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Abstract—We provide here some contributions on the analysis
of 2D Teager-Kaiser energy operator (TKEO) on Gaussian noise.
To do so, we determine the probability density function (pdf) and
the statistical distributions of its output. In addition, we show
the asymmetry of the pdf and propose to fit it with a shifted
log-Laplace distribution. We provide lower and higher statistical
moments, and prove the dependence on the covariance matrix of
the noise of both the standard deviation, coefficient of variation,
skewness and kurtosis. Finally, we show the ability of 2D higher
order statistics to detect object contours in highly noisy images
and provide illustrations on both synthetic and real images.

Index Terms—Teager-Kaiser operator. Gaussian noise. Statis-
tical moments. Skewness. Kurtosis.

I. INTRODUCTION

Signals can represent any phenomena. In real world appli-
cations, the notion of energy is very important in the sense that
signals are always transmitted with a finite total energy [1]–
[3]. It is then important to know how to calculate or provide
a good approximation of this quantity, which should not
depend on the representation of the signals. In that context, an
energy measure related to the amplitude modulation (AM) and
frequency modulation (FM) was introduced [4], [5], and later
extended for analyzing oscillatory signals with time-varying
amplitude and frequency in speech processing [6]. This energy
measure is known as Teager-Kaiser Energy Operator (TKEO).
A relationship was established between TKEO and the class
of Volterra filters [7]; see [8], [9] for more about these filers.
TKEO has found many applications in various domains, for
instance in signal and image demodulation, multiresolution de-
tection, texture analysis, image segmentation, time-frequency
analysis [10]–[16]. Some interesting extensions have also been
proposed by using kth order derivatives of the signal/image
[17], [18], the goal being to improve demodulation results. A
good review on TKEO can be found in [19].

There exists only some few works on the behavior of 1D
TKEO on noise [20]–[23], most of them proposed computa-
tions of lower statistical moments under the assumptions of
Gaussian noise or uniformly distributed random signal. Very
recently, a thorough analysis of the statistical distributions of
1D TKEO on zero-mean white Gaussian noise was proposed
[24], statistical moments were also computed. To the best of
our knowledge, there is not yet any 2D study on 2D TKEO
in the presence of noise of any type. Here, we propose a
2D analysis and prove that the standard deviation, coefficient
of variation, skewness and normalized kurtosis of 2D TKEO
outputs of the noise all depend on the covariance matrix of

the noise. 1D TKEO output approximates a high pass filter
weighted by the local mean [7], this explains 2D TKEO
capabilities for edge detection in images. In addition to the
theoretical framework, we show the capabilities of higher order
statistical moments in detecting objects in images, even in very
noisy environment.

II. BACKGROUND ON TKEO AND EXTENSIONS

TKEO output on any discrete signal s[n] is defined by:

Ψ(s[k]) = (s[k])2 − s[k − 1]s[k + 1]. (1)

For any differentiable signal s(t), TKEO is defined as:

Ψ[s(t)] = [ṡ(t)]2 − s(t)s̈(t), (2)

where ṡ(t) and s̈(t) represent the first and second derivatives
in time of s(t), respectively. Many TKEO extensions have
been proposed [17], [18], [25].

The 2D extension denoted 2D TKEO has been extended
from 1D TKEO as follows: Ψ[I(x, y)] = ∥∇I(x, y)∥2 −
I(x, y)△I(x, y), where I(x, y) is an image, ∇I(x, y) the
gradient of I , ∥· ∥ the R2 euclidean norm and △I(x, y)
the Laplacian of image I . The discrete formulation is then
obtained ∀ (k, l) ∈ N2, as: Ψ(I[k, l]) = 2(I[k, l])2 − I[k −
1, l] · I[k + 1, l]− I[k, l − 1] · I[k, l + 1].

Proposition 2.1: Let I[k, l] be a discrete image. Its 2D
TKEO output can be decomposed as follow:

Ψ(I[k, l]) = Ψ(I[k, · ]) + Ψ(I[· , l]), (3)

where Ψ(I[k, · ]) and Ψ(I[· , l]) are 1D TKEO discrete outputs
obtained along lines and columns, respectively.

Proof The proof is straightforward by applying the defi-
nition of 2D discrete TKEO and considering for example
Ψ(I[k, · ]) = (I[k, l])2 − I[k − 1, l]I[k + 1, l].

III. TKEO ANALYSIS ON 2D GAUSSIAN NOISE

Let W (t1, t2) be a Gaussian noise defined on R2 such
that given fixed t2, W (· , t2) ∼ N (0, σ1) and given fixed
t1, W (t1, · ) ∼ N (0, σ2). Let W1 : t1 7−→ W (t1, t2) and
W2 : t2 7−→ W (t1, t2). W1 and W2 are continuous zero-
mean random variables with respective standard deviation
equals to σ1 and σ2. Since axes (O, t1) and (O, t2) are
independent, then, W1 and W2 are also mutually indepen-
dent. Excitation Wi(t), i = 1, 2, of TKEO are given by:
Ψ(W1) = (W1[k])

2 − W1[k − 1]W1[k + 1] and Ψ(W2) =
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(W2[l])
2−W2[l−1]W2[l+1]. Then, thanks to Proposition 2.1,

the excitation W (t1, t2) of 2D TKEO writes:

Ψ(W [k, l]) = Ψ(W1[k]) + Ψ(W2[l]). (4)

We assume excitation W1(t) and W2(t) of 1D TKEO is
repeated a large number of times, and derived samples are ob-
served values of corresponding random values. TKEO outputs
are thus considered as operations on those random values.

