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Certified algorithms for equilibrium states of
local quantum Hamiltonians

Hamza Fawzi1, Omar Fawzi 2 & Samuel O. Scalet 1

Predicting observables in equilibrium states is a central yet notoriously hard
question in quantum many-body systems. In the physically relevant thermo-
dynamic limit, certain mathematical formulations of this task have even been
shown to result in undecidable problems. Using a finite-size scaling of algo-
rithms devised for finite systems often fails due to the lack of certified con-
vergence bounds for this limit. In this work, we design certified algorithms for
computing expectation values of observables in the equilibrium states of local
quantum Hamiltonians, both at zero and positive temperature. Importantly,
our algorithms output rigorous lower and upper bounds on these values. This
allows us to show that expectation values of local observables can be
approximated in finite time, contrasting related undecidability results. When
the Hamiltonian is commuting on a 2-dimensional lattice, we prove fast con-
vergence of the hierarchy at high temperature and as a result for a desired
precision ε, local observables can be approximated by a convex optimization
program of quasi-polynomial size in 1/ε.

A central question in physics is to determine the properties of a many-
body quantum system as a function of the interaction between its
constituents. The topic of Hamiltonian complexity1,2 studies this
question from a complexity-theoretic point of view. The results in
Hamiltonian complexity suggest that efficient algorithms answering
this question are unlikely to exist. In fact, determining the ground
energy is hard for the complexity class QMA3, and this even holds for
translation-invariant systems4. This means that we do not expect
polynomial-time (classical or quantum) algorithms for this problem.
Computing expectation values of observables in the ground state is
even harder than the ground energy5. In the thermodynamic limit,
when the number of systems is taken to infinity, finding good
approximations to the energy can be hard for fixed Hamiltonians6,7,
and the spectral gap is even uncomputable8.

These complex results put severe limitations on provably efficient
and correct classical and quantum algorithms for the fundamental
questions inmany-body physics.However, these limitations only apply
to algorithms that have the required properties for all valid instances
of the problem. Moreover, typically the instances showing hardness
are highly contrived. In order to avoid these limitations, we consider
here certified algorithms where we require the correctness condition

for all instances, but relax the condition of provable efficiency for all
instances. We say that an algorithm for computing p�ðHÞ is certified if
on input H, it outputs a pair of numbers ðpmin

‘ ,pmax
‘ Þ such that we have

p�ðHÞ 2 ½pmin
‘ ,pmax

‘ � for all H and all ℓ, i.e., the algorithm provides upper
and lower bounds on the quantity of interest. Even without having any
performance guarantees a priori, the error is bounded by the size of
the interval a posteriori.

We further require that as ℓ→∞, the interval ½pmin
‘ ,pmax

‘ � converges
to the desired value p�ðHÞ. Here, ℓ is a parameter that governs the
runtime of the algorithm such that fast convergence in ℓ leads to an
efficient algorithm. The above cited complexity results show, e.g., that
if p�ðHÞ is the ground energy of H, then for small ℓ, the interval
½pmin

‘ ,pmax
‘ � has to be large for some H. However, for any input H of

interest, we can always run the algorithm and the returned information
will be correct and certifiably so. As such, no a priori analysis of the
convergence speed is needed in order to obtain rigorous approxima-
tions of the quantity of interest.

A well-studied general way of determining properties of thermal
states is by preparing such states on a quantum computer. This
includes, for example, works on quantumMetropolis sampling9,10 and,
more generally, quantum Gibbs samplers11,12. Here, we focus on
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classical algorithms, which clearly cannot prepare quantum thermal
states, but can still compute specified properties of general quantum
thermal states. We note that our algorithms have a similar feature to
(quantum) Metropolis sampling and, more generally, (quantum)
Markov Chain Monte Carlo methods, in that they can be applied for
any local Hamiltonian, but this comes at the (unavoidable) cost of not
always having fast convergence.

In this work, we consider a hierarchy of convex optimization
problems that provide certified algorithms for computing observables
in-ground and thermal states in finite and infinite systems. As a main
result, we prove the decidability of a formulation of the equilibrium
observable problem, which contrasts with previous closely related
undecidability results. The main technical ingredient is a formulation
of constraints relaxing the Gibbs condition in a convex and algor-
ithmically feasible manner. Furthermore, we are able to prove effi-
ciency in a more restricted setting. Preliminary numerical results also
suggest that the method can be of use in practice.

