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Abstract—The performances of classic matched filter ap-
proaches for magnetic dipole detection are limited due to the
correlated nature of the environmental magnetic noise. For
this reason, several studies have proposed background noise
optimization of the classic matched filter, but only for single-
sensor applications. In this study, we extend the noise-optimized
matched filter for the detection of a ferromagnetic object to
dual-sensor scalar magnetometric applications, and we provide
the associated formal development. The noise-optimized matched
filter is built by whitening the classic orthonormalized basis
functions of the original matched filter by the sampled back-
ground noise covariance matrix, according to the minimum
variance distortionless response criterion. The receiver operating
characteristic curves show a +2 dB processing gain between the
original matched filter and the noise-optimized one when they are
applied to a ferromagnetic object signal placed in a colored noise
environment. Moreover, for dual-sensor signals, an additional
array gain of +3 dB is observed in comparison with a single
magnetic sensor, meaning that the proposed method has a total
gain of +5dB compared to the original matched filter applied to
a single-sensor signal. These results are encouraging for the use
of magnetometric array processing techniques in the future.

Index Terms—Magnetic Anomaly Detection, Matched Filter,
Orthonormalized Basis Functions, Minimum Variance Distor-
tionless Response, Array processing

I. INTRODUCTION

Magnetic anomaly detection (MAD) is a passive comple-
mentary method to the use of SONAR systems for detect-
ing ferromagnetic objects such as metallic wastes, mines,
unexploded ordnances (UXO), wrecks, ships, pipelines, or
submarines [1], [2]. The object generates a magnetic field,
resulting in a local anomaly in the Earth’s magnetic field
that can be measured as a time-varying signal by a magnetic
sensor that moves in the vicinity of the object [2]. However,
the magnetometer also senses the different magnetic fields
of all the magnetic sources in the environment (such as
geological sources, oceanic motion’s magnetic fields, and
geomagnetic fluctuations [3]). Hence, it is necessary to process
the measured signal to detect the object signature that is
generally drowned in the background noise. The most common
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detection method is to decompose the signal of the object
into a set of orthonormalized basis functions (OBF) [4]. OBF
performs well under Gaussian white background noise, but
their performances degrade under colored noise with a 1/fα

power spectral density (PSD), which is a good representation
of the common environmental magnetic background noise [5].
Several methods have been proposed in the literature to extend
the use of the OBF matched filter to colored background noise,
but to the best of our knowledge, these methods have only
been applied to single sensor detection systems [5], [6], [7],
[8], [9]. However, recent advances regarding sensor minia-
turization have enabled the use of embedded magnetometric
arrays for MAD systems [10]. Therefore, it is crucial to have
efficient array processing techniques. The present work’s main
contribution is to apply the Minimum Variance Distortionless
Response (MVDR) criterion [11] to the OBF matched filter
in order to build a noise-optimized matched filter and test its
ability to detect ferromagnetic’s signatures under colored noise
environments in dual-sensor magnetometric signals.

II. DUAL-SENSOR DETECTION PROCEDURE

Generally, the sensor-to-object distance R is large enough
(more than 3 times the largest dimension of the object) to
consider the object as a magnetostatic dipole [4]. The magnetic
field B of the object with a magnetic moment M at a distance
R = ‖r‖ can be expressed as:

B =
µ0

4πR5

[
3(M · r)r−R2M

]
(1)

(µ0 = 4π × 10−7 H/m being the permeability of the free
space). For scalar magnetometers, the measured object signal
S can be approximated by the projection of the object’s
magnetic field B onto the local Earth’s magnetic field T [4]:

S =
B ·T
‖T‖

(2)

As the sensor also measures the ambient magnetic noise, the
raw signal X is expressed as X(n) = S(n) + N(n), where
N is the additive background noise and n is a given temporal
sample of the signal measured at the sampling frequency fs.



The Signal to Noise Ratio (SNR, in decibels) is then defined
as in [12], [8]:

SNR = 20 log10

max(|S|)√√√√ 1

L

L∑
i=1

(
N(i)−N

)2 dB (3)

where S is the original anomaly of finite length L and N
the mean value of the background noise N . An example of
an object’s magnetic anomaly signal polluted by a colored
background noise is given in fig.1. The colored noise samples
are generated by manipulating the Fast Fourier Transform
(FFT) of a random white noise so that the amplitudes get
proportional to 1/

