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Transparent scatterers and transmission eigenvalues

P.G. Grinevich1 and R.G. Novikov2

Abstract

We give a short review of old and recent results on scatterers with trans-
mission eigenvalues of infinite multiplicity, including transparent scatterers.
Historically, these studies go back to the publications: Regge (Nuovo Ci-
mento 14, 1959), Newton (J. Math. Phys. 3, 1962) and Sabatier (J. Math.
Phys. 7, 1966). Our review is based on the works: Grinevich, Novikov
(Commun. Math. Phys. 174, 1995; Eurasian Journal of Mathematical and
Computer Applications 9(4), 2021; Russian Math. Surveys, 77(6), 2022).
Results of the first of these works include examples of transparent at fixed
energy potentials from the Schwartz class in two dimensions. The two others
works include the result that, for compactly supported multipoint potentials
of Bethe - Peierls - Thomas type in two and three dimensions, any positive
energy is a transmission eigenvalue of infinite multiplicity.

Keywords: Schrödinger’s equation; spectral problems; transparent poten-
tials; transmisson eigenvalues; multipoint scatterers.
MSC2020: 35J10; 81U40; 47A75.

1 Introduction
To start with, we recall definition of scattering data for the stationary Schrödinger
equation with a rapidly decaying at infinity potential, and we recall defini-
tion of boundary data for this equation in a bounded domain.

1.1 Scattering data
We consider the stationary Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd , d = 1,2,3. (1)

We assume that potential v(x) decays sufficiently fast as |x| → ∞.
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The scattering at potential v(x) is described by the following solutions
of equation (1):

ψ
+ = eikx + f+

(
k, |k| x
|x|

)
ei|k||x|

|x|(d−1)/2 +O
(

1
|x|(d+1)/2

)
, (2)

as |x| → ∞, for a priori unknown f+ = f+(k, l) . Here k, l ∈ Rd , k2 = l2 =
E > 0.

The functions f+ = f+(k, l) is called the scattering amplitude.
It is also convenient to rewrite f+(k, l) as:

f+(k, l) = c(d, |k|) f (k, l), where (3)

c(d, |k|) =−πi(−2πi)(d−1)/2|k|(d−3)/2, where
√
−2πi =

√
2πe−iπ/4.

The scattering operator Ŝ = ŜE at a fixed energy level E = κ2, κ > 0, is
defined by:

(ŜEu)(θ) = u(θ)− iπκd−2
∫
Sd−1

f (κθ
′,κθ)u(θ ′)dθ

′, (4)

where u(θ) is a test function, Sd−1 is the unit sphere in Rd , θ , θ ′ ∈ Sd−1,
dθ ′ is the standard volume element at Sd−1.

For more details see, for example, [1], [4], [7], [8], [10].

1.2 Boundary data
We also consider equation (1) under the assumption that

supp v⊂D . (5)

where D is a connected bounded domain in Rd with C2 boundary, such that
Rd\D is also connected. In this case we consider the Cauchy data Cv defined
by:

Cv =

{(
ψ

∣∣∣∣
D

,
∂ψ

∂~n

∣∣∣∣
D

)
for all sufficiently smooth solutions ψ

of equation (1) in D̄ = D ∪∂D

}
, (6)

where ∂ψ

∂~n denotes the normal derivative, ~n is the outward normal vector to
∂D .

These data can be also considered as the graph of an operator connect-
ing the values of solutions ψ and their normal derivatives at the boundary
(Wigner operator in Gelfand’s terminology [8]). We consider the Cauchy
data or the aforementioned operator as boundary data for equation (1) under
assumption (5) .
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1.3 Basic problems
In this review we discuss examples of potentials in equation (1), which are
invisible from partial measurements of scattering or boundary data. In this
connection in Section 2 we discuss examples of transparent potentials in
the sense of scattering amplitude vanishing at some energies, and in Sec-
tions 3, 4 we discuss potentials with transmission eigenvalues of finite and
infinite multiplicity. In fact, transmission eigenvalues can be considered as
eigenvalues of partial transparency.

2 Transparent potentials
Definition 1 Potential v = v(x) is called transparent at a fixed energy E > 0
if

ŜE ≡ 1̂,

where ŜE is defined by (4), that is

f (k, l) = 0, for all k, l ∈ Rd such that k2 = l2 = E.

Historically, studies on transparent potentials in multidimensions go back
to Tulio Regge [19], Roger Newton [16], Pierre Sabatier [20]. In particu-
lar, in these works, spherically symmetric ponentials transparent at a fixed
positive energy E were constructed for d = 3. These potentials decay at
infinity as |x|−3/2. The Regge- Newton- Sabatier construction is based on
a Gelfand-Levitan type equation for inverse scattering for spherically sym-
metric potentials at a fixed energy.