Results
We now present the setup in an informal way. We refer to the Supple-
mentary information for more formal statements. We assume that our
system is described by a local Hamiltonian on a discrete set of sites Γ,
which can be formally written as

H =
X

X�Γ

hX ð1Þ

where hX is the interaction term acting only on the finite set of sites
X ⊂ Γ. We assume that the Hilbert space describing each site has finite
dimensiond and theHamiltonianH is local,meaning that hX is nonzero
only when X has a size smaller than a constant. For finite systems, the
set of equilibrium states at temperature T ≥0 is the set of states ρ that
minimize trðHρÞ � TSðρÞ, where trðHρÞ is the energy, and S(ρ) is the
entropy. At T >0, this set reduces to a single equilibrium state, also
called the Gibbs state given by ρ= e�H=T

tre�H=T . However, for infinite systems,
the thermal equilibrium state is not necessarily unique, and this
property lies at the heart of the existence of phase transitions.

Given the description of such a system, our objective is to deter-
mine the physical properties of the corresponding equilibrium states.
Consider a local observable O, e.g., the magnetization in the
z-direction for a spin-1/2 system for some site x ∈ Γ. We are interested
in the set of values trðρOÞ that an equilibrium state at temperature
T = 1/β can take:

½hOimin
β ,hOimax

β � : = trðρOÞ : ρ is an equilibrium state at temperature T = 1=β
� �

:

ð2Þ

Note that for a finite system and β < ∞, we have hOimin
β = hOimax

β as the
thermal state is unique.However,we canhave hOimin

β <hOimax
β forβ=∞ if

the ground space of H is degenerate and for infinite systems when
there are multiple thermal equilibrium states.

Main result
We formulate a hierarchy of convex optimization programs which
produce converging lower (resp. upper) bounds on hOimin

β (resp.
hOimax

β ) for any β ≥0. Our optimization problems are formulated in
terms of the matrix-valued relative entropy function

DopðA k BÞ=A1=2 logðA1=2B�1A1=2ÞA1=2 ð3Þ

defined for arbitrary positive definite matrices A, B, and which is
jointly convex in (A, B). Consider a finite subset Λ of the lattice sites Γ
containing the support of the local observable O. Then we can for-
mulate the following convex optimization program over density
operators supported on Λ=Λ∪∂exΛ where ∂exΛ is the external

boundary ofΛ (see the Supplementary information Equation (4) for the
precise definition):

min=max
ρ

trðρOÞ ð4Þ

s.t. ρ density operator on ðCdÞ�jΛj ð5Þ

trΛnΛðHΛρ� ρHΛÞ=0 ð6Þ

Dop Aρ k Bρ

� �
� βCρ: ð7Þ

Here, HΛ is the truncated Hamiltonian acting on Λ, and Aρ, Bρ, Cρ are
Hermitian matrices that depend linearly on ρ, defined by:

ðAρÞij = trðρa
�
i ajÞ, ðBρÞij = trðρaja

�
i Þ, ðCρÞij = trðρa

�
i ½HΛ,aj �Þ ð8Þ

where {ai} is a basis of the space of operators acting on ðCdÞ�jΛj
. Note

that the program (4-7) involves a matrix variable of dimension
djΛj ×djΛj and convex constraints involving matrices of dimension at
most d2jΛj ×d2jΛj.

By taking larger and larger subsets Λ↑Γ, one can prove that the
solutions of the convex optimization programs will converge to the
expectation values hOimin

β and hOimax
β . This is the content of the fol-

lowing theorem.

Theorem 2.1. (Certified algorithms for expectation values of equili-
brium states). Let Λ0⊂ Λ1⊂⋯⊂ Γ be an increasing sequence such that
the support of the local observableO is contained inΛ0. For any ‘ 2 N,
let pmin

‘ and pmax
‘ be respectively theminimum andmaximum values of

the convex optimization problems (4-7) with Λ = Λℓ. Then we have

pmin
‘ ≤ hOimin

β ≤ hOimax
β ≤ pmax

‘ : ð9Þ

Furthermore, pmin
‘ " hOimin

β and pmax
‘ # hOimax

β as ℓ → ∞.
Wenote that forfinite systems, convergence happens after a finite

number of steps, namely for ℓ such that Λℓ = Γ. While the convergence
result becomes trivial in the finite case, the formulation of a convex
program containing constraints for the Gibbs state still adds a novel
tool for the numerical treatment of finite-sized quantum many-body
systems. The more interesting case for our results is however that of
infinite systems. Given a fixed computational budget, one can choose ℓ
and run the corresponding program (4-7) and obtain a superset
½pmin