√
fα before applying the inverse FFT, with

α being the power law coefficient of the PSD. The typical α
value of the magnetic environmental noise has been estimated
in the [0; 2] range [5]. Hence, the background noise displayed
on fig.1 was generated with an arbitrary value of α = 1, which
corresponds to a pink noise.
Fig.2 describes the geometry related to the measurement of
the object’s magnetic anomaly by the magnetic sensors. The
sensor platform moves along a straight line represented by the
x-axis in the vicinity of the static object positioned at a point
defined by (xO; yO; zO). The x-axis is laterally shifted from
the object by a distance s and the platform velocity V0 and
relative altitude h are both constant. Under these assumptions:
R2 = (V0t− xO)2 + y2O + z2O, with t the time. The point on
the x-axis reached at a time tCPA such as V0tCPA = xO is
called the Closest Point of Approach (CPA). At the CPA, R
reaches its minimum R0 given by R2

0 = s2 + h2. It is then
possible to express R as a function of the CPA-normalized
distance w, such as: R2 = R2

0(1 + w2), with:

w = R−1
0 V0(t− tCPA) (4)

Applying the same reasoning to the second sensor gives:
R2

2 = R2
00(1 +w2

2), with w2 being the distance ratio between
the second sensor-to-object distance R2 and the second sensor-
to-CPA distance R00. As both sensors are embedded on the
same platform, it is more convenient to consider a normalized

Fig. 1: Example of a magnetic anomaly signal S polluted by
a zero-mean Gaussian pink noise N (fs = 10Hz, α = 1). The
SNR at this sampling frequency is −9 dB.

𝑠

ℎ

𝑹𝟎

Direction

of movement

Sensor 1

Object

[0; 0; 0]

𝑹𝟎𝟎

𝑀

𝒁

𝒀

𝑿



Down

True East

𝐷

𝐼



T

True North

[xO; yO; zO]



Platform
Sensor 2

Fig. 2: Representation the object’s magnetic anomaly signal
measurement by an embedded dual-sensor system that moves
along a straight line of γ heading. M is the magnetic moment
of the object, with θ being its magnetic declination and β
being its magnetic inclination. T is the local geomagnetic field,
with D being the geomagnetic declination and I being the
geomagnetic inclination (Reworked from [4]).

distance between the sensor platform and its CPA rather than
normalized distances between each sensor and their respective
CPA. This is done by considering the first sensor as the
reference sensor, such as w2 = R−1

00 V0(t− tCPA) = d × w,
where d can be considered as an array baseline coefficient
defined as in [4]:

d =

√(
R2

0

R2
00

)
=

√(
s2 + h2

s2 + (h+ `)2

)
(5)

Combining (4), (5), (1) and (2) leads to express the dual-sensor
magnetic anomaly [S] of the object as a linear combination of
several functions F (w) such as: [S] = [λ][F (w)], where:

[
S1

S2

]
=

[
λ1 λ2 λ3 0 0 0
0 0 0 λ4 λ5 λ6

]

F1(w)
F2(w)
F3(w)
F4(w)
F5(w)
F6(w)

 (6)

with Fn(w) defined as in [4]:

F1(w) = k1

(
(1 + w2)−5/2 + k0w

2(1 + w2)−5/2
)

F2(w) = k2w(1 + w2)−5/2 F3(w) = k3w
2(1 + w2)−5/2

F4(w) = k1

(
d3(1 + (dw)2)−5/2 + k0d

5w2(1 + (dw)2)−5/2
)

F5(w) = k2d
4w(1 + (dw)2)−5/2

F6(w) = k3d
5w2(1 + (dw)2)−5/2

(7)



where Fn(w) is the orthonormalized basis function (OBF)
number n (displayed in fig.3 for the first sensor signal, span-
ning n = 1, 2, 3) and λn is the corresponding OBF coefficient.
The OBF in (7) are expressed with the orthonormalization
coefficients kn resulting from the Gram-Schmidt procedure
used to gain better detection properties from the original basis
functions, called ”Anderson functions”, and developed in the
late 1940’s to express the magnetic field of a ferromagnetic
object [3]. The kn coefficients are given by:

k0 = −5

3
; k1 =

√
24

5π
; k2 =

√
128

5π
; k3 =

√
128

3π
(8)

By developing (1) and (2) with respect to (4), we calculated
the dual-sensor OBF coefficients λ that are relevant for the
scenario given in fig.2 and used in (6). They are given by:

λ1 =
M0µ0

4πR0
3

((a3 − 1)mY + a4mZ)eY
+(a4mY + (a5 − 1)mZ)eZ −mXeX

k1

λ2 =
M0µ0

4πR0
3

(a1mY + a2mZ)eX + a1mXeY + a2mXeZ

k2

λ3 =
M0µ0

4πR0
3

2mXeX −mY eY −mZeZ
−k0

[(
(a3 − 1

)
mY + a4mZ)eY

+
(
a4mY + (a5 − 1)mZ

)
eZ −mXeX

]
k3

λ4 =
M0µ0

4πR0
3

(
(b3 − 1)mY + b4mZ

)
eY(

b4mY + (b5 − 1)mZ

)
eZ −mXeX

k1

λ5 =
M0µ0

4πR0
3

(
b1mY + b2mZ

)
eX + b1mXeY + b2mXeZ

k2

λ6 =
M0µ0

4πR0
3

2mXeX −mY eY −mZeZ
−k0

[(
(b3 − 1)mY + b4mZ)eY

+
(
b4mY + (b5 − 1)mZ)eZ −mXeX

]
k3

(9)

