/
> 2 

bit
s-f

lip

1 b
it-f

lip/
Re

set

1 b
it-f

lip/
Se

t

2 b
its-

flip
/No E

ffe
ct

2 b
its-

flip
/1 

bit
-fli

p

2 b
its-

flip
/2 

bit
s-f

lip

2 b
its-

flip
/> 2 

bit
s-f

lip

2 b
its-

flip
/Re

set

> 2 
bit

s-f
lip/

No E
ffe

ct

> 2 
bit

s-f
lip/

1 b
it-f

lip

> 2 
bit

s-f
lip/

2 b
its-

flip

> 2 
bit

s-f
lip/

> 2 
bit

s-f
lip

> 2 
bit

s-f
lip/

Re
set

Re
set

/1 
bit

-fli
p

Re
set

/> 2 
bit

s-f
lip

Re
set

/Re
set

Se
t/N

o E
ffe

ct

Se
t/>

 2 
bit

s-f
lip

Sh
ift/

1 b
it-f

lip

Sh
ift/

Re
set

Fault Effect Combinations

0

100

200

300

400

500

600

Nu
m

be
r o

f O
cc

ur
re

nc
es

59
1

84

59
2

39
0

40

20
6

47 44 56

0 12

12
1

39

2 14 0

40

55
0

0

36 44

58
3

10
1

59
2

27 41

10
3

41

6 17

49

15
6

2

21
4

0 9 33 10 0 9 4 2 3 2 26

52
9

5 29 17

22
1

6

14
5

8 0 29 4

Baseline
Filters in ID

Fig. 7: Fault injection effects on PMP registers - group G2 & G3 with Hamming Code-based filters in ID stage

TABLE II: FPGA implementation results in LUTs and FFs

CVA6 core Number of LUTs Number of FFs

Baseline 47,955 29,303
Filters in ID 50,627 (+5.6%) 29,849 (+1.9%)

TABLE III: fault injection results comparison between base-
line and filtered CVA6 core - with 1,970,001 faults injected per campaign

CVA6 core Crash Silent Faults
G1 G2 G3 Total

Baseline 50,146 1,914,294 1,165 2,091 2,305 5,561
Filters in ID 122,047 1,846,171 248 487 1,048 1,783

VIII. CONCLUSION

This paper provides an analysis of the effect of FIA re-
lying on clock glitches on the CVA6 PMP configuration. It
highlights that such attacks lead to multiple effects that can
be exploited by an attacker. Furthermore, this study analyzes
the efficiency of a Hamming Code ECC to filter faults in the

ID stage of a CVA6 core. Results show that such approach
can help during the characterization phase when multiple fault
effects are observed. This tool is also interesting because it
has a little impact on resource used in FPGA when it comes
to instrument a design. Indeed, in our case study the FPGA
resources increased by 5.6% for LUTs and 1.9% for FFs
compared with the baseline design.

REFERENCES

[1] A. Waterman, Y. Lee, D. A. Patterson, and A. Krste. “The RISC-V
Instruction Set Manual, Volume I: Base User-Level ISA,” RISC-V. (),
[Online]. Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/
2011/EECS-2011-62.pdf.

[2] “Volume 2, Privileged Specification version 20211203,” RISC-V. (),
[Online]. Available: https://riscv.org/technical/specifications/.

[3] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: An Open Framework for Architecting Trusted Execution
Environments,” in Proceedings of the Fifteenth European Conference
on Computer Systems, Association for Computing Machinery, 2020.
DOI: 10.1145/3342195.3387532.

[4] “Hex-Five security,” HexFive. (), [Online]. Available: https : / / hex -
five.com/.

7

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.pdf
https://riscv.org/technical/specifications/
https://doi.org/10.1145/3342195.3387532
https://hex-five.com/
https://hex-five.com/


[5] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” Proceedings of the IEEE,
2006. DOI: 10.1109/JPROC.2005.862424.

[6] Karaklajić, Duško and Schmidt, Jörn-Marc and Verbauwhede, Ingrid,
“Hardware Designer’s Guide to Fault Attacks,” IEEE Transactions on
Very Large Scale Integration Systems, 2013. DOI: 10 .1109 /TVLSI .
2012.2231707.

[7] S. Nashimoto, D. Suzuki, R. Ueno, and N. Homma, “Bypassing
Isolated Execution on RISC-V using Side-Channel-Assisted Fault-
Injection and Its Countermeasure,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (TCHES), 2021. DOI: 10.
46586/tches.v2022.i1.28-68.

