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Abstract

Tackling climate change is one of the biggest challenges of today. Limiting climate
change translates to drastically cutting carbon emissions to net zero as soon as possible.
More and more commitments have been made by various authorities and companies to
mitigate their GHG emissions accordingly, notably the Paris Agreement in 2015 that sets
the ’well-below 2°C’ target. These energy targets generate the so-called ’transition risks’
and has impulsed a new type of financial risks assessment exercise: Climate Stress-Tests.
However, the tools for these Stress-Tests remain limited. We propose a model that ac-
counts for companies’ business model evolution in a given transition scenario for credit
risk stress testing. Our model represents a single firm’s business model employing prob-
abilistic modeling. We use stochastic control to derive the company’s intensity reduction
strategy, as well as the resulting sales revenues and total emissions. We solve the mini-
mization program using a numerical resolution method that we call Backward Sampling.
We find that the intensity reduction strategy that would consist in following the same
decrease rate as the sector inflates the company’s costs (up to 15.7% more expensive than
the optimal strategy). Moreover, we show that investing the same amount as the total
carbon cost paid at a given date is limited by its lack of a forward-looking feature, making
it unable to provide a buffer for future carbon shocks in a disorderly transition scenario.
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1 Introduction

The context of climate change. Tackling climate change is one of the biggest challenges
of today. It is caused by human activities such as the use of fossil fuels, livestock breeding, and
logging activities [SK14]. Indeed, all these activities emit considerable quantities of greenhouse
gases (GHG) in the atmosphere that then intensify the greenhouse effect. Most often referred
to as carbon, CO2, CO2e , or even Kyoto Gases; the GHG are “any gas in the atmosphere which
absorbs and re-emits heat and thereby keeps the planet’s atmosphere warmer than it otherwise
would be” ([Bra12]).
Limiting climate change translates to drastically cutting carbon emissions to net zero as soon
as possible. More and more commitments have been made worldwide by various authorities
and companies to mitigate their GHG emissions accordingly, notably the Paris Agreement in
2015 that has set the ’well-below 2°C’ target. For some countries, commitments are formalized
by the law, detailing the objectives and means of the national climate policy.
Nonetheless, despite the implemented actions and announced objectives, global GHG emissions
are still increasing [SSR+22]. Without immediate and drastic cuts in carbon emissions across
all sectors, the target of less than 1.5°C increase in mean global temperature by the end of the
century cannot be reached. Major transitions are required, particularly the switch from fossil
fuels-based energy to low-carbon one, improved energy efficiency, and the use of alternative
fuels.

Transition Risks and their challenges for financial risk management. This energy
transition generates the so-called ’transition risks’ as described by M. Carney (see [Car15]):
"the financial risks which could result from the process of adjustment towards a lower-carbon
economy". The question of the impact of climate risks on the financial sphere has been well-
studied thanks to a close collaboration between financial regulators and academia [GKL+19,
ADCG+20, BDN18], with papers dating as far as 2009 [LBR09]. The creation of the Network
For Greening the Financial System (NGFS) in 2017 has confirmed the interest of the financial
authorities in this matter, notably through its conception of several energy transition scenarios
[NfGtFS19, BGL+22]. This has impulsed the launch of a new type of financial risks assessment
exercise: Climate Stress-Tests [BoE19, AdCPedR20].
Banks and insurers are well familiar with stress tests, which consist of assessing the impact of
adverse but plausible short-term macroeconomic scenarios on banks or insurers’ portfolios, in
particular, their credit portfolios. However, the tools used for these frequent risk management
practices remain limited. [HRTK19] explain why traditional stress tests are not appropriate
for capturing the impact of a delayed and sudden energy transition, which is the case that
generates the most transition risk.
Top-down climate stress tests of the Euro Area banking sector have already been conducted
[BMM+17, GHK+21, Bor20] and show that major Euro Area banks could suffer a loss of up
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to 27.91% of their assets [BMM+17]. They do not detail the intrinsic dynamics within the
macro-system nor the possible adaptation of the bank to the new market structure. How-
ever, the thorough study from [BCoBS21] shows that transition risks can be transmitted to
both the macro and micro economy through various channels, namely, policy (e.g. carbon
tax, subsidies...), technology (emergence of low-carbon technology), and lastly, consumer and
investor sentiment. These different drivers should be taken into account; nevertheless, there is
no historical data allowing us to compute statistical estimates of the relationships; moreover,
they are expected to mutate over time due to the energy transition. A finer granularity is
a mean to bypass this issue. Therefore, climate stress tests raise new modeling challenges,
whether it be the longer time horizon considered, the dynamicity of the bank’s balance sheet,
or the change of granularity needed in order to bypass the lack of historical data on all the
drivers of transition risks.

State of the art. The question of modeling the impact of transition risks on credit risk has
been raised in recent literature. [GGG22] refines the widely accepted asymptotic single risk
factor model for credit risk stress testing in the case of climate risks by adding a climate factor.
However, it does not inform on how this factor should be accurately calibrated in practice, nor
does it allow for changing correlations in the credit portfolio throughout the scenario. Hence,
it is not fit for the finer granularity, dynamicity and longer-term horizon scenarios required in
climate-risks stress testing.
Early works by [BLG20] propose to assess the sensitivity of a company’s credit risk to short-
term carbon price increases, relying solely on a linear relationship between the carbon price
and the company’s revenues, set in a framework often used for credit risk stress-testing, i.e.
the Merton model [Mer74]. [BKM22] conduct a similar analysis by assessing the sensitivity
of the Euro Area banking system to carbon price shocks, with an arbitrary and one-size-fits-
all reduction of firm-level absolute emissions. Despite being adequate for short-term studies
of the impact of a given carbon price shock, and providing the right granularity, neither of
these methods is appropriate for climate risk stress testing, as the scenarios are usually longer.
Moreover, they use static positions for the firm and do not account for correlation effects that
are visible in a credit portfolio, thus, despite answering the need for finer granularity, they do
not meet the requirements for longer scenarios and dynamicity.
[ADE+21, EFK+23] carry on a full credit risk climate-stress test of different Euro Area banks’
portfolios, by making use of a highly granular bottom-up approach. They project individually
each company in the portfolio conditionally to a given energy transition scenario, allowing for
companies’ business model adaptation under a constant market share assumption, then gather
results to compute the overall portfolio credit risk. The projections are done using econometric
regressions with poor R-squared (as low as 0.11). This confirms the unfitness of statistical
models based on historical data for such tasks. [Bar21] also describes a fully deterministic
approach for conducting a credit risk climate-stress of a bank corporate loan portfolio, under
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a constant market share assumption. Their methodology is sector-dependent and consists of
applying the different moving rates of key scenario variables to account for company transition,
or applying the company’s transition engagement, if available and deemed feasible according to
their own criteria. Most methods of modeling adaptation in a given transition energy scenario
for credit risk assessment are thus deterministic and do not put the cost of fulfilling these
targets as a central factor of choice, which is another source of credit risk. Furthermore, they
provide the same adaptation strategy for all companies, with their own characteristics only
coming into play at the starting point.

Our contribution. Henceforth, we propose a model to improve the representation of com-
panies’ adaptation in a given transition scenario for credit stress testing in climate stress
tests. Our model is a scenario and sector invariant model for a firm’s business model based
on probabilistic modelling. There are several combinations of individual behaviors that can
lead to the same result when aggregated, thus, probabilistic modelling helps us encompass this
randomness. Following microeconomics theory logic, we use optimization to model the firm’s
adaptation, precisely, we use stochastic control to derive the best intensity reduction strategy
according to our definition, as well as the inherent sales revenues and total emissions. Because
of the complexity of the stochastic control problem at hand, we solve the minimization pro-
gram using a specific and novel numerical resolution method that we call Backward Sampling :
in particular, this permits to recycle past samplings to use them for updated controls. We find
that frequently used strategies in corporate credit risk stress testing, consisting in following
the same decrease rate as the sector, or investing the same amount as the total carbon cost,
are non-optimal in terms of involved costs, which could lead to a misevaluation of credit risk
for both high-carbon and low-carbon companies. Precisely, such strategies are not viable in
terms of investment requirements, leading to inflated debt stock and carbon costs, regardless
of the firm’s starting level carbon efficiency. Indeed, applying the same decrease rate as the
scenario would require up to thrice as much investment more than the optimal strategy. This
number increases up to four when investing the same amount as the carbon cost. Moreover,
in a disorderly transition, brown companies need to catch up with the new market require-
ments, which leads to greater optimal intensity reduction rates than their sector average. In
contrast, incentives for carbon mitigation barely reach green companies in orderly transitions,
resulting in their relative emissions coming together with those of their pairs. The addition of
anticipations regarding the future of the climate policy to the strategy’s design enables better
managed investment in terms of scheduling and amount. This will in turn lessen credit risk
indicators.

Organization of the paper. The paper is organized as follows: Section 1 outlines the
state of the art. Section 2 showcases a model for the firm’s business model, as well as the
minimization problem that we aim to solve. In Section 3, the existence of a solution for our

4



problem is proven based on the dynamic programming principle. We then solve numerically our
stochastic control problem using the Backward Sampling algorithm and present some results
based on fictitious companies with different levels of transition risk vulnerability in Section 4.

2 Definition of the model

2.1 The Model

We consider the following discrete-time model. We assume a management period defined by
[0, T ] where T is the end of the scenario. Over this period, the company may choose at N
fixed dates i = 0, 1, . . . , N with a constant time step δ := T/N , whether to invest in its own
carbon emissions mitigation plan. Between i and i+1, the company’s cumulated emissions in
tCO2 and sales revenues in USD are denoted by Ei and Si respectively. The indicator for the
current state of a company’s business model is the sales revenues emissions intensity expressed
in tCO2/USD. In practice, it is obtained by dividing the emissions by the sales revenues, i.e.