with the following geometrical components:

a1 = 3sR−1
0 a2 = 3hR−1

0 a3 = 3s2R−2
0 a4 = 3shR−2

0

a5 = 3h2R−2
0 b1 = 3sR−1

00 b2 = 3(h+ `)R−1
00

b3 = 3s2R−2
00 b4 = 3s(h+ `)R−2

00 b5 = 3(h+ `)2R−2
00

(10)

and the following magnetic parameters:

M =

MX

MY

MZ

 = M0

mX

mY

mZ

 and T =

TXTY
TZ

 = ‖T‖

eXeY
eZ


mX = cos(θ) (cos(β) + sin(β))− sin(θ)

mY = sin(θ) cos(β) + cos(θ) + sin(θ) sin(β)

mZ = cos(β)− sin(β)

eX = cos(D + γ) sin(I)− sin(D + γ) + cos(D + γ) cos(I)

eY = sin(D + γ) sin(I) + cos(D + γ) + sin(D + γ) cos(I)

eZ = sin(I)− cos(I)
(11)

Fig. 3: Typical set of OBF for a single sensor with a straight-
line flight path.

In single sensor applications, since R0 is unknown a priori,
the detection procedure is made through multi-channel filters,
each channel corresponding to an estimated value of R0 [4].
For dual-sensor applications, the multi-channel filters must be
adapted to span through different combinations of s and h
values for a selected value of R0. Then, the value of the array
baseline coefficient d will be automatically adapted through
each channel according to both ` and the selected value of
assumed R0 =

√
s2 + h2. Moreover, in order to effectively

detect the object’s magnetic anomaly in the measured signal,
the filtering procedure is made over a sliding window of δ half-
width, corresponding to the length of the overlap between the
OBF and the object’s magnetic anomaly. Under these consid-
erations, the detection of a time-discrete measured signal S is
made when the total energy E of the decomposed raw signal in
the basis of the OBF at a certain point m of signal processing
exceeds a certain threshold. The total energy is given by the
sum of the energy of the OBF coefficients, with ∆w the length
of spatial sampling normalized to the CPA-distance, such as
in [4]:

E1(m) =

3∑
n=1

∣∣∣∣∣
+δ∑
i=−δ

Fn(wi)S1(wm+i) ∆w

∣∣∣∣∣
2

where ∆w = wi+1 − wi

(12)

Results of this filtering operation on the same anomaly as
depicted in fig.1 under both Gaussian white and pink noises
are given in fig.4. It can be seen in fig.4a that this operation
is optimal under white noise conditions. However, under pink
noise conditions, as illustrated in fig.4b, peaks of normalized
energy arise outside the [−w;w] range, which indicates the
presence of false alarms for thresholds inferior to 50% of the
maximum normalized energy in this example.

III. NOISE-OPTIMIZED MATCHED FILTER

The output Y of a noise-optimized detector can be expressed
as [11]:

Y = WH [X] = WH [F ] +WH [N ] (13)



with W the optimal weight vector for the set of measurements
on the whole array [X] and the object’s magnetic anomaly
signals [S] (which is unknown), expressed by the OBF [F ] as
defined in relation (7). The aim is to find the optimal vector
W that maximizes the SNR in the presence of the signal of
interest by minimizing the variance of Y in the presence of
noise under the constraint of no distortion of the signal of
interest [11]. Therefore, W must verify the two following
conditions given by: {

WH [F ] = 1

min
(
WH [N ]

) (14)

As demonstrated in [9]: min
(
WH [N ]

)
= min

(
WHΓW

)
,

where Γ is the covariance matrix of the noise. This double
constraint can be expressed as a Lagrange optimization prob-
lem [9], [11]. The goal is to find the minima of the Ψ function
defined as

Ψ(W, ξ) = min
(
WHΓW

)
+ ξ

(
WHF − 1

)
(15)

with ξ being the Lagrange multiplier. By solving ∇WH Ψ = 0
as in [9], W becomes:

W =
Γ−1 F

FH Γ−1 F
(16)

(a) White noise case (α = 0)

(b) Pink noise case (α = 1)

Fig. 4: Output of the filtering procedure for the same magnetic
anomaly as shown in fig.1. The original anomaly is polluted
by zero-mean Gaussian noise (SNR= −9dB, δ = 2w).

with [FHΓ−1F ]−1 being the scaling factor or normalizing
coefficient for unity gain and W being the array weight
for the minimum variance distortionless response [11]. It is
now possible to process the array signal [S] with the noise-
covariance-weighted OBF W in the same manner as for (12):