[8] R. Nabhan, J.-M. Dutertre, J.-B. Rigaud, J.-L. Danger, and L. Sauvage,
“A tale of two models: Discussing the timing and sampling em fault
injection models.,” in 2023 Workshop on Fault Detection and Tolerance
in Cryptography (FDTC), 2023. DOI: 10 . 1109 / FDTC60478 . 2023 .
00010.

[9] P. Maistri and J. Po, “A low-cost methodology for em fault emulation
on fpga,” in 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2022. DOI: 10.23919/DATE54114.2022.9774507.

[10] F. Zaruba and L. Benini, The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-
v core in 22-nm fdsoi technology, 2019. DOI: 10.1109/TVLSI.2019.
2926114. [Online]. Available: https://github.com/openhwgroup/cva6.

[11] N. Timmers, A. Spruyt, and M. Witteman, “Controlling PC on ARM
Using Fault Injection,” in Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC), 2016. DOI: 10.1109/FDTC.2016.18.

[12] B. Yuce, P. Schaumont, and M. Witteman, “Fault attacks on secure
embedded software: Threats, design, and evaluation,” Journal of Hard-
ware and Systems Security, 2018. DOI: 10.1007/s41635-018-0038-1.

[13] Breier, Jakub and Hou, Xiaolu, “How Practical Are Fault Injection
Attacks, Really?” IEEE Access, 2022. DOI: 10.1109/ACCESS.2022.
3217212.

[14] A. Vasselle, H. Thiebeauld, Q. Maouhoub, A. Morisset, and S.
Ermeneux, “Laser-Induced Fault Injection on Smartphone Bypassing
the Secure Boot,” in 2017 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), 2017. DOI: 10.1109/FDTC.2017.18.

[15] T. Trouchkine, S. K. K. Bukasa, M. Escouteloup, R. Lashermes, and
G. Bouffard, “Electromagnetic Fault Injection Against a Complex
CPU, toward new Micro-architectural Fault Models,” Journal of Cryp-
tographic Engineering, 2021. DOI: 10.1007/s13389-021-00259-6.

[16] O. Trabelsi, L. Sauvage, and J.-L. Danger, “Characterization of electro-
magnetic fault injection on a 32-bit micro-controller instruction buffer,”
in Hardware Oriented Security and Trust Symposium (AsianHOST),
2020. DOI: 10.1109/AsianHOST51057.2020.9358270.

[17] Hamming, R. W., “Error detecting and error correcting codes,” The
Bell System Technical Journal, 1950. DOI: 10.1002/j.1538-7305.1950.
tb00463.x.

[18] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection
attacks on cryptographic devices: Theory, practice, and countermea-
sures,” Proc. of IEEE, 2012. DOI: 10.1109/JPROC.2012.2188769.

[19] R. Schilling, P. Nasahl, S. Weiglhofer, and S. Mangard, “Secwalk: Pro-
tecting page table walks against fault attacks,” in Proc. International
Symposium on Hardware-Oriented Security and Trust (HOST), 2021.
DOI: 10.1109/HOST49136.2021.9702269.

[20] N. Theißing, D. Merli, M. Smola, F. Stumpf, and G. Sigl, “Compre-
hensive analysis of software countermeasures against fault attacks,”

in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2013. DOI: 10.7873/DATE.2013.092.

[21] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni,
“Countermeasures against fault attacks on software implemented aes:
Effectiveness and cost,” in Proceedings of the 5th Workshop on
Embedded Systems Security, Association for Computing Machinery,
2010. DOI: 10.1145/1873548.1873555.

[22] V. B. Thati, J. Vankeirsbilck, J. Boydens, and D. Pissort, “Selective
duplication and selective comparison for data flow error detection,”
in International Conference on System Reliability and Safety (ICSRS),
IEEE. DOI: 10.1109/ICSRS48664.2019.8987731.

[23] P. Kiaei, D. Mercadier, P.-E. Dagand, K. Heydemann, and P. Schau-
mont, “Custom instruction support for modular defense against side-
channel and fault attacks,” in Constructive Side-Channel Analysis and
Secure Design, Springer International Publishing, 2021. DOI: 10.1007/
978-3-030-68773-1 11.

[24] G. Leplus, O. Savry, and L. Bossuet, “Insertion of random delay with
context-aware dummy instructions generator in a risc-v processor,” in
2022 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), 2022. DOI: 10.1109/HOST54066.2022.9840060.

[25] B. Wang, L. Liu, C. Deng, M. Zhu, S. Yin, and S. Wei, “Against double
fault attacks: Injection effort model, space and time randomization
based countermeasures for reconfigurable array architecture,” IEEE
Transactions on Information Forensics and Security, 2016. DOI: 10.
1109/TIFS.2016.2518130.