Ii =
Ei
Si
. (2.1)

Here, we model it as the next stochastic process:

Ii+1 = Iie
−γiδ × eσI∆ε

I
i−ψI

i (σI), I0 > 0 (2.2)

with γi ∈ R+ the intensity reduction effort rate at date i and σI is a positive constant.
Here ∆εIi should be viewed as the time-increment of a random process ∆εIi which models the
uncertainty in the evolution of the emission intensity: writing it as a time-increment allows to
get consistency in the modeling across different time steps. The uncertainty modeling can be
made by choosing εI as a Brownian motion or as a compound Poisson process for instance.
We assume that (∆εIi )i are independent and bounded for technical reasons. The additional
factor ψIi (σI) is the log moment generating function of ∆εIi at point σI :

eψ
I
i (σI) = E

[
eσI∆ε

I
i

]
,

which ensures that the uncertainty factor in (2.2) has unit mean. By definition of the sales
revenues emissions intensity (2.1), we get the following identity:

Ei = IiSi.

We define the sales revenues evolution as:

Si+1 = Si
S̄i+1

S̄i
e−κ(Ii−I

ref
i )δ × eσS∆ε

S
i −ψS

i (σS), S0 > 0 (2.3)

where S̄ are the sales revenues of the reference market given by the scenario in USD, and Iref

the market reference for the intensity. We assume that the market shares are allocated with
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respect to the company’s carbon efficiency relatively to its market: this is embodied by the
first exponential, where κ ≥ 0 is the relative sensitivity to the company’s intensity. As for
(2.2), σS is a constant real number and the disturbances (∆εSi )i are independent random
variables with log moment generating ψSi (.):

eψ
S
i (σS) = E

[
eσS∆ε

S
i

]
.

We also assume that ∆εSi is bounded for technical reasons. To keep the modelling consistent
with the definition of the intensity as the ratio of emissions over sales revenues, we add the
following assumption:

Cov(∆εIi ,∆εSi ) < 0.

At each date i, the company chooses whether to invest (γi > 0) or not (γi = 0) in its own
carbon emissions mitigation plan for the next period [i, i + 1]. It does so by selecting its
sales revenues emission intensity reduction strategy denoted by π = (γi)i=0,...,N−1 where each
γi ∈ R+. However, this investment is costly for the company, and the marginal cost of emissions
reduction is an increasing function of the amount of reduction [GETBM93, M+13]. We also
allow for decreasing costs with time, to model the gradually diminishing costs of low-carbon
technology. Thus, the investment costs are a positive, increasing and convex function of the
emissions reduction, and decreasing function of time, that we denote by IC :

IC(i, S, γ) = S × c× αiδ ×
(
1− e−γδ

)β
β

, (2.4)

where c > 0 is the unit cost in USD, α ∈ [0.95, 1] the factor of autonomous cost decrease
over time, and β ≥ 2 the exponent of the emissions reduction rate 1 − e−γδ. Indeed, the
investments are used to green the already existing production chain. It aims at answering
"how much is needed to produce Si with a lesser intensity ?". Thus, we compute the total
emissions reduction with S being kept constant. We obtain:

∆Ei = SiIi − SiIie
−γiδ = IiSi(1− e−γiδ).

Finally, let us introduce the unitary carbon price in USD/tCO2 at date i, denoted cpi, which is
a deterministic function of time, provided by the scenario. The company must pay the carbon
price for each ton of CO2 emitted, meaning it pays Cci = cpi × Ei at each date i.

2.2 Statement of the problem

We define our controlled system as X := {(Ii, Si)}i=0,...,N : we will write as X(1) = I and
X(2) = S for the two components ofX. Consider a filtered probability space (Ω, (Fi)0≤i≤N ,P),
with Fi the canonical filtration of Xi, defined as Fi = σ(Xs, ∀0 ≤ s ≤ i) for all i.
Similarly to [LH22], we assume that the best investment strategy for the company is such
that it will minimize its future carbon cost in the cheapest way over the time horizon [0, T ].
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Because of the possible lack of necessary technology, either due to technological progress or
constrained number of available units, some large investment strategies are not feasible. We
thus add an upper bound for γ denoted γmax > 0 to embody this constraint.
At the end of the time horizon, we assume the company may no longer reduce its carbon cost
and has to endure some uncontrollable discounted carbon cost until the end of times. Since
targets set in scenarios are also defined in terms of time, meaning they aim at answering the
following question: "When should we attain our emissions goal ?", this assumption is in line
with the essence of energy transition scenarios. We illustrate this with some non-negative
function of our controlled system denoted by CN : in this work, we assume a mild condition of
local Lipschitzness on CN , i.e.

|CN (x)− CN (y)| ≤ C(2.5)|x− y|(1 + |x|+ |y|), ∀(x, y) ∈ (R+)2 × (R+)2. (2.5)

An example of such a function is given in (5.1). With initial state space X0 = x = (I, S) (for
intensity and sales level), and given a random intensity reduction strategy π = (γi)i=0,...,N−1,
the total expected cost of the strategy π is:

Jπ(0, x) := E

[
N−1∑
i=0

cpiX
(1)
i X

(2)
i + IC(i,X

(2)
i , γi)

(1 + rδ)i
+

CN (XN )

(1 + rδ)N
| X0 = x

]

= E

[
N−1∑
i=0

Ci(Xi, γi)

(1 + rδ)i
+

CN (XN )

(1 + rδ)N
| X0 = x

]
(2.6)

where r is the risk-free rate and Ci(I, S, γ) is the one-stage cost function defined by:

Ci(X, γ) = cpiX
(1)X(2) + IC(i,X(2), γ) if i < N. (2.7)

The company selects π = (γi)i=0,...,N−1 such that:

J∗(0, x) := inf
π∈Π

Jπ(0, x), (2.8)

where Π is the set of admissible strategies, meaning F-adapted and such that γi ∈ [0, γmax] ∀i =
0, . . . , N − 1. This is a finite horizon discrete time stochastic control problem, with control
γ and controlled system X; the next section discusses the existence of an optimal control for
this problem. Note that for simplicity of notations, we have chosen a constant interest rate.
However, a deterministic rate curve could be easily used with no impact on the methodology.

3 Writing the dynamic programming algorithm

3.1 The dynamic programming principle

For pedagogical reasons, we describe the backward induction process in an informal framework
to build the dynamic programming equation (DPE), also known as Bellman’s equation. A
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rigorous treatment is undertaken in [BS78, Chapter 8], assumptions and conditions needed are
detailed in the next subsection. This algorithm based on DPE enables us to characterize the
optimal control by first showing that an optimal strategy exists for all N sub-minimization
problems starting in i = N − 1, · · · , 0. There are several ways to write the DPE, here our
exposition is aimed at presenting the ingredients and representations that are suitable for our
subsequent numerical experiments.
The stochastic system evolves from date i to i + 1 via Equations (2.2) and (2.3). Start with
an initial state X0 ∈ (R+)2. Chronologically, the company will first pick the control γ0 in
[0, γmax] at date 0 while knowing X0. At date i = 1, the value for X0 is still known, and
X1 is realized on (R+)2 according to its probability law conditionally to the value of X0, and
the value of γ0 chosen by the firm. This process is then repeated until date N with the last
chosen control being γN−1. At date i, the company’s goal is to select each γi dependent on
the history (X0, γ0, . . . , Xi−1, γi−1, Xi). Let us formalize the definition of a strategy:

Definition 3.1. A strategy is a sequence π = (γ0, γ1, . . . , γN−1) where, each γi is a universally
measurable stochastic kernel of the history (X0, γ0, . . . , γi−1, Xi) ∈ (R+)

2 × R+ × · · · × R+ ×
(R+)

2 with values in R+, such that:

γi([0, γmax] | X0, γ0, . . . , γi−1, Xi) = 1,

where γk, k = 0, · · · , i− 1 are the past realizations of the control process.

In other words, the conditional probability γi has a support in [0, γmax]. We may consider
subsets of the above strategies. This is the object of the next definitions.

Definition 3.2. A Markovian strategy is a sequence π = (γ0, γ1, . . . , γN−1) such that, for each
i = 0, . . . , N − 1, γi is a universally measurable stochastic kernel on (R+)

2 satisfying:

γi([0, γmax] | Xi) = 1.

Definition 3.3. A non randomized strategy is a sequence π = (γ0, γ1, . . . , γN−1) such that,
for each i = 0, . . . , N − 1, γi is a universally measurable stochastic kernel on (R+)

2 × R+ ×
· · · × R+ × (R+)

2 that assigns mass one to some γ̃ ∈ [0, γmax] for each each (X0, γ0, . . . , Xi).