In turn, for d = 1, the famous N-soliton potentials are reflectionsless for
all positive energies. These potentials decay at infinity exponentially, see, for
example, review paper [7]. Let us make a simple but important observation:
N-soliton potentials are transparent for

[N−1
2

]
energies, where [ ] denotes the

integer part. These energies are given as E j = k2
j , where k j are positive real

roots of the equation

T (k) = 1, where T (k) =
N

∏
j=1

k+ iκ j

k− iκ j
, κ j ∈ R, κ j > 0.

Here, T (k) = s11(k) = s22(k) is the transmission coefficient for an N-soliton
potential, where E j = −κ2

j are the discrete energy levels for this potential;
see [7] for details.

More recently, in [10] we constructed two-dimensional spherically sym-
metric real-valued potentials from the Schwartz class, which are transparent
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at a fixed positive energy E. The construction in [10] essentially uses the
two-dimensional inverse scattering transform at fixed energy developed in
[9]. In turn, this construction uses the ∂̄ -approach to inverse scattering and
also goes back historically to Gelfand-Levitan type equations.

The problem of constructing three-dimensional non-zero transparent po-
tentials with rapid decay at infinity is still open. On the other hand, there are
no non-zero real regular transparent potentials with exponential decay at in-
finity in dimension d ≥ 2; see [18] for d ≥ 3 and [10] for d = 2.

Note that constructions of [9], [18], [10] strongly use properties of Fad-
deev’s growing solutions of the Schrödinger equation (1) at fixed energy;
see [7], [9], [18], [10] for more details.

Note also that the works [19], [16], [20], [10] were fulfilled before more
recent studies on invisibility using cloaking!

Finally, recall that inverse scattering for the Schrödinger equation in di-
mension d = 1 at all energies and in dimension d = 2 at a fixed energy
is deeply related with the soliton theory. This includes relations to the
Korteweg – de Vries equation in dimension d = 1 (see [7] and references
therein), and to the S. Novikov–Veselov equation in dimension d = 2 (see
[21], [9], [10]).

3 Transmission eigenvalues
Definition 2 Energy level E is called transmission eigenvalue, if the opera-
tor

ŜE − 1̂

has nontrivial kernel in L2(Sd−1). Dimension of this kernel is called multi-
plicity of the transmission eigenvalue. Here 1̂ denotes the identity operator.

Definition 3 Energy level E is called interior transmission eigenvalue for
equation (7) if there exists a pair of non-zero functions ψ(x), φ(x) such that

−∆ψ(x)+ v(x)ψ(x) = Eψ(x), x ∈D , (7)

−∆φ(x) = Eφ(x), x ∈D ,

and

ψ(x)≡ φ(x),
∂

∂~n
ψ(x)≡ ∂

∂~n
φ(x) for all x ∈ ∂D ,

where D and ∂

∂~n are as in (5), (6).
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The transmission eigenvalue E in Definition 2 can be treated as an en-
ergy of, at least, partial transparency in terms of the scattering operator ŜE ,
whereas the interior transmission eigenvalue E in Definition 3 can be treated
as an energy of, at least, partial transparency in terms of the Cauchy data (6).

Historically, studies on transmission eigenvalues for scatterers with com-
pact support go back to Kirsch [13], Colton and Monk [6]. In connection
with more recent results in this direction, see, e.g. [2], [3], [17] and refer-
ences therein.

A typical result of these studies is as follows:
For sufficiently regular compactly supported isotropic scatterers the trans-

mission eigenvalues are discrete and have finite multiplicity.
One of the purposes of this review is to attract the attention to the fol-

lowing facts.

• This result is not valid for potentials from the Schwartz class, at least,
in R2. The point is that for transparent potentials constructed in [10]
and mentioned in Section 2, the energy of transparency E is a trans-
mission eigenvalue of infinite multiplicity. Moreover, in this case, the
kernel of ŜE − 1̂ coincides with the full space L2(S1).

• This result is not valid for multipoint scatteres of the Bethe - Peierls -
Thomas type in Rd , d = 2,3, discussed in Section 4, which are singular
but have compact support. The point is that for these potentials, all
positive energies are transmission eigenvalues of infinite mutiplicity.
Moreover, in this case, the kernel of ŜE − 1̂ has finite codimension is
L2(Sd−1) for all E > 0. In addition, for these potentials satisfying (5)
any complex energy E is an interior transmission eigenvalue of infinite
multiplicity in D .

4 Multipoint scatterers
For d = 3, the one-point scatterers in question were introduced by Bethe,
Peierls (1935) and Thomas (1935) to describe the interaction between neu-
trons and protons. Subsequently, one-point and multipoint scatterers were
considered by many authors, including Fermi (1936), Zel’dovich (1960),
Berezin and Faddeev (1961). In particular, Fermi used such a model to ex-
plain strong interaction of slow neutrons with nuclei. For references and
more details, see, for example, monograph [1]. Possible generalizations are
discussed in [15], [5].
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The most intuitive definition of point scatterers is as follows. Consider a
sequence of regular compactly supported potentials

vN(x), N ∈ N,

such that for N→ ∞:

• Diameter of supp vN(x) converges to 0;

• at any compact interval of energies the scattering amplitude f+N (k, l)
converges to well-defined non-trivial limit f+∞ (k, l).