Denote fΨ(W ) the pdf of Ψ(W ). It provides a good char-
acterization of Ψ(W ), the next result provides its form:

Proposition 3.1: The pdf fΨ(W ) of Ψ(W ) is given by:

fΨ(W )(t1, t2) =
1

2(σ1σ2π)3

∫ ∞
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∫ ∞
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Proof Since Ψ(W ) is the sum of the TKEOs of W1 and W2

relatively to their respective standard deviations σ1 and σ2,
then, its pdf is the convolution of the pdf fΨ(W1) of Ψ(W1)
and the pdf fΨ(W2) of Ψ(W2). Then, extending results from
[24], [26], one has:

fΨ(W )(t1, t2) =
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where λ11 =
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with β = λ11λ21, λ1 =
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λ

∫ ∞

0

[∫ ∞

0

1√
x
exp

(
− x2

2σ2
1

)(∫ ∞

0

exp(−λ1)du

)
dx

]
×
[∫ ∞

0

1√
x
exp

(
− x2

2σ2
2

)(∫ ∞

0

exp(−λ2)du

)
dx

]
dy.

Fig. 1 compares the pdfs of Ψ(b) and the zero-mean
Gaussian b(t1, t2) ∼ N(µ,Σ), with µ = (0, 0) and both
with σ1 = σ2 = 1. Notice the difference between the pdf

of the 2D TKEO output (orange curve) and the Gaussian
distribution (in blue). Also, the tail of the skewness of the
pdf fΨ(b)(t1, t2) of Ψ(b) gets heavier as the variance of the
noise increases (Fig. 1, down). Fig. 2 shows for µ = (0, 0)

Fig. 1. Probability density function fΨ(b)(t1, t2) of Ψ(b). Top: b(t1, t2) ∼
N ((0, 0),Σ). Down: with different values of Σ.

and σ1 = σ2 = 1 the fitting of fΨ(b) (in orange) with a
log-Laplace (LL) distribution with parameters δ = 6.32,
α = −22 and β = 24.6 (blue).

Fig. 2. Approximation of fΨ(b)(t1, t2) by a log-Laplace distribution.

Proposition 3.2: Let W be a WGN with a null mean
(µ1, µ2) = (0, 0) and covariance matrix given as: Σ =(
σ1 0
0 σ2

)
. The Expectation, standard deviation and co-

efficient of variation (CV) of its 2D TKEO output denoted
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Ψ(W ) are respectively given as:

E(Ψ(W )) = σ2
1 + σ2

2 , (10)

σ(Ψ(W ) =
√
3
√
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1 + σ4

2 and (11)
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√
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2
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2

. (12)

Proof One has:
• For the expectation. Thanks to decomposition (4) and the
independance of variables W1 and W2, one has:

E(Ψ(W )) = E(Ψ(W1)) + E(Ψ(W2)).

Use E(Ψ(Wi)) = σ2
i , i = 1, 2 [24] to conclude.

• For the standard deviation. Since Wi, i = 1, 2, are indepen-
dent, then, so are their TKEOs. Var(Ψ(Wi)) = 3σ4

i , i = 1, 2
[24], the decomposition result (4) yields then:

Var(Ψ(W )) = Var(Ψ(W1)) + Var(Ψ(W2)) = 3σ4
1 + 3σ4

2 .

• CV definition and equations (10) and (11) yield:
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2
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Proposition 3.3: Let W a WGN with a null mean (µ1, µ2) =

(0, 0) and covariance matrix given as: Σ =

(
σ1 0
0 σ2

)
. The

skewness γ(Ψ(W )) and normalized kurtosis κ(Ψ(W )) of its
2D TKEO output Ψ(W ) are respectively given as follows:
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Proof One has:
• Skewness definition and (Wi)

2
i=1 independence give:

γ(Ψ(W )) =
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i , the result follows.