Depending on the above type of strategies, the notation γi can represent either a conditional
probability depending on the entire past, or a Markovian kernel, or a deterministic function
respectively; we will use the same notation as it will be clear from the context.
Since the choice of each control at date i impacts the entire trajectory of the state variable after
date i, and since we seek to minimize the total expected costs over the entire period (given
by (2.6)), we will use backward induction, a.k.a. dynamic programming principle (DPE), to
solve this minimization problem: we will gradually learn from N − 1 to 0 the best trajectory
for our problem.
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To define the control problem starting from date i instead of date 0 (as in (2.6)), we need a few
extra notations. Denote by Xs(i, x) the trajectory of (Xs)i≤s≤N with starting value x at date
i. Consider a strategy such that πi = (γi, . . . , γN−1) ∈ Πi, i = 0, . . . , N−1 such as in Definition
3.1 with Πi the set of F i-adapted strategies with each γj ∈ [0, γmax], j = i, . . . , N − 1, and F i

the filtration such that F i
j = σ(Xs(i, x), i ≤ s ≤ j). For simplicity of notations, we denote the

strategy by π for i = 0. We introduce the expected cost function of the strategy evaluated in
i = 0, . . . , N − 1 with starting state x = (I, S):

Jπi(i, x) = E

N−1∑
j=i

Cj(Xj(i, x), γj)

(1 + rδ)j−i
+

CN (XN (i, x))

(1 + rδ)N−i

 . (3.1)

The optimal expected cost function evaluated is then defined by:

J∗(i, x) = inf
πi∈Πi

Jπi(i, x). (3.2)

Now our objective is to prove that a non-randomized Markov optimal strategy

γ∗i : (R+)2 −→ [0, γmax],

γ∗i : X 7−→ γ∗i (X)

exists for this stochastic control problem, then to characterize it. To identify the optimal
control, start with a non-randomized Markovian strategy and using the tower property, write

Jπi(i, x) = Ci(x, γi(x))

+
1

(1 + rδ)
Eγ

E
 N−1∑
j=i+1

Cj(Xj(i, x), γj(Xj(i, x)))

(1 + rδ)j−i
+

CN (XN (i, x))

(1 + rδ)N−i | Xi+1

 | Xi = x


= Ci(x, γi(x)) +

1

(1 + rδ)
Eγ
[
Jπi+1(i+ 1, Xi+1(i, x)) | Xi = x

]
,

with Eγ [. | Xi] the expectation with respect to the transition density of Xi+1 conditionally
to Xi and γi = γ. In the above, we take i = 0, . . . , N with the convention JπN+1 ≡ 0 and
CN (x, γN (x)) = CN (x). This shows that the optimal control γ∗i should be such as

γ∗i : x 7→ arg min
γ∈[0,γmax]

{
Ci(x, γ) +

1

(1 + rδ)
Eγ [J∗(i+ 1, Xi+1(i, x)) | Xi = x]

}
. (3.3)

In addition, J∗(i + 1, x) can be represented as an expectation. Recall we work by backward
induction, we thus have already computed J∗(j, x) for all j > i and the corresponding optimal
strategy π∗j . Indeed, since each function γ∗j is known for all j > i, one can rewrite J∗ as:

J∗(i+ 1, x) = E

 N−1∑
j=i+1

Cj(X∗
j , γ

∗
j (X

∗
j ))

(1 + rδ)j−(i+1)
+

CN (X∗
N )

(1 + rδ)N−(i+1)
| Xi+1 = x

 . (3.4)
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Here (X∗
j )j=i+1,...,N is the best trajectory for the state variable and γ∗j (X

∗
j ) is the best control

computed along the best trajectory for X.
Note that one could plug the above representation (3.4) into (3.3) to obtain the expression
(3.5) below, however it is not as convenient as (3.3)-(3.4) for the numerical resolution:

γ∗i (x) = arg min
γ∈[0,γmax]

{
Ci(x, γ)

+
1

(1 + rδ)
Eγ

 N−1∑
j=i+1

Cj(X∗
j , γ

∗
j (X

∗
j ))

(1 + rδ)j−(i+1)
+

CN (X∗
N )

(1 + rδ)N−(i+1)
| Xi = x

}. (3.5)

All in all, we have characterized a non-randomized Markov policy π∗(x) = (γ∗i (x), . . . , γ
∗
N−1(.)), i =

0, . . . , N − 1 where each γ∗i (.) is a deterministic function given by the dynamic programming
equation, i.e. by measurably selecting for each i = N − 1, · · · , 0 a function as given by (3.3)
or (3.5), with J∗(N, x) = CN (x) by convention. In the following subsection, we prove that the
above policy exists and is optimal.

3.2 Existence of an optimal control

Recall the stochastic control problem (2.8). Theorem 3.4 states the conditions for which an
optimal nonrandomized Markov intensity reduction strategy exists, and that such a strategy
is given by the DPE.

Theorem 3.4. 1. If the following assumption is satisfied:

E [max (0,−Ci(X, γ))] <∞, ∀i = 0, . . . , N, γ ∈ [0, γmax], (F+)

2. and if the infimum in:

inf
γ∈[0,γmax]

{
Ci(x, γ) +

1

1 + rδ
Eγ [J∗(i+ 1, Xi+1) | Xi = x]

}
, i = 0, . . . , N − 1, x ∈ (R+)2,

(3.6)

is attained for all x ∈ (R+)2 with J∗(N, x) = CN (x),
then an optimal nonrandomized Markov strategy π∗(x) exists. This strategy is given by the
dynamic programming algorithm, i.e. by measurably selecting for each x ∈ (R+)2 a control
that achieves the minimum in (3.6).

Proof. This is an application of [BS78, Proposition 8.5].

Theorem 3.9 below states that both (F+) and (3.6) hold. Thus, the results of Theorem 3.4
apply to prove the existence of an optimal intensity reduction strategy for our model. Before
enunciating Theorem 3.9, we need to introduce the following three technical lemmas, which
proofs are postponed to Section B.
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Lemma 3.5. We have

sup
0≤i≤j≤N,ω∈Ω

X
(1)
j (i, x)

X
(1)
i (i, x)

(ω) =: K1 < +∞, (3.7)

sup
0≤i≤j≤N,ω∈Ω

X
(2)
j (i, x)

X
(2)
i (i, x)

(ω) =: K2 < +∞. (3.8)

Lemma 3.6. For any i = 0, . . . , N − 1, j ≥ i and (x, y) ∈ (R+)2 × (R+)2, we have:

|X(1)
j (i, x)−X

(1)
j (i, y)| ≤ K3|x(1) − y(1)|, (3.9)

|X(2)
j (i, x)−X

(2)
j (i, y)| ≤ K4[(|x(2)|+ |y(2)|)|x(1) − y(1)|+ |x(2) − y(2)|], (3.10)

|X(1)
j (i, x)X

(2)
j (i, x)−X

(1)
j (i, y)X

(2)
j (i, y)| ≤ K5|x− y|(|x|+ |y|)(1 + |x|+ |y|), (3.11)

where K3, K4 and K5 are finite non-negative constants.

Lemma 3.7. For any i = 0, . . . , N − 1, Jπi(i, x) is locally Lipschitz, uniformly in πi and γ:

|Jπi(i, x)− Jπi(i, y)| ≤ K6|x− y|[1 + (|x|+ |y|)(1 + |x|+ |y|)], (x, y) ∈ (R+)2 × (R+)2.

Here K6 is a non-negative constant, uniform in πi and j.

Lemma 3.8. For any i = 0, . . . , N − 1, J∗(i, x) is locally Lipschitz and uniformly in πi:

|J∗(i, x)− J∗(i, y)| ≤ K6|x− y|[1 + (|x|+ |y|)(1 + |x|+ |y|)], (x, y) ∈ (R+)2 × (R+)2.

Proof. This is a easy consequence of the general inequality∣∣∣ inf
πi∈Πi

Jπi(i, x)− inf
πi∈Πi

Jπi(i, y)
∣∣∣ ≤ sup

πi∈Πi

∣∣∣Jπi(i, x)− Jπi(i, y)
∣∣∣

applied to the definition (3.2) of J∗ and using Lemma 3.7.

Theorem 3.9. The following statements are true:

1. The assumption (F+) is satisfied.

2. The infimum in (3.6) is attained for all i = 0, . . . , N − 1, x ∈ (R+)2 with J∗(N, x) =

CN (x).

Proof. 1. Since the one-stage cost function is non negative, (F+) is trivially satisfied.

2. Ci is continuous with respect to γ ∈ [0, γmax] for any i = 0, . . . , N − 1. Let us now prove
the continuity of Eγ [J∗(i+ 1, Xi+1) | Xi = x] with respect to γ.
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(a) Recall the dynamics of the state variable with control γ at time i:

X
(1)
i+1(i, x, γ) = x(1)e−γδ × eσI∆ε

I
i−ψI

i (σI),

X
(2)
i+1(i, x, γ) = x(2)

S̄i+1

S̄i
e−κ(x

(1)−Irefi )δ × eσS∆ε
S
i −ψS

i (σS).

This clearly shows that γ 7−→ Xi+1(i, x, γ) is continuous. Here we have written
explicitly the dependence in γ in the state variable to highlight its impact.

(b) From Lemma 3.8, J∗ is locally Lipschitz, thus J∗(i+1, x) is continuous in x ∈ (R+)2

for any i = 0, . . . , N − 1. Taking (2a), we can extend this result to the continuity
of J∗(i+ 1, Xi+1(i, x, γ)) with respect to γ.

(c) From Lemma 3.5, we deduce that Xi+1(i, x, γ) and therefore J∗(i+1, Xi+1(i, x, γ))

are uniformly bounded, as a function γ and ω (for any given x).

(d) From (2c), we can thus apply the dominated convergence theorem to write

lim
γ−→γ̃

Eγ [J∗(i+ 1, Xi+1) | Xi = x] = lim
γ−→γ̃

E [J∗(i+ 1, Xi+1(i, x, γ))]

= E
[
lim
γ−→γ̃

J∗(i+ 1, Xi+1(i, x, γ))

]
= E [J∗(i+ 1, Xi+1(i, x, γ̃))]

= Eγ̃ [J∗(i+ 1, Xi+1) | Xi = x] .

Ergo, γ 7−→ Eγ [J∗(i+ 1, Xi+1) | Xi = x] is continuous, and the infimum in (3.6) is
attained on the compact set [0, γmax] for all x ∈ (R+)2, i = 0, . . . , N − 1.