For d = 1, these scatterers are standard Dirac δ -functions with some
coefficients. For d = 2,3, the simplest scatterers of such a type are the Bethe-
Peierls-Thomas-Fermi scatterers; in this case the sequence vN(x) converges
to 0 in the sense of distributions.

To construct these scatterers, one can start with

vN(x) = φ(N)v1(Nx),

v1(r) is the characteristic function of unit ball in Rd , d = 1,2,3. To obtain a
good limit for f+∞ (k, l), one has to assume, in particular, that

φ(N)∼


N, d = 1,
N2/ log(N), d = 2,
N2 d = 3,

up to coefficients and lower terms.
By specifying properly the behavior of φ(N), we obtain, for each d =

1,2,3, a family of Dirac-Bethe-Peierls-Thomas-Fermi scatterers δα(x), sup-
ported at x = 0 and parameterized by α ∈ R∪∞. The number 1/α can be
interpreted as the strength of the scatterer. Sometimes, for d = 2,3, these
δα(x) are called “renormalized δ -functions”. For d ≥ 4, the Green function
for the Helmholtz operator ∆+E does not belong locally to L2(Rd), and,
as a corollary, the aforementioned construction of point potentials does not
work.

In addition, ψ satisfies the stationary Schrödiger equation

−∆ψ + v(x)ψ = Eψ,

with n-point ponential

v(x) =
n

∑
j=1

δα j(x− y j)
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iff
−∆ψ(x) = Eψ(x), for all x 6= y j, j = 1, . . . ,n,

and near the points y1,. . . ,yn:

1. If d = 1, then ψ(x) is continuous at x = y j, and its first derivative has
a jump

−α j
[
ψ
′(y j +0)−ψ

′(y j−0)
]
= ψ(y j);

2. If d = 2, then

ψ(x) = ψ j,−1 ln |x− y j|+ψ j,0 +O(|x− y j|) as x→ y j,

and [−2πα j− ln2+ γ]ψ j,−1 = ψ j,0,

where γ = 0.577 . . . is the Euler’s constant.

3. If d = 3, then

ψ(x) =
ψ j,−1

|x− y j|
+ψ j,0 +O(|x− y j|) as x→ y j,

and 4πα jψ j,−1 = ψ j,0.

The Schrödinger equation (1) with multipoint potentials as above is ex-
actly solvable! In particular, it is known that

ψ
+(x,k) = eikx +

n

∑
j=1

q j(k)G+(x− y j, |k|2),

f (k, l) =
1

(2π)d

n

∑
j=1

q j(k)e−ily j , (8)

where G+(x,E) denotes the Green functions for the Helmholtz operator with
the Sommerfeld radiation condition, see, for example, [11].

The vector of constants q(k) = (q1(k), . . . ,qn(k))t is defined as the solu-
tion of the linear system:

A(|k|)q(k) = b(k),

with the n×n matrix A and the right-hand side vector b(k) defined by:

A j, j(|k|) = α j− i(4π)−1|k|, d = 3,

A j, j(|k|) = α j− (4π)−1(πi−2ln(|k|)), d = 2,

A j, j(|k|) = α j +(2i|k|)−1, d = 1,

A j, j′(|k|) = G+(y j− y j′ , |k|2), j′ 6= j,

b j(k) =− eiky j .
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Formula (8) for f (k, l) implies that each positive energy E for the afore-
mentioned multipoint potentials is a transmission eigenvalue of infinity mul-
tiplicity, since the operator ŜE − 1̂ has rank at most n. For more details on
transmission and interior transmission eigenvalues for the multipoint poten-
tials, see [11], [12].

In particular, in [12] we continued studies on multipoint scatterers by
considering Schrödinger’s equation with potential which is a sum of a regu-
lar function and a finite number of point scatterers of Bethe-Peierls-Thomas
type. For this equation we considered the spectral problem with homoge-
neous linear boundary conditions, which covers the Dirichlet, Neumann,
and Robin cases.

In [12], we showed that if the energy E is an eigenvalue with multiplicity
m for the regular potential, it remains an eigenvalue with multiplicity at least
m−n after adding n < m point scatterers.

As a consequence, because for the zero potential all energies are trans-
mission eigenvalues with infinite multiplicity, this property also holds for
n-point scatterers as we mentioned above.

More recently, we also observed that a converse inequality also holds for
the aforementioned boundary conditions in [12]. We found that if the energy
E is an eigenvalue with multiplicity m for a sum of a regular potential and an
n-point potential, n < m, then this energy is an eigenvalue with multiplicity
at least m−n for the regular potential.

Note also that there is no non-zero real-valued transparent at a fixed pos-
itive energy multipoint potentials of Bethe-Peierls-Thomas type is dimen-
sions d = 2,3, see [14].
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