‘ ,pmax
‘ � of the target interval ½hOimin

β ,hOimax
β �. In the cases where

hOimin
β = hOimax

β , e.g., for finite systems at T >0, one can also run the
program (4-7) with increasing values of ℓ until pmax

‘ ≤ pmin
‘ + ε, where ε is

some desired accuracy ε. We note that, as previously mentioned, the
problem of computing expectation values for equilibrium states is at
least QMA-hard so we cannot hope to have fast convergence for all
choices of H. But we stress that no a priori analysis of convergence
speed is required to obtain some desired accuracy: as soon as we get
pmax
‘ ≤ pmin

‘ + ε, an additive ε approximation is guaranteed for this
instance. Numerical results illustrating this algorithm can be found in
the Supplementary information Section 3.

Translation-invariant infinite systems
Translation-invariant Hamiltonians on the infinite lattice Γ=ZD, i.e.,
satisfying hX = hX+x for all x 2 ZD, play a specifically important role in
statistical physics, in particular for understanding phase transitions.
For such systems, one often considers the expectation value per site of
an observable, for example, the energy per particle also called the
energy density. One way to define expectation values per site is to
compute the observable O on any fixed site on a translation-invariant
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equilibrium state of H. More precisely, we define the average expec-
tation value of observable O per site to be the interval

½hOimin ,TI
β ,hOimax ,TI

β � :
= trðρOÞ : ρ is a translation-invariant equilibrium state at temperature T = 1=β
� �

:

ð10Þ

By adding to the program (4-7) a translation-invariance constraint in Λ
given by

trΣc ðρÞ= trðΣ+ xÞc ðρÞ for all Σ � Λ,x 2 Zd such that Σ+ x � Λ, ð11Þ

Theorem 2.1 can be adapted for translation-invariant states, as follows:

Theorem 2.2. Let Λ0⊂ Λ1⊂⋯⊂ Γ be an increasing sequence such that
the support of the local observableO is contained inΛ0. For any ‘ 2 N,
let pmin ,TI

‘ and pmax ,TI
‘ be respectively the minimum and maximum

values of the convex optimization problems given by (4-7) together
with the constraint (11). Then we have

pmin ,TI
‘ ≤ hOimin ,TI

β ≤ hOimax ,TI
β ≤ pmax ,TI

‘ : ð12Þ

Furthermore, pmin ,TI
‘ " hOimin ,TI

β and pmax ,TI
‘ # hOimax ,TI

β as ℓ → ∞.
One difficulty we would like to highlight regarding the thermo-

dynamic limit concerns the definition of equilibriumstates at any given
temperature T ≥0. It was actually shown in ref. 13 that computing local
observables on the ground state of infinite systems is undecidable.
Thismight seem to contradict our result. This is not the case, however,
due to a subtle point in the definition of ground-state observables in
the infinite limit. The authors of ref. 13 define those as limits of ground-
state observables in finite systems, i.e., the observable is computed for
the ground-state of a truncated Hamiltonian with open boundary
condition HΛ =∑X⊂ΛhX, where Λ � ZD is finite, and afterward the limit
Λ " ZD is taken. The problem definition we use in our work, which is
standard in the operator algebraic framework, is more general and, in
particular, contains limits of ground-state observables of finite system
Hamiltonians with any choice of boundary conditions. To avoid con-
fusion, it should be added that this does not mean that our algorithm
can compute the value of an observable for a specific boundary con-
dition. Instead, it gives an outer relaxation of the interval given by all
boundary conditions. A boundary condition is not input to the algo-
rithm. It is simple to construct a Hamiltonian where fixing the
boundary condition while taking the limit excludes natural ground
states (see Remark 1.1 and Remark 2.3 in the supplemental information
concerning thermal states of the 2D Ising model). The comparison,
however, illustrates that even the existence of any convergent algo-
rithm for observables in ground states is far from obvious, which is
what we achieve in Theorem 2.2. Considering the operator algebraic
definition of equilibrium states leads to the natural computational
problem defined in Box 1.

Note that this is a promise problem where the objective is to
decide if all the equilibrium states have an expectation value per site
> a or all the equilibrium states have an expectation value per site < a.

Theorem 2.3. (Decidability of translation-invariant ground state and
thermal observables). Theequilibriumobservableproblem isdecidable.