Finally, Corollary 3.10 characterizes the optimal intensity reduction strategy for the company.

Corollary 3.10. The optimal strategy is generated by the dynamic programming algorithm,
i.e. π∗(x) = (γ∗0(x), . . . , γ

∗
N−1(.)) an admissible Markov strategy such that, given x ∈ (R+)2,

we have for all i = 0, . . . , N − 1:

γ∗i : (R+)2 −→ [0, γmax],

x 7−→ arg min
γ∈[0,γmax]

{
Ci(x, γ) +

1

1 + rδ
Eγ

 N−1∑
j=i+1

Cj(X∗
j , γ

∗
j (X

∗
j ))

(1 + rδ)j−i−1
+

CN (X∗
N )

(1 + rδ)N−i−1
| Xi = x

}.
(3.12)

Proof. We can apply Theorem 3.4 because its assumptions are fulfilled thanks to Theorem
3.9. Therefore, the Markovian representation (3.3) is valid, and the continuation value (3.4)
too. Replacing the latter in (3.3) gives the announced formula (3.12).
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We have now proven the existence, of an optimal intensity reduction strategy, as well as
specified its form. Given the complexity of our model, we cannot use the dynamic programming
equation to derive a closed-form solution for this minimization problem. We therefore propose
in the next section a resolution method based on a numerical procedure that we call backward
sampling.

4 Methodology for the Numerical Resolution

We use the dynamic programming equation stated in Corollary 3.10 to learn the optimal
strategy. This amounts to selecting at each i = N − 1, . . . , 0 a process such that it minimizes
Equation (3.12). Working by backward induction, this involves computing the conditional
expectation of the optimal future costs at each step i. The backward sampling algorithm
that we propose consists of gradually learning the optimal control process and the optimal
trajectory for the state variable at each date i = N − 1, . . . , 0 using simulations of the future
state of the controlled variable (i.e. j > i). A key feature of our approach is to avoid resampling
the paths once the control is learned. This requires to shift from the trajectory computed with
a non optimal strategy to the optimal trajectory at each date i. For this, we need to introduce
the following notations for all 0 ≤ i < j ≤ N :

• Let πi:j := (γi, . . . , γj−1) be an admissible strategy between i and j − 1.

• Let Xπ
(0)
0:i

i (0, X0) :=
(
I
π
(0)
0:i

i (0, X0), S
π
(0)
0:i
i (0, X0)

)
be the value for the state variable at i

starting in X0 at date 0 and computed with a reference Markovian strategy π(0)0:i : it could
be related to an uncontrolled intensity π0:i = 0i, or to any other prescribed intensity
(hence non optimal) chosen by the user. We will see later that this reference strategy
will be updated a few times to globally improve the efficiency of the learning algorithm.

For the sake of notational simplicity, whenever unambiguous, we shall writeXπ
(0)
0:i

i instead

of Xπ
(0)
0:i

i (0, X0).

• Let Xπi:j
j (i,X

π
(0)
0:i

i ) :=
(
I
πi:j
j (i,X

π
(0)
0:i

i ), S
πi:j
j (i,X

π
(0)
0:i

i )
)

be the value for the state variable

at j starting in Xπ
(0)
0:i

i at date i and computed with strategy πi:j .

Using the exponential form of the controlled variable,
it is possible to get from the controlled state with reference strategy π

(0)
i:j = (γ

(0)
q )q=i,...,j−1

to the one with learnt strategy π̂i:j = (γ̂q)q=i,...,j−1 at any date 0 ≤ i < j ≤ N .Here, we

understand that γ(0)q = γ
(0)
q (X

π
(0)
0:q

q ). Precisely, the first coordinate for X
π
(0)
i:j

j (i,X
π
(0)
0:i

i ) and

13



X
π̂i:j
j (i,X

π
(0)
0:i

i ) are respectively given by:

I
π
(0)
i:j

j (i,X
π
(0)
0:i

i ) = I
π
(0)
0:i

i (0, X0)

j−1∏
q=i

exp
(
−γ(0)q δ + σI∆ε

I
q − ψIq (σI)

)
, (4.1)

I
π̂i:j
j (i,X

π
(0)
0:i

i ) = I
π
(0)
0:i

i (0, X0)

j−1∏
q=i

exp
(
−γ̂qδ + σI∆ε

I
q − ψIq (σI)

)
. (4.2)

By dividing (4.2) by (4.1), we get:

I
π̂i:j
j (i,X

π
(0)
0:i

i ) = I
π
(0)
i:j

j (i,X
π
(0)
0:i

i )

j−1∏
q=i

exp
(
−(γ̂q − γ(0)q )δ

)
.

Using the same logic, we get the following result for the second component of X π̂i:j
j (i,X

π
(0)
0:i

i ):

S
π̂i:j
j (i,X

π
(0)
0:i

i ) = S
π
(0)
i:j

j (i,X
π
(0)
0:i

i ) exp

−κ
j−1∑
q=i

(
I
π̂i:q
q (i,X

π
(0)
0:i

i )− I
π
(0)
i:q

q (i,X
π
(0)
0:i

i )

)
δ

.
The algorithm goes as follows:

1. We simulate M paths for (∆εIi ,∆ε
S
i )i=1:N to get controlled trajectories with an ar-

bitrarily chosen admissible deterministic strategy π
(0)
0:N . The strategy chosen for our

experiments is described in (5.2).

2. In view of the dynamic programming equation (3.12) and (3.4), it is needed to compute
the following quantity for each i = N − 1, . . . , 0:

Rγ(i, x) := Eγ [J∗(i+ 1, Xi+1) | Xi = x] .

3. We first compute an approximation of J∗ as an explicit function of γ using backward
sampling:

J∗(i+ 1, X
π
(0)
0:i+1

i+1 ) ≈ E

[
N−1∑
j=i+1

Cj
(
X
π̂i+1:j

j (i+ 1, X
π
(0)
0:i+1

i+1 ), γ̂j(X
π̂i+1:j

j (i+ 1, X
π
(0)
0:i+1

i+1 ))

)
(1 + rδ)j−i−1

+

CN
(
X
π̂i+1:N

N (i+ 1, X
π
(0)
0:i+1

i+1 )

)
(1 + rδ)N−i−1

| Xπ
(0)
0:i+1

i+1

]
.
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It yields a representation of J∗(i+1, ·) as a conditional expectation with explicit quanti-
ties, thus a regression-based approach can be used. We approximate this scalar function
using L basis functions ϕ = {ϕl}l=1,...,L,

Ĵ∗(i+ 1, ·) :=
L∑
l=1

α̂ilϕl(·) = α̂i · ϕ(·), (4.3)

where α̂il, l = 1, . . . , L are coefficients obtained using least squares over the M simula-
tions:

α̂i = argmin
α

M∑
m=1

[
N−1∑
j=i+1

Cj
(
X
π̂i+1:j ,m
j (i+ 1, X

π
(0)
0:i+1,m

i+1 ), γ̂j(X
π̂i+1:j ,m
j (i+ 1, X

π
(0)
0:i+1,m

i+1 ))

)
(1 + rδ)j−i−1

+

CN
(
X
π̂i+1:N ,m
N (i+ 1, X

π
(0)
0:i+1,m

i+1 )

)
(1 + rδ)N−i−1

− α · ϕ
(
X
π
(0)
0:i+1,m

i+1

)]2
,

with γ̂j and X
π̂i+1:j ,m
j (i + 1, X

π
(0)
0:i+1,m

i+1 ) respectively the best known to date i intensity
reduction function process for any date j > i and its corresponding state variable for
path m.

4. It remains to estimate the conditional expectationRγ(i, x) = Eγ [J∗(i+ 1, Xi+1) | Xi = x].
It is tempting to apply an extra regression: however, it does not lead to a representation
of Rγ(i, x) in a form suitable for the minimization in (3.12). This is why we prefer to
use an integral representation of the conditional expectation Rγ(i, x). By definition of
the conditional expectation, Rγ rewrites as:

Rγ(i, x) = Eγ [J∗(i+ 1, Xi+1) | Xi = x]

=

∫∫
G
J∗
(
i+ 1,

(
x(1)e−γδeσIz−ψ

I
i (σI), x(2)

S̄i+1

S̄i
e−κ(x

(1)−Irefi )δeσSy−ψ
S
i (σS)

))
P∆εIi ,∆ε

S
i
(dz,dy),

where G and P∆εIi ,∆ε
S
i

are respectively the support and the joint probability of (∆εIi ,∆ε
S
i ).

Rγ is then estimated by substituting J∗ by (4.3) and applying a numerical integration
to the above double integral:

Rγ(i, x) ≈
∑
q1,q2

wq1,q2α̂
i · ϕ

(
x(1)e−γδeσIzq1−ψ

I
i (σI), x(2)

S̄i+1

S̄i
e−κ(x

(1)−Irefi )δeσSyq2−ψ
S
i (σS)

)
=: R̂γ(i, x),

where the points (zq1 , yq2)q1,q2 and weights (wq1,q2)q1,q2 are related to an integration rule
on the set G w.r.t. the distribution P∆εIi ,∆ε

S
i
.
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5. For each x ∈ {Xπ
(0)
0:i ,m

i }m=1,...,M , we solve the following with a one-dimensional mini-
mization algorithm:

γπ̂,mi = arg min
γ∈[0,γmax]

[
Ci(x, γ) +

1

1 + rδ
R̂γ(i, x)

]
.

6. Then, we get γπ̂i (·) by linearly regressing {γπ̂,mi }m=1,...,M on {Xπ
(0)
0:i ,m

i }m=1,...,M . Note
that we could consider more general features for the regression, however in our tests
we have not observed any significant improvement in doing so compared to the current
features; if the regression R-squared is too small (<50%), an interpolation could be
alternatively used.