[E(m)] =

∣∣∣∣∣
+δ∑
i=−δ

W (wi)[S(wm+i)] ∆w

∣∣∣∣∣
2

with: ∆w = wi+1 − wi

(17)

This implies that the computation of Γ is made through the
same sliding window of δ half-width as in (17). For a signal
of length L, the mean covariance of the noise can be estimated
through a sliding window as follows:

Γ =
2δ

L

L/2δ∑
i=0

N(2δi+ 1 : 2δi+ 2δ) N(2δi+ 1 : 2δi+ 2δ)
H

(18)
where the subscript H denotes the Hermitian transpose.
Results of this filtering applied to the same anomaly as
depicted in fig.1 under both Gaussian white and pink noises
are given in fig.4. Under white noise conditions, fig.4a shows
no improvement of the MVDR-OBF filter over the OBF
filter. The two filters performs similarly because the OBF
filter is already the optimal one under white noise conditions,
as the covariance matrix of a white noise is a diagonal
matrix with its diagonal elements being the power of the
noise [7], [9]. However, for colored noises, fig.4b shows that
noise-covariance whitening damps the amplitude of false
alarms and narrows the peaks of normalized energy.

It is worth noticing that for single-sensor signals, this
operation whitens the background noise and simultaneously
performs the energy computation. However, for dual-sensor
signals, this operation also denoise the original signal, as the
diagonal element Γ(m,m) is the power of the noise sample
m and Γ(m, p) is the cross-correlation of samples m and p
on the sensors that tend to be mitigated during the whitening
operation.

IV. RESULTS

The detection strategy can be described as a binary decision
problem: {

H0 : X = N

H1 : X = S +N
(19)

where H0 and H1 are respectively the object signal absence
and presence hypothesis. The output of the detector can
then give four outcomes: either the sample is correctly
classified under the H1 hypothesis (true positive case ”TP ”)
or incorrectly classified (false negative case ”FN”), or either
the sample is correctly classified under the H0 hypothesis
(true negative case ”TN”) or incorrectly classified (false
negative case ”FP ”).



To compare the performances of both OBF and MVDR-
OBF matched filters, the probability of detection PD and
the probability of false alarms PFA for both matched filters
applied to a dataset of magnetic anomaly signals polluted by
colored noises are computed. These two quantities are given
by:

PD =
TPs

TPs+ FNs
PFA =

FPs

FPs+ TNs
(20)

The associated Receiver Operating Characteristics (ROC)
curves are shown in fig.5. To see the relative gain between
the methods without bias, the ROC curves are computed with
a constant value of α = 1 and an arbitrary value of SNR =
”SNR0”, which we consider to be an operating functioning
point for application in the marine environment. The dataset
used to compute the probabilities comprise 8000 signals,
which enables a sufficient number of snapshots while limiting
computational costs. For dual-sensor signals, we chose an
arbitrary constant value of ` =10, while keeping the half-width
window of δ = 2w for the detection procedure given in (18).
The results displayed in fig.5 show an improvement of +2 dB
between the original OBF method and the MVDR-OBF one.
Moreover, adding a second sensor improves the processing
gain by approximately +3dB in the MVDR-OBF case. This
is due to the fact that a second sensor doubles the number of
samples for the noise covariance estimation, which improves
the noise adaptation. This results in an overall improvement of
+5dB between the single-sensor OBF case and the dual-sensor
noise-optimized one. Regarding the inverse cubic law of decay
of the object’s dipolar magnetic field given in equation (1)
and the SNR definition given in relation (3), this improvement
in gain of +5dB is equivalent to a 21% improvement on the
range of detection. These results show the interest in embedded
magnetometric arrays for magnetic anomaly detection.

Fig. 5: ROC curves for magnetic anomalies polluted by zero-
mean Gaussian pink noise. Single-sensor and dual-sensor cases
are displayed, both with (MVDR-OBF) and without (OBF)
noise-covariance whitening.

V. CONCLUSION

In this work, an extension of the MVDR-noise-optimized
matched filter to dual magnetometric sensor signals is pro-
posed. To our knowledge, this extension has not been proposed
yet. For ferromagnetic object signals polluted by colored noise,
the proposed method shows an improvement in detection rate
according to array processing theory. This approach enables
background noise reduction using a second sensor without
having to perform gradiometric differentiation, which gives
a better range of detection since gradiometric signals decrease
more rapidly than magnetometric signals [12]. For future
work, we plan to test the method on real signals in order
to gain a better insight into its performance under real-noise
conditions. Also, noise coherence tests should be run on the
sensors to determine the number of optimal sensors and their
spacing to be set on the array for a given detection scenario.
Finally, a comparison between this method and the traditional
gradiometric OBF one could help us determine the most
appropriate use case for each of the two methods.
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