• Kurtosis definition and (Wi)
2
i=1 independence yield:
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Proposition 3.4: Let W (t1, t2, · · · , tn) be an nD WGN with
expectation µ = (µ1, µ2, · · · , µn) = (0, 0, ......, 0, 0) and a
covariance matrix Σ. The expectation, standard deviation and
CV of Ψ[W (t1, t2, · · · , tn)] given by:

E(Ψ(W )) =

n∑
i=0

σ2
i , σ(Ψ(W )) =

√
3

√√√√ n∑
i=0

σ4
i , and (15)
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√
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4
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i=0 σ
4
i

. (16)

IV. NUMERICAL EXPERIMENTS

Experiments are conducted on synthetic and real images
by analyzing with different signal-to-noise ratios (SNRs) the
statiscal moments; for instance, the skewness and normalized
kurtosis. SNRs range between −25 dB and 50 dB. We consider
the following synthetic AM-FM image defined as follows:

f1(k, l) =
1

2
cos

[
π

3
l5 +

π

5
k + 2 sin

(
π

30
l + sin

(
26π

50

))]
[
1 +

1

2
cos

( π

30
l +

π

50
k
)2

]
, (17)

where (k, l) ∈ {1, 2, ....., 200}2, and Simba. Images and corre-
sponding TKEOs are displayed in Fig. 3. In our experiments,
an additive WGN is added to the test images in the following:

g1(k, l) = f1(k, l) + b(k, l), for i = 1, 2, (18)

where b(k, l) ∼ N(µ,Σ), µ = (0, 0) and Σ =

(
σ1 0
0 σ2

)
.

The values of the skewness and normalized kurtosis of I ,
Simba and their corresponding 2D TKEO outputs are given
in Table I. We display in Fig. 4 the noisy synthetic image g1
and its corresponding 2D TKEO outputs, g1 is corrupted with
WGNs of SNRs range between −20 dB and 30 dB. We notice
a detection of image structures by 2D TKEO up to SNR = −5
dB (Fig. 4), while this cannot be said for the corresponding
noisy image at the same SNR rate. This result can also be seen
by observing the skewness and normalized kurtosis displayed
in Fig. 5 where we notice a slight variation of the skewness of
the 2D TKEO Ψ(g1) output compared to the almost constant

548



Image f1 Simba

Ψ(f1) Ψ(Simba)
Fig. 3. Synthetic and real images with their corresponding 2D TKEO.

TABLE I
SKEWNESS AND KURTOSIS OF I , SIMBA AND THEIR 2D TKEO.

Images Skewness (γ) (κ)

I Eq. (17) −1.4 −1.4

Ψ(I) 0.3 −1.1

Simba −0.08 0.04

Ψ(Simba) 66.5 3.7

behavior of the skewness of g1. On the other hand, we notice
a variation of the normalized kurtosis for both g1 and Ψ(g1)
which can be interpreted as the contours detection bounds.
Based on the results, we can say that contours of objects can
be detected in noisy images for 2D TKEO for the normalized
kurtosis values corresponding to SNRs ≥ −10 dB.

Results are also confirmed for Simba, images in Fig. 6
represent the degradations of Simba and their corresponding
2D TKEO outputs, with SNRs range between −10 dB and 40
dB (images below 0 db are not displayed here due to space
limitation). We observe a detection of image contours at 0 dB
(Fig. 4), this is confirmed by obtained results on the skewness

g1 : SNR=−20 dB g1 : SNR=−5 dB g1 : SNR=30 dB

Ψ(g1): SNR=−20 dB Ψ(g1): SNR=−5 dB Ψ(g1): SNR=30 dB

Fig. 4. Displayings with SNRs in between −20 dB and 30 dB. Top line:
Noisy image g1. Bottom: corresponding 2D TKEO Ψ(g1).

Fig. 5. Kurtosis and skewness with different SNRs. Left: g1. Right: Ψ(g1).

and normalized kurtosis displayed in Fig. 7. The variations of
the normalized kurtosis in Simba and Ψ(Simba) determine the
contours detection bounds. Thus, we can say that the contours
of objects can be detected in noisy images for 2D TKEO
for non negative normalized kurtosis values corresponding to
SNRs ≥ 0 dB.

Simba: SNR=0 dB Simba: SNR=5 dB Simba: SNR=40 dB

Ψ(Simba), SNR=0 dB Ψ(Simba), SNR=5 dB Ψ(Simba), SNR=40 dB

Fig. 6. Displayings with SNRs in between 0 dB and 40 dB. Top line: Simba.
Bottom: Corresponding 2D TKEO Ψ(Simba).

Fig. 7. Kurtosis and skewness with different SNRs. Left: Simba. Right:
Ψ(Simba).

V. CONCLUSION

We have proposed here a mathematical analysis of the
output of 2D TKEO in a Gaussian noisy environment. To
achieve this, we have determined the 2D pdf and the statistical
distributions of 2D TKEO outputs. We also have shown the
asymmetry of the pdf, and proposed its fitting with a shifted
log-Laplace distribution. In addition, we have provided explicit
calculations of the standard deviation, coefficient of variation,
skewness and normalized kurtosis of 2D TKEO outputs, and
shown that all these parameters depend on the covariance
matrix of the noise. Besides the theoretical contributions, we
have shown the capabilities of the higher order statistics for
objects detection in highly noisy images. Ongoing works are
on its applications for image enhancement. We plan as well to
study TKEO extensions on different types of noise, and under
the assumption of dependence of the variables.
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