7. We repeat this process using the obtained strategy π̂0:N as the new starting point strategy
π
(0)
0:N , until we achieve stability of results and set π∗0:N = (γ∗i (·))i=0,...,N as the last π̂0:N .

This strategy update step allows the statistical learning part of the algorithm to learn
on a dataset closer to the one with the optimal strategy, than if we had stayed with the
initial reference strategy; this contributes to better results. In practice, the number of
updates remains low (a few units are enough in our tests).

We summarize this method in Algorithm 1.
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Algorithm 1: Resolution of the Dynamic Programming Algorithm by Back-
ward Sampling

Input: Number of Monte Carlo Simulations: M ≫ 1,

Number of epochs: K ∈ {1, 2, ...},
Set of basis functions: {ϕl}Ll=1,

Starting strategy: π(0).
Output: Optimal process function: γ∗i (·) ∀i = 1, . . . , N − 1.

1 Sample M Monte Carlo paths for {(Xπ(0),m
i )i=0,...,N}m=1:M with strategy π(0).

2 # Iteration over reference strategies
Set π̂(0) := π(0).
for k = 1 : K do

3 Set X π̂(k),m
N := X π̂(k−1),m

N for all simulated paths.
4 # Backward iteration in time

for i = N − 1, . . . , 0 do
5 # Computation of sample data for regression

for m = 1, . . . ,M do
Compute

J π̂
(k),m

i+1 =
N−1∑
j=i+1

Cj
(
X

π̂
(k)
i+1:j

,m

j (i+1,X
π̂
(k−1)
0:i+1

,m

i+1 ), γ̂
(k)
j

(
X

π̂
(k)
i+1:j

,m

j (i+1,X
π̂
(k−1)
0:i+1

,m

i+1 )
))

(1+rδ)j−i−1

+
CN
(
X

π̂
(k)
i+1:N

,m

N (i+1,X
π̂
(k−1)
0:i+1

,m

i+1 )

)
(1+rδ)N−i−1 .

6 Compute α̂i = argminα
∑M

m=1

[
J π̂

(k),m
i+1 − α · ϕ

(
X
π̂
(k−1)
0:i+1 ,m

i+1

)]2
.

7 Cross-validation: Choose the number L = 1, . . . , 20 of basis functions that
maximizes the R2-score of the least squares regression.

8 # Numerical integration of reward function
Set R̂γ(i, x) :=

∑
q1,q2∈Qwq1,q2

× α̂i · ϕ
(
x(1)e−γδeσIzq1−ψ

I
i (σI), x(2) S̄i+1

S̄i
e−κ(x

(1)−Irefi )δeσSyq2−ψ
S
i (σS)

)
.

9 # Optimal control for each sample
for m=1,. . . ,M do

Solve γπ̂
(k),m

i = arg min
γ∈[0,γmax]

{
Ci(X

π̂
(k−1)
0:i ,m

i , γ) +
1

1 + rδ
R̂γ(i,X

π̂
(k−1)
0:i ,m

i )

}
.

10 # Learning the control function

Compute β̂i = arg min
βi=(βi

0,β
i
1)

M∑
m=1

[
γπ̂

(k),m
i − (βi0 + βi1 ·X

π̂
(k−1)
0:i ,m

i )

]2
.

11 Update {(X
π̂
(k)
i:j ,m

j (i,X
π̂
(k−1)
0:i ,m

i ))j=i,...,N}m=1,...,M , using the same noises ∆εI

and ∆εS .
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5 Application to fictitious companies

5.1 Description of scenarios

We have based our application on two NGFS phase III energy transition scenarios [RBK+22],
namely, Below 2 Degrees, and Delayed Transition (see Table 1). Both show different pathways
running from 2020 to 2050. They provide different trajectories for many macroeconomic vari-
ables, such as gross domestic product (GDP), inflation, and energy consumption, on different
geographic scales (from region to country) using three IAMs (Remind-MAgPIE, GCAM, and
MESSAGEix-GLOBIOM). They propose sectoral pathways based on the NACE classification
[Eur08] up to level 2. We have focused on a transition vulnerable sector ’D35: Electricity, gas,
steam, and air conditioning supply’ for France.
For our analysis, we have extracted three variables’ trajectories from these scenarios (Remind-
MAgPIE): the carbon price, the sectoral emissions, and the sectoral sales revenues (Fig. 1).
Note that the sales revenues are not one of the main variables of the NGFS scenarios. We have
inferred the trajectories using the general equilibrium model from Banque de France [DL20]
similarly to the methodology employed for the 2020 French banking authority climate stress
test [AdCPedR20].

Below 2 Degrees (B2C). B2C is a central scenario in which climate regulators take action
as soon as 2020 to achieve the ’well below two Celsius degrees’ as laid out in the 2015 Paris
Agreement. The stringency of climate policies gradually increases, leaving enough time for the
economic actors to adapt and plan their adaptation to the new low-carbon economy. World-
wide Net-zero CO2 emissions are achieved after 2070, taming both physical and transition
risks. This scenario has an estimated chance of 67% of limiting global warming to below two
Celsius degrees. Because this scenario is less disruptive and allows us to achieve transition
goals, it will be used as our benchmark scenario for the remainder of the analysis.

Delayed Transition (DT). In DT, no more policies than the ones currently in place are
introduced before 2030. Until then, global emissions have grown, making the need for a
transition even higher and more arduous to fulfill. Incisive policies are thus required to limit
warming to below two degrees. This scenario still leads to a successful transition, i.e. with
global warming limited to two degrees. However, disruptive climate policies are employed to
achieve it. The level of action differs across countries and regions. Carbon Dioxide Removal
(CDR) technologies are scarce, negative emissions are limited, leading to a more rapid decline
in carbon emissions than in the B2C scenario from 2030 onwards.
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Figure 1: Trajectories of carbon price (cpi), reference intensity (Iref ) and sector sales revenues
(S̄) extracted from the NGFS phase 2 scenarios for sector D35 for France. Starting point:
cp0 = 12.56USD/tCO2, I

ref
0 = 7.71E−4tCO2/USD, S̄0 = 2, 48E7USD.

5.2 Choice of parameters and hyperparameters

Model parameters. We have considered a 6 dates problem (N = 6, δ = 5), and have ran
tests on three fictitious companies that only differ in starting point intensity: I10 = 1.16−3

(brown), I20 = 7.71E−4 (yellow), I30 = 3.86E−4 (green). Note that Iref0 = I20 for all scenarios.
Table 2 summarizes all other parameters used. Because of the steady feature of companies’
revenues and intensity, we have preferred low volatility levels (2%). The disturbance process
is (∆εIi ,∆ε

S
i ) = (

√
δmin(max(Z1,−3), 3);

√
δmin(max(Z2,−3), 3)) for all i where (Z1, Z2) is

a centered and normalized 2-dimensional Gaussian variable such that cov(Z1, Z2) = −0.3.
The parameters chosen for the investment cost function are the same as those proposed by
default in [Nor17]. We have set γmax such that the maximum yearly decrease rate of intensity
is no greater than 40%. This is quite a high upper bond, which is not hit in most cases. We
have assumed a constant carbon cost cpNINSN for any j ≥ N that the company will pay for
an infinite number of dates after the end of the scenario. This quantity is then discounted,
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Scenario Temperature Policy type Technology CDR Regional Policy
increase in 2100 Variation

B2C 1.6°C Immediate and smooth Moderate change Medium-high Low variation
DT 1.6°C Delayed Slow then Fast change Low-medium High variation

Table 1: Summary of the different NGFS Scenarios studied for the analysis. CDR means
carbon Dioxide Removal technologies (Source: NGFS).

which leads to:

CN (IN , SN ) := cpNINSN
1 + rδ

rδ
. (5.1)

σI S0 σS κ α β c r γmax

0.02 8.4× 105 0.02 30 0.95 2.8 1.26 6% 1− e−γmax = 0.4

Table 2: Values of model parameters for the toy example.

Algorithm Parameters. The starting point strategy (recall π0 in Algorithm 1) is designed
such that γi provides the same decrease rate as the sectoral intensity between year i and i+1,
capped at γmax. The elected basis function family is polynomials, including cross products
of the intensity and sales. It provided satisfactory results (R2 of regression equal to 90% on
average) with small numbers of functions (up to degree 4). We have used SVD to solve the
least square problem in order to bypass possible multi-colinearity issues raised by the chosen
basis functions. We have computed the double integral using Simpson’s method over a product
grid of 10× 10 points uniformly distributed on [−3, 3]× [−3, 3]. Despite the small number of
points, the precision was more than satisfactory. We used BFGS’ method with a tolerance set
to 10−6 for the minimization step. The optimal function is inferred using statsmodels OLS
function when the R-squared is sufficient, otherwise with griddata function from the scipy
interpolate function. All tests were run on Python 3.7. with Intel Xeon CPU Gold 6230 20
cores @ 2.1 Ghz.