Main ingredients
For clarity of the discussion, we focus here on finite systems. A key
ingredient to obtain our algorithms is to use an operator algebraic
characterization of equilibrium states. These are expressed solely in
terms of trðρbÞ for operators b. For T =0, the common definition of an
equilibrium state is a state supported on the eigenspace of H with the
minimumeigenvalue. It turns out that anequivalent operator algebraic
formulation of this condition is:

trðρa�½H,a�Þ≥0 8a ð13Þ

where [H, a] is the commutator and a is an arbitrary observable.
Intuitively, the condition above expresses the fact that the energy of ρ
has to increase under any perturbation. There are two crucial facts
about (13): First, if a is supported on a small set Λ of sites then the
condition (13) only depends on trðρbÞ for operators b 2 Λ, where we
recall thatΛ =Λ∪∂exΛ. Second, the inequalities in (13) canbe concisely
captured by a convex constraint involving the positivity of a Hermitian
matrix that depends linearly on ρ. By restricting the operators a in (13)
to be supported on Λ, this leads to (4-7) for T = 0.

At positive temperature T = 1/β > 0, the situation is more compli-
cated. As previously mentioned, the common definition of a thermal
equilibrium state is given by ρ= e�βH

trðe�βH Þ. It turns out that an equivalent
operator algebraic formulation is via the Kubo–Martin–Schwinger
(KMS) condition:

trðρbaÞ= trðρae�βHbeβHÞ 8a,b: ð14Þ

In the classical case, when the Hamiltonian is diagonal in a basis f∣σigσ ,
Equation (14) reduces to

trðρ∣σi σh ∣Þ= trðρ∣σ0� σ0�
∣Þ expð�βð σh ∣H∣σi � σ0�

∣H∣σ0�ÞÞ, ð15Þ

for all σ,σ0. When σ0 is obtained from σ by flipping a single spin, these
are known as the spin-flip equations and are exploited in the bootstrap
approach for the classical Ising model14.

To obtain Theorem 2.1, a natural idea (as was done for T =0) is to
relax the set of β-KMS states and impose the condition (14) for a subset
of observables a, b supported on some small Λ. However, the main
obstruction one is faced with is that even if a, b are local observables,
the expression ae−βHbeβH is, in general, not local, except for commuting
Hamiltonians. As such, even though (14) forms a set of linear equations
on ρ, they involve the expectation of ρ on nonlocal observables. We
circumvent this issue by using another characterization of thermal
equilibrium states via so-called energy-entropy balance (EEB)
inequalities15: this is an infinite set of scalar convex inequalities, each
indexed by an operator a, which carve out the set of β-KMS states. On
the one hand, these inequalities are better suited than the β-KMS
condition because they preserve locality, i.e., they only require the
expectation value of the state ρ on a finite region around the support

BOX 1

Equilibrium Observable Problem

Input: Local dimension d, local Hamiltonian term h with rational coefficients, local observable O with rational coefficients, rational number a,
temperature β ∈ [0, + ∞]

Promise: Either hOimin ,TI
β >a or hOimax ,TI

β <a

Question: Output YES if hOimin ,TI
β >a, NO otherwise
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of a. On the other hand, a drawback of these inequalities is that there
are infinitely many of them, and unlike the inequalities (13), it is not
possible to express them as a linear positive semidefinite constraint. A
key ingredient to prove our theorem is to formulate a matrix gen-
eralization of such inequalities using the matrix-valued relative
entropy function (3). We show that an infinite set of scalar energy-
entropy balance inequalities can be compactly formulated by a single
nonlinear convex matrix inequality of the form Dop(Aρ∥Bρ)⪯ βCρ for
some suitablematrices Aρ, Bρ, Cρ that depend linearly on ρ (see (7)). To
the best of our knowledge, this is the first application of the matrix
relative entropy function in the design of convex relaxations in quan-
tum information. Optimization problems involving this function can
be solved using interior-point methods16 or via semidefinite pro-
gramming approximations17.

Quantifying convergence speed
Theorems 2.1 and 2.2 do not provide quantitative guarantees on the
convergence speed. As previously mentioned, one cannot hope to
prove general fast convergence guarantees as even the special case
where the observable O corresponds to energy is unlikely to have a
polynomial-time quantum algorithm, even when D = 14.