[26] A. Zgheib, O. Potin, J.-B. Rigaud, and J.-M. Dutertre, “A CFI
Verification System based on the RISC-V Instruction Trace Encoder,”
in 2022 25th Euromicro Conference on Digital System Design (DSD),
2022. DOI: 10.1109/DSD57027.2022.00067.

[27] J. Sharma and N. Rao, “The characterization of errors in an fpga-
based risc-v processor due to single event transients,” Microelectronics
Journal, 2022. DOI: https://doi.org/10.1016/j.mejo.2022.105392.

[28] T. Trouchkine, G. Bouffard, and J. Clédière, “Fault injection charac-
terization on modern cpus: From the isa to the micro-architecture,”
in Information Security Theory and Practice: 13th IFIP WG 11.2
International Conference, WISTP 2019, Proceedings, Springer-Verlag,
2020. DOI: 10.1007/978-3-030-41702-4 8.

[29] S. Tollec, M. Asavoae, D. Couroussé, K. Heydemann, and M. Jan, “Ex-
ploration of fault effects on formal risc-v microarchitecture models,”
in 2022 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC), 2022. DOI: 10.1109/FDTC57191.2022.00017.

[30] E. Digital. “Enjoy Digital Litex framwork.” https://github.com/enjoy-
digital/litex, Litex. (2019), [Online]. Available: https : / / github. com /
enjoy-digital/litex.

[31] “Arty A7,” Digilent. (2019), [Online]. Available: https://digilent.com/
reference/programmable-logic/arty-a7/reference-manual?redirect=1.

[32] “Chipwhisperer Lite,” NewAETech. (2019), [Online]. Available: https:
//rtfm.newae.com/Capture/ChipWhisperer-Lite/.

[33] “Chipwhisperer tools,” NewAETech. (2019), [Online]. Available: https:
//github.com/newaetech/chipwhisperer.

[34] W. Pensec, F. Regazzoni, V. Lapotre, and G. Guy, “Defending the
Citadel: Fault Injection Attacks against Dynamic Information Flow
Tracking and Related Countermeasures,” in 2024 IEEE Computer So-
ciety Annual Symposium on VLSI (ISVLSI), 2024. [Online]. Available:
https://hal.science/hal-04620057.

8

https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/TVLSI.2012.2231707
https://doi.org/10.1109/TVLSI.2012.2231707
https://doi.org/10.46586/tches.v2022.i1.28-68
https://doi.org/10.46586/tches.v2022.i1.28-68
https://doi.org/10.1109/FDTC60478.2023.00010
https://doi.org/10.1109/FDTC60478.2023.00010
https://doi.org/10.23919/DATE54114.2022.9774507
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114
https://github.com/openhwgroup/cva6
https://doi.org/10.1109/FDTC.2016.18
https://doi.org/10.1007/s41635-018-0038-1
https://doi.org/10.1109/ACCESS.2022.3217212
https://doi.org/10.1109/ACCESS.2022.3217212
https://doi.org/10.1109/FDTC.2017.18
https://doi.org/10.1007/s13389-021-00259-6
https://doi.org/10.1109/AsianHOST51057.2020.9358270
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/HOST49136.2021.9702269
https://doi.org/10.7873/DATE.2013.092
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1109/ICSRS48664.2019.8987731
https://doi.org/10.1007/978-3-030-68773-1_11
https://doi.org/10.1007/978-3-030-68773-1_11
https://doi.org/10.1109/HOST54066.2022.9840060
https://doi.org/10.1109/TIFS.2016.2518130
https://doi.org/10.1109/TIFS.2016.2518130
https://doi.org/10.1109/DSD57027.2022.00067
https://doi.org/https://doi.org/10.1016/j.mejo.2022.105392
https://doi.org/10.1007/978-3-030-41702-4_8
https://doi.org/10.1109/FDTC57191.2022.00017
https://github.com/enjoy-digital/litex
https://github.com/enjoy-digital/litex
https://digilent.com/reference/programmable-logic/arty-a7/reference-manual?redirect=1
https://digilent.com/reference/programmable-logic/arty-a7/reference-manual?redirect=1
https://rtfm.newae.com/Capture/ChipWhisperer-Lite/
https://rtfm.newae.com/Capture/ChipWhisperer-Lite/
https://github.com/newaetech/chipwhisperer
https://github.com/newaetech/chipwhisperer
https://hal.science/hal-04620057

	Introduction
	Related work
	Background
	Threat Model
	CVA6 architecture and PMP configuration flow

	Experiments
	Evaluation setup
	Evaluation scenario
	Effects of FIA on PMP configuration

	Hamming Code as a filter in the PMP configuration flow
	Discussion
	Future works
	Conclusion