5.3 Results and interpretation

5.3.1 Description of the strategies

For each scenario, we have computed the results for three benchmark strategies. The first one
is an exogenous (exo) strategy consisting in selecting the same reduction rate as the reference
intensity, omitting the disturbance. Obviously, the reduction rate cannot be greater than 40%.
It is the same as the strategy π(0) described before. The second one, called the myopic (myo)
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strategy, consists of selecting the reduction rate such that the investment at date i is the same
as the cost of paying the carbon tax at date i:

πexo := (γexoi )i=0,...,N , e−γ
exo
i δ = max

(
Irefi+1

Irefi

, e−γmaxδ

)
, (5.2)

πmyo := (γmyo
i (I, S))i=0,...,N , γmyo

i (I, S) = min

(
−1

δ
ln

(
1−

(
β
cpiI

cαi

) 1
β

)
, γmax

)
,

for all i = 0, . . . , N − 1.
Note that our definition of the exogenous strategy gets around scenarios where the reference
intensity falls to 0. Moreover, the myopic strategy is not a direct function of the firm’s sales,
but it depends on its intensity level. In some cases, the unitary carbon cost of the company
may be too high for a solution to exist, we cap it to γmax. Eventually, we also consider the
uncontrolled strategy, i.e. with π := 0N denoted by the exponent 0. Finally, the optimal
strategy π∗ is the one obtained by solving the minimization problem defined in (2.8) using the
backward sampling algorithm. Table 4 summarizes all different scenarios, firms, and strategies
considered.

5.3.2 Main results for different companies

As expected, not controlling the intensity (i.e. π = 0N ) largely decreases the companies sales
revenues and inflates the carbon tax. This happens even for the green company in an orderly
transition setting (Fig. 4) where the sum of total discounted sales revenues is reduced by
3.3%. More importantly, the uncontrolled strategy leads to a decreasing trend in sales in all
scenarios (Figs. 2 & 5). The gap widens with time, which makes long-term forward looking
credit risk metrics with a constant intensity assumption (such as in [BLG20, BKM22]) largely
degraded.
In contrast, all other strategies yield similar total discounted sales revenues levels over the
scenario (see Table 5). For instance, for the yellow company in scenario B2C this amounts to
USD3.40E6 for the optimal strategy, USD3.446 for the exogenous strategy and USD3.49E6 for the
myopic strategy. Regarding other variables, the exogenous strategy gives results that are close
to the myopic strategy both in terms of carbon tax in the central scenario (e.g. scenario B2C
Green company : exogenous strategy = USD18, 056 vs myopic = USD17, 467). However, this is
reversed when the scenario displays shocks because the investment decision of the exogenous
strategy are independent from the carbon price and other scenario’s aspects. Particularly, it
can be seen in Figure 6 that the exogenous strategy prevents the company to set buffer for
the 2030 carbon price shock (e.g. total expected discounted carbon cost : exogenous strategy
= USD111, 387, myopic strategy = USD89, 055, optimal strategy = USD72, 693). The myopic
strategy does act earlier than the exogenous one, however its investments are poorly planned
due to lack of foresight, leading to a bump in investment efforts in 2035. The forward-looking
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Figure 2: Simulated results for the brown company with the optimal strategy (boxplots)
and benchmark strategies (myopic = stars, exogenous = squares, uncontrolled = dots) in
scenario B2C and reference intensity Iref (red line). Shaded area : 90% confidence interval
for trajectories under the optimal strategy. From top LHS to bottom RHS : Intensity, Sales
Revenues, Carbon Cost and Investment Costs. Carbon cost for the uncontrolled strategy to
be read on the RHS y-axis.

feature of the optimal strategy allows not only to time the investment accordingly but also to
arbitrage between paying more carbon tax and less in the carbon reduction strategy.
The optimal strategy takes advantage of both the discount factor and the autonomous de-
creasing feature of the investment costs to time investments when they are less costly for the
brown company (Fig. 2 & 5). In particular, it waits until the last period before the 2030
carbon price shock to invest in its intensity mitigation plan to benefit from the drop in green
technologies price (Figures 5, 6 & 7). For this reason, it systematically supersedes the other
strategies, both in terms of total carbon cost and investment costs (Table 5). Note that, in
scenario B2C, the brown company would rather pay more carbon tax than attempting to fol-
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Figure 3: Simulated results for the yellow company with the optimal strategy (boxplots)
and benchmark strategies (myopic = stars, exogenous = squares, uncontrolled = dots) in
scenario B2C and reference intensity Iref (red line). Shaded area : 90% confidence interval
for trajectories under the optimal strategy. From top LHS to bottom RHS : Intensity, Sales
Revenues, Carbon Cost and Investment Costs. Carbon cost for the uncontrolled strategy to
be read on the RHS y-axis.

low its sectoral average intensity because of the convexity of the investment cost in a smooth
transition (Fig. 2). However, the paradigm flips in a disorderly transition setting due to the
shoot up of carbon price in 2030 (Fig. 5).
For the green company, the optimal intensity is higher than the other strategies in scenario
B2C (Fig. 4) and is gradually caught with the sectoral average. The need for carbon mitigation
is weaker since the company starts with a low intensity. This leads to small investment levels:
USD5, 459 total expected discounted investment costs over the scenario, against USD20, 698

for the exogenous strategy and USD16, 505 for the myopic strategy. However, the smaller
investment costs are partially compensated by the augmented total expected discounted carbon
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Figure 4: Simulated results for the green company with the optimal strategy (boxplots)
and benchmark strategies (myopic = stars, exogenous = squares, uncontrolled = dots) in
scenario B2C and reference intensity Iref (red line). Shaded area : 90% confidence interval
for trajectories under the optimal strategy. From top LHS to bottom RHS : Intensity, Sales
Revenues, Carbon Cost and Investment Costs. Carbon cost for the uncontrolled strategy to
be read on the RHS y-axis.

costs (scenario B2C: optimal = USD21, 583, exogenous = USD18, 056, myopic = USD17, 467) with
little difference in total expected discounted sales revenues (optimal = USD3.76E6, exogenous
= USD3.80E6, myopic = USD3.80E6). Again, this facet is reversed in scenario DT because the
company braces against the 2030 carbon price shock. It invests earlier than with the other
strategies, allowing lower carbon costs (optimal = USD54, 168, exogenous = USD64, 864, myopic
= USD69, 458). Then, the optimal intensity converges towards that of other strategies.
The yellow company displays two different behaviors. On the one hand, in B2C, the opti-
mal strategy stays slightly above the sector average because of manageable carbon costs and
to avoid unnecessary convexly increasing investment costs (Fig. 3). This allows to divide
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Figure 5: Simulated results for the brown company with the optimal strategy (boxplots)
and benchmark strategies (myopic = stars, exogenous = squares, uncontrolled = dots) in
scenario DT and reference intensity Iref (red line). Shaded area : 90% confidence interval
for trajectories under the optimal strategy. From top LHS to bottom RHS : Intensity, Sales
Revenues, Carbon Cost and Investment Costs. Carbon cost for the uncontrolled strategy to
be read on the RHS y-axis.

investment costs by more than 2 (optimal = USD8, 869, exogenous = USD18, 789, myopic =
USD26, 948) with little difference in both sales and carbon costs. On the other hand, similarly
to the green company, the optimal intensity is cut much lower and earlier than the other
strategies in order to dodge the carbon price shock (Fig. 6).
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Figure 6: Simulated results for the yellow company with the optimal strategy (boxplots)
and benchmark strategies (myopic = stars, exogenous = squares, uncontrolled = dots) in
scenario DT and reference intensity Iref (red line). Shaded area : 90% confidence interval
for trajectories under the optimal strategy. From top LHS to bottom RHS : Intensity, Sales
Revenues, Carbon Cost and Investment Costs. Carbon cost for the uncontrolled strategy to
be read on the RHS y-axis.
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Figure 7: Simulated results for the green company with the optimal strategy (boxplots)
and benchmark strategies (myopic = stars, exogenous = squares, uncontrolled = dots) in
scenario DT and reference intensity Iref (red line). Shaded area : 90% confidence interval
for trajectories under the optimal strategy. From top LHS to bottom RHS : Intensity, Sales
Revenues, Carbon Cost and Investment Costs. Carbon cost for the uncontrolled strategy to
be read on the RHS y-axis.
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5.4 Numerical sensitivity analysis of the optimal trajectories to the model
parameters

5.4.1 Methodology of the sensitivity analysis

We have numerically studied the sensitivity of the optimal trajectories to some of the model
parameters, namely : α, β, c, κ and r. For each model parameter considered, we have run
100 simulations with values taken in a carefully chosen interval, with constant step. The
corresponding intervals are disclosed in Table 3. We have focused on the yellow company (i.e.
such that I0 = Iref0 ) and the scenario B2C because they are the most central. For this matter,

α β c κ r

[0.95; 1] [2; 3.6] [0.63; 1.89] [0; 100] [0; 0.1]

Table 3: Ranges of values used for the numerical sensitivity analysis of the optimal trajectories
to the model parameters.

we have considered a 6-dates noise-free scenario, i.e. with σI = σS = 0. Since the value of the
sales revenues does not depend on the control process at date i in this particular setting, the
new dynamic programming equation thus becomes:

γ∗i (x) = arg min
γ∈[0,γmax]

(
Ci(x, γ) +

1

1 + rδ
J∗(i+ 1, Xi+1(x))

)
, ∀i = N − 1, . . . , 0, x ∈ (R+)2,

J∗(N, x) = CN (x).

Working our way from N − 1 towards 0, we solve the dynamic programming equation at
each date i by computing the trajectories over a grid of 500 possible values for γ ∈ [0, γmax]

and by selecting the value conferring the lowest cost. We repeat this step for 500 values for
X(1) ∈ (0, I0] since the intensity can only decrease asymptotically towards 0. We then learn
the optimal process function by regressing the optimal values for γ on the values we have used
for X(1). The results are detailed in the following paragraphs.