However, one can expect provably fast convergence for some
classes of Hamiltonians. We illustrate this by showing exponential
convergence in two regimes for which it is known that no phase tran-
sitions can occur. For translation-invariant Hamiltonians in the high-
temperature regime and in one dimension at any nonzero temperature,
the set of equilibrium states reduces to a singleton, and for any local
observable O we have hOimin ,TI

β = hOimax ,TI
β = hOiTIβ . Assuming a com-

muting local Hamiltonian H, the theorem below shows exponential
convergence to hOiTIβ in the level ℓof the convexoptimizationhierarchy.

Theorem 2.4. (Quantitative convergence rate). Consider a translation-
invariant local Hamiltonian H on Γ =ZD with D ≤ 2. Assume further-
more that H is commuting, i.e., [hX, hY] = 0 for all X ,Y � ZD. For D = 1
and β1 =∞ or forD = 2 and some β1 > 0, we have for all 0≤β < β1, and for
any local observable O, hOimin ,TI

β = hOimax ,TI
β = hOiTIβ and, using the same

notation as in Theorem 2.1

maxfpmax
‘ � hOiTIβ ,hOiTIβ � pmin

‘ g≤ c1 k O k e�c2‘ ð16Þ

for some constants c1, c2 > 0 depending on the dimension and the
interaction.

This result addresses an open problem raised in18 about the speed
of convex optimization hierarchies for the (classical) Ising model, in
particular, whether exponential convergence holds away from criti-
cality. Theorem 2.4 establishes such a statement for the more general
class of commuting local Hamiltonians.

Discussion
A special case of the problem considered in this work is when the
observableO is the energy. Certified algorithms do exist for the ground
energy of local Hamiltonians: one can combine semidefinite program-
ming relaxations19–22 for lower bounds and variational methods such as
tensor networks23–25 for upperbounds.Using such two-sidedboundson
the ground energy, the recent works26,27 obtain bounds for expectation
values of local observables in the ground state, although no con-
vergence guarantees are given. The approach based on imposing the
additional constraint (13), which leads to convergence guarantees, was
proposed independently and concurrently in28, where it was derived as
a special case of a method to strengthen semidefinite relaxations for
noncommutative polynomial optimization problems by incorporating
optimality conditions as additional constraints. These papers, however,
do not discuss the case of positive temperature since the equilibrium
states are not characterized by a noncommutative polynomial optimi-
zation problem which is linear in the state. One could try to use lower

bounds for the free energy coming from convex relaxations29, but it is
not clear how to use such bounds for observables. We note, however,
that for classical systems, thermal observables can be obtained via
the bootstrap approach14,30, by directly imposing the KMS conditions
(15). The resulting hierarchies were shown to be asymptotically
convergent18, even if only a weaker set of constraints are imposed. For
quantum systems, to the best of our knowledge, Theorem 2.1 provides
the first certified algorithms for general observables in thermal states.

Note that, in some restricted settings, such as 1Dgapped systems31

at zero temperature or 1D systems at positive temperature32–35, there
are provably efficient algorithms computing representations of equi-
librium states and thus expectation values, but such algorithms are
tailored to these settings. In addition, for arbitrary dimensions and
high temperatures, provably efficient algorithms for computing the
free energy exist36–38, which can be used to compute observables39.

The preliminary numerical experiments in the supplemental
information demonstrate that the approach proposed in this paper is
not only theoretical, and with additional efforts on the computational
side, can play an important role alongside other classical algorithms.
For example, because our algorithm produces certified bounds, it can
be used to rigorously benchmark variational algorithms for quantum
many-body systems40. In addition, one can easily identify several
directions for improving the accuracyof the algorithmpresented here:
First, one can exploit additional convex constraints that are known to
hold for marginals of equilibrium states. For example, one can add
entropy-based inequalities as proposed in ref. 41. Furthermore, other
valid inequalities tailored to specific models can be added to the
convex relaxation such as reflection positivity which was used in ref. 14
for the Ising model. Second, it would be very interesting to combine
the methods from this paper with variational methods (e.g., from
tensor networks) to obtain more accurate bounds, such as the recent
work on the ground energy problem42. Another natural question is
whether one can use our algorithms within hybrid classical-quantum
algorithms for quantum simulation problems43. On the analytical side,
it remains open whether convergence guarantees for other classes of
Hamiltonian can be proven. Promising candidates would be regimes in
which other classical algorithms are efficient such as thermal states in
1D and at high-temperature (for general noncommutingHamiltonians)
as well as gapped ground states in 1D.

Data availability
No datasets were generated or analysed during the current study.
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