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Abstract—Redundancy reduction plays a critical role in
optimizing sensor network performance. This research pro-
poses a deep-learning approach to identify and eliminate
redundant sensors in a traffic network. This strategy aims
to create a more cost-effective, efficient and reliable traffic
monitoring system, ultimately leading to improvements in
the transportation infrastructure. Leveraging traffic data
from the Madrid Open Data Portal (focusing on ’District
19’), we employed sensor correlation (cosine) and similarity
analysis (VGG16-based model) to identify significant corre-
lations among sensors. This allows for accurate prediction
(using Long Short-Term Memory(LSTM)-based models) of
values from highly correlated sensors, leading to a potential
reduction in District 19’s sensor nodes by 43% (from 32
to 18) and connectivity edges by 82% (from 106 to 19).
Notably, the predictive accuracy for ’highly similar’ sensors
achieved an average R-squared score of 0.82, validating
the reliability of LSTM model predictions. These initial
results encourage a larger analysis of the methodology to
better prove the potential of our deep learning approach in
optimizing and streamlining smart city infrastructure. This
promising approach can