5.4.2 Sensitivity to α

We study the effects of different values for the autonomous factor of investment cost decrease
α ∈ [0.95, 1] as defined in (2.4) on the optimal trajectories. We see in Fig. 8a that the increase
in α yields a decrease in the optimal intensity in the beginning of the scenario, whereas a slight
increase by the end. Indeed, for 2025, there is a 14.3% drop in the relative emissions between
α = 0.95 and between α = 1, compared to a 20.8% raise at the end of the scenario. Since α
is the autonomous factor of decrease of the investment costs, this is economically sound. The
higher α is, and the less beneficial it is for the company to wait before investing in reducing its
relative emissions. Thus, there is a more significant cut in relative emissions in the first years
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of the scenario when α tends to one. This pattern is confirmed by the investment costs (Fig.
8d) with yearly investments increasing with α in 2020, and decreasing for all years after 2030.
Similarly to the optimal intensity, the investments costs increase with α in the first part of
the scenario, however this trend is compensated by the end of the scenario (from USD18, 093

for α = 0.95 in 2020 to USD36, 079 for α = 1).
Moreover, an augmented α factor implies inflated unitary intensity mitigation costs by the end
of the scenario meaning that a same reduction effort will be more onerous. Thus, delaying the
investment becomes less and less beneficial, leading to a shoot up of total investment costs in
2020 (Fig. 8d) and a slight increase in carbon tax with respect to α in 2050 (Fig 8c).
Overall, the sales revenues are hardly altered (Fig. 8b). However, the results regarding the
sales revenues are dependent on the value of κ we have used as we will see in Section 5.4.5. In
conclusion, higher levels of α lead to lower optimal γ because of augmented investment costs,
thus higher optimal intensity as well as higher investment costs, with negligible changes in
sales, thus higher carbon cost.

5.4.3 Sensitivity to β

The study of the impacts the convexity factor of the investment costs β with respect to the
intensity reduction rate displays interesting results. Contrarily to α (see Section 5.4.2), an
increase in β results in exponentially decaying optimal intensity for all dates (Fig. 9a). This
is because β is also in the denominator of the investment costs function (see (2.4)); and the

intensity reduction rate is in (0, 1], thus
∂IC

∂β
(.) < 0 ceteris paribus. Clearly, an increase in β

actually implies lower unitary investment costs which encourages higher emissions mitigation
efforts. Precisely, the investment costs are convexly increasing with β and decreasing with
time, with a peak displayed in 2020 with β = 3.6 at USD44, 563 (Fig. 9d). Slashing the firm’s
relative emissions pushes sales up, with a convex feature (Fig. 9b). Nonetheless, carbon costs
go down despite convexly increasing sales revenues with respect to β (Fig. 9c) thanks to the
deep cut in the intensity at the beginning of the scenario.
The change in β actually reverses the curvature of the carbon cost with respect to the scenario:
it goes from concave for lower values for β to convex when β gets closer to 3.6. This is explained
by the interaction of different features of the model. First of all, a decrease in intensity ceteris
paribus leads to a drop in carbon costs. However, for any κ > 0, a decrease in intensity implies
a convex increase in sales, which intervenes in the carbon cost computation. The final result
on carbon cost will depend on which variable moves faster. With the intensity being concave
and the sales being convex with respect to β, the intensity effect will gradually lose the upper
hand. In conclusion, higher β leads to lower unitary investment, thus, lower intensity levels
that drive sales up, but this surge is compensated by the relative emissions drop in the carbon
cost computations.

29



(a) I∗ through years for different values of α. (b) S∗ through years for different values of α.

(c) CC through years for different values of α. (d) IC(., S∗, γ∗) through years for different values
of α.

Figure 8: Sensitivity analysis of the optimal trajectories to α ∈ [0.95; 1] computed with the
yellow company in scenario B2C. From top LHS to bottom RHS : Intensity, Sales Revenues,
Carbon Cost and Investment Costs.

5.4.4 Sensitivity to c

As expected, the augmentation of the unit cost of relative CO2 reduction c as defined in (2.4)
induces larger unitary abatement costs. Therefore, the optimal intensity heightens concavely
with respect to c (Fig. 10a). For c = 0.63, the intensity starts declining in 2030 and hits its
lowest levels. Naturally, this leads to convexly declining optimal sales (Fig. 10b). The surge
in intensity overrules the sales constriction in the computation of the carbon tax, causing
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(a) I∗ through years for different values of β. (b) S∗ through years for different values of β.

(c) CC through years for different values of β. (d) IC(., S∗, γ∗) through years for different values
of β.

Figure 9: Sensitivity analysis of the optimal trajectories to β ∈ [2; 3.6] computed with the
yellow company in scenario B2C. From top LHS to bottom RHS : Intensity, Sales Revenues,
Carbon Cost and Investment Costs.

convexly increasing carbon costs with respect to c (Fig. 10c). Similarly to α (see Section
5.4.2) changes in c reverse the curvature of the carbon costs with respect to time. Regarding
the investments costs, both the timing and quantity of investment effort are impacted by c.
We can see in Fig. 10d that IC(.) peaks when c is the lowest in 2025 (USD29, 517). This is in
line with the aforementioned results regarding the optimal intensity. The overall investments
levels remain stable otherwise. Because c is growing, this actually means decaying intensity
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reduction efforts, which explains the concavity of I∗ with respect to c. in Figure 10a. In turn,
the carbon cost goes up with c (Fig. 10c) with a minimum attained by 2030 for all values of c
when the augmentation of the carbon price cpi catches up with the intensity mitigation. In a
nutshell, augmenting the unit carbon mitigation cost c reduces the optimal investment efforts,
thus increasing the optimal intensity and carbon costs, as well as slowing down the company’s
sales revenues.

(a) I∗ through years for different values of c. (b) S∗ through years for different values of c.

(c) CC through years for different values of c. (d) IC(., S∗, γ∗) through years for different values
of c.

Figure 10: Sensitivity analysis of the optimal trajectories to c ∈ [0.63; 1.89] computed with the
yellow company in scenario B2C. From top LHS to bottom RHS : Intensity, Sales Revenues,
Carbon Cost and Investment Costs.
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5.4.5 Sensitivity to κ

The increase in the sensitivity of the sales revenues to the relative intensity κ (see (2.3)) leads
to higher optimal intensity up until κ ≈ 60. Precisely, the optimal intensity is increasing
and slightly convex with respect to κ on [0, 60](Fig. 11a). However, this results in concavely
augmenting optimal sales on the same interval (Fig. 11b). Then, κ 7→ I∗ becomes decreasing
convex on (60, 74], hits a minimum for κ = 74, then becomes increasing concave on (74, 100]

for all years.
The takeaway is that, for lower values of κ raising the sensitivity to the reference market
intensity does not incentivize to further decrease the company’s intensity. On the contrary,
increasing values of κ up to 74 lead to accelerating revenues for the same mitigation effort
due to the convexity of the sales revenues with respect to the company’s relative intensity
(i.e. Iref − I∗). Hence, despite higher optimal intensity, the company sales grow convexly with
respect to κ because the reward is better than the penalty. Moreover, convexly increasing
investments costs further disincentivize the company to have a much lower intensity than the
sectoral average. Note that these results stand for an average company at starting point.
Then, the paradigm shifts because increasing sales as well as intensity both result in growing
carbon costs (Fig. 11c). It is more beneficial to lower the intensity, this is why investment
costs peak for κ > 74 (Fig. 11d), to avoid augmented overall costs.
In conclusion, higher κ leads the company to gradually give up on mitigating its relative CO2

emissions, in spite of lower sales revenues, to avoid convexly increasing investments costs for
lower values of κ. Then, because of increasing carbon cost due to both inflated intensity
and sales revenues, the company rather slash its relative emissions by largely investing in the
beginning of the scenario.

5.4.6 Sensitivity to r

The analysis of the sensitivity of the optimal trajectories with respect to the risk-free interest
rate r yields interesting results. When r = 0, the optimal intensity stays constant for all years,
meaning it is optimal to not invest at all. Then, the function r 7→ I∗i reaches its maximum
around r = 0.4% for all dates except i = 2050 where it is a minimum (Fig. 12a). It is then
convexly decreasing for all r > 0.4% (and increasing in 2050). For small values of r > 0, the
discount factors for costs are almost 1. Thus, there is no need for spreading the investments
costs throughout the scenario. Thus, the bulk of the investment is completed when it is the
less costly i.e. at the end of the scenario, due to the autonomous factor of abatement costs
decrease α.
Then, the growth of the risk-free interest rate reduces the net present value of the sum of the
future costs. It means that further cost will weight less and less in the decision process. Thus,
as expected, the investment effort will be higher while r grows, specifically in the beginning
of the scenario (Fig. 12d). Thus, the optimal intensity decreases (Fig. 12a), boosting the
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(a) I∗ through years for different values of κ. (b) S∗ through years for different values of κ.

(c) CC through years for different values of κ. (d) IC(., S∗, γ∗) through years for different values
of κ.

Figure 11: Sensitivity analysis of the optimal trajectories to κ ∈ [0; 100] computed with the
yellow company in scenario B2C. From top LHS to bottom RHS : Intensity, Sales Revenues,
Carbon Cost and Investment Costs.

optimal sales revenues up (Fig. 12b). The drop in optimal intensity causes the carbon cost
to slightly decrease despite higher sales revenues. In conclusion, on the one hand, when r > 0

tends to 0, the majority of the investment is planned at the end of the scenario because of
the autonomous factor of cost decrease α. This causes the intensity to stay constant until it
drastically falls in 2050, further leading to lower sales and lower carbon costs. On the other
hand, when r grows afar from 0, future costs matter less. In turn, more and more investment
is scheduled at the beginning of the scenario as r grows. In terms of optimal intensity, this
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means decreasing intensity, then increasing sales, and lower carbon costs. The sales revenues
and carbon cost follow the pattern of the intensity.

(a) I∗ through years for different values of r. (b) S∗ through years for different values of r.

(c) CC through years for different values of r. (d) IC(., S∗, γ∗) through years for different values
of r.

Figure 12: Sensitivity analysis of the optimal trajectories to r ∈ [0; 0.1] computed with the
yellow company in scenario B2C. From top LHS to bottom RHS : Intensity, Sales Revenues,
Carbon Cost and Investment Costs.

6 Conclusion

We have proposed a model to assess how a company will adapt its business model to the
energy transition in a given transition scenario. We have done so using a cost logic in a proba-
bility theory framework, to model the company’s business model conditionally on a transition
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scenario. We have used stochastic control to infer the best business model adaptation strategy
to the energy transition, symbolized by the company’s sales revenues emissions intensity, and
its sales revenues. The best strategy is defined as the one that minimizes the total sum of
expected discounted future carbon and mitigation investment costs over the period. This way,
the trade-off between paying the carbon cost and avoiding carbon taxation is exploited. After
defining the stochastic control problem, we have proven that a solution does exist in Section
3. Then, we have proposed an algorithm to solve numerically the aforementioned problem.
Finally, we have employed our model on three fictitious companies in two different transition
scenarios and computed benchmark deterministic carbon mitigation strategies. The key take-
aways are that, in spite of a cost logic, overall intensity decrease leads to a cut in absolute
emissions, without harming sales revenues. As expected, paying the full price carbon tax (i.e.
with no attempt at reducing relative emissions) is more onerous than investing in carbon mit-
igation capabilities in absolute terms. Usual intensity reduction strategies, such as following
the same decrease as the sector, or investing the same amount as the total carbon cost, are
non-optimal according to our definition. They tend to overestimate the investments needed,
or the cost of carbon emissions, which could lead to a misevaluation of inherent credit risk
measure in credit risk stress testing models. Moreover, the high carbon emissions companies
will try to catch up with their sectoral average to stay afloat, whereas low carbon companies
will rest on their laurels, which implies an uneven but fair distribution of transition efforts
and market shares within a sector. Sectors with high sensitivity to consumer and investor
sentiment could lead carbon-inefficient companies to a drastic contraction of their sales rather
than a change of production intensity, in order to cut their emissions. Finally, diminishing
investment costs with time would lead to a delay of intensity reduction efforts, but they also
induce higher absolute emissions cuts at the end of the scenario.
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A Additional tables

Scenarios Firms Strategies
Below 2 Degrees Brown : I10 = 1.16E−3 Uncontrolled
Delayed Transition Average : I20 = 7.71E−4 Exogenous ‘Exo’

- Green : I30 = 3.86E−4 Myopic ‘Myo’
- - Optimal

Table 4: Summary of the scenarios, firms and strategies studied.
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Scenario Below 2C Delayed Transition
Variable Strategy Brown Yellow Green Brown Yellow Green

CC

Exo 44,923 32,806 18,056 143,859 111,387 64,864
Myo 36,110 28,050 17,467 98,000 89,055 69,458

Optimal 46,371 35,437 21,583 82,577 72,693 54,168
Uncontrolled 71,399 55,842 33,174 625,565 539,560 351,051

IC
Exo 17,107 18,789 20,698 138,622 164,253 194,834
Myo 35,007 26,948 16,505 94,721 85,225 65,142

Optimal 10,581 8,869 5,459 94,734 85,093 65,229

S

Exo 3,123,585 3,435,621 3,798,401 3,155,879 3,482,481 3,863,772
Myo 3,231,128 3,490,649 3,804,383 3,304,202 3,569,804 3,889,211

Optimal 3,094,170 3,400,693 3,761,548 3,255,305 3,592,938 3,915,797
Uncontrolled 2,885,709 3,237,470 3,674,218 ,2945,044 3,305,190 3,751,660

Table 5: Total discounted values of main variables (Sales Revenues S, Carbon Cost CC and
Investment Costs IC) over both scenarios B2C and DT for all strategies and all companies.

Below 2C Delayed Transition
Strategy Brown Yellow Green Brown Yellow Green

Exo 64,886 52,337 36,196 213,818 191,328 156,042
Myo 74,794 58,670 37,176 203,651 187,046 148,984

Optimal 63,251 50,616 32,416 188,125 170,838 134,900
Uncontrolled 94,297 77,440 48,457 1,138,517 1,023,380 693,430

Table 6: Total sum of discounted cost (Jπ(0, X0)) for each company, each strategy for both
scenarios.
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B Proof of technical results

B.1 Proof of Lemma 3.5

In view of (2.2), we get by induction:

X
(1)
j (i, x) = X

(1)
i (i, x)×

j−1∏
q=i

e−γqδ × eσI∆ε
I
q−ψI

q (σI). (B.1)

Since γq is non-negative and ∆εIq is bounded, we have
X

(1)
j (i,x)

X
(1)
i (i,x)

(ω) ≤ K1, for a constant K1

uniform in 0 ≤ i ≤ j ≤ N . We have proved (3.7).
We repeat the same reasoning with X(2), and we get by induction (from (2.3)):

X
(2)
j (i, x) = X

(2)
i (i, x)

S̄j
S̄i

×
j−1∏
q=i

e
−κ

(
X

(1)
q (i,x)−Irefq

)
δ × eσS∆ε

S
q −ψS

q (σS).

Using that (S̄i)i=0,...,N and (Irefi )i=0,...,N are deterministic bounded functions, that X(1)
q (i, x) ≥

0 for any i, q, x with κ ≥ 0, that ∆εSq is bounded, we easily obtain (3.8).

B.2 Proof of Lemma 3.6

1. First, let us prove (3.9). From (B.1), X(1)
j (i, x) is linear in x(1) for any j = i + 1 : N . A

direct application of Lemma 3.5 gives the desired result with K3 = K1.
2. We have:

X
(2)
j (i, x)−X

(2)
j (i, y) =

(
x(2)e−A(x) − y(2)e−A(y)

)
× S̄j
S̄i

× e

j−1∑
q=i

κIrefq δ+σS∆ε
S
q −ψS

q (σS)

,

with A(x) = κ

j−1∑
q=i

X(1)
q (i, x)δ ≥ 0 and A(y) = κ

j−1∑
q=i

X(1)
q (i, y)δ ≥ 0.

Since (∆εSi )i=0,...,N are bounded, Iref and S̄ are deterministic, the final terms of the previous
quantity are therefore bounded. Hence, we have (for a constant k1 ∈ R+):

|X(2)
j (i, x)−X

(2)
j (i, y)| ≤k1|x(2)e−A(x) − y(2)e−A(y)|

≤k1|x(2)(e−A(x) − e−A(y))|+ k1|(x(2) − y(2))e−A(y)|.

For any u, v ≥ 0 we have |e−u − e−v| = |(u − v)
∫ 1
0 e

−v−z(u−v)dz| ≤ |u − v|. Adding results
from (3.9), we get:

|X(2)
j (i, x)−X

(2)
j (i, y)| ≤ K4x

(2)|A(x)−A(y)|+K4|x(2) − y(2)|
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≤ K4

[
|x(2)| |x(1) − y(1)|+ |x(2) − y(2)|

]
for a non-negative constant K4 changing from line to line. Inequality (3.10) is proved.
3. Finally, let us prove (3.11):

X
(1)
j (i, x)X

(2)
j (i, x)−X

(1)
j (i, y)X

(2)
j (i, y)

= (X
(1)
j (i, x)−X

(1)
j (i, y))X

(2)
j (i, x) + (X

(2)
j (i, x)−X

(2)
j (i, y))X

(1)
j (i, y).

We know from Lemma 3.5, Inequalities (3.9) and (3.10) that:

|X(1)
j (i, x)−X

(1)
j (i, y)|X(2)

j (i, x) ≤ K2K3x
(2)|x(1) − y(1)|,

|X(2)
j (i, x)−X

(2)
j (i, y)|X(1)

j (i, y) ≤ K1K4y
(1)[(|x(2)|+ |y(2)|)|x(1) − y(1)|+ |x(2) − y(2)|].

Thus, (3.11) is proven with K5 = (K2K3) ∨ (K1K4).

B.3 Proof of Lemma 3.7

Recall from (3.1) that Jπi(i, x) = E
[∑N−1

j=i
Cj(Xj(i,x),γj)
(1+rδ)j−i + CN (XN (i,x))

(1+rδ)N−i

]
. From (2.4)-(2.7), we

have for i = 0, . . . , N − 1:

Ci(X, γ) = cpiX
(1)X(2) +X(2)cαiδ

(1− e−γδ)β

β
,

and CN is a locally Lipschitz function (see the condition (2.5)). Given that cpi is deterministic

and that αiδ
(1− e−γδ)β

β
∈ [0, 1], owing to Lemma 3.6 we have for any j ≥ i, any γ ∈ [0, γmax]

and (x, y) ∈ (R+)2 × (R+)2:

|Cj(Xj(i, x), γ)− Cj(Xj(i, y), γ)| ≤ K6|x− y|[1 + (|x|+ |y|)(1 + |x|+ |y|)]

for a non-negative constant K6. Thus, for any strategy πi = (γi, . . . , γN−1) ∈ Πi, we have:

N∑
j=i

∣∣∣Cj(Xj(i, x), γj)− Cj(Xj(i, y), γj)

(1 + rδ)j−i

∣∣∣ ≤ K6|x− y|[1 + (|x|+ |y|)(1 + |x|+ |y|)],

with a new constant K6. By taking the expectation and using the triangular inequality, we
obtain:

|Jπi(i, x)− Jπi(i, y)| ≤ E

 N∑
j=i

∣∣∣Cj(Xj(i, x), γj)− Cj(Xj(i, y), γj)

(1 + rδ)j−i

∣∣∣


≤ K6|x− y|[1 + (|x|+ |y|)(1 + |x|+ |y|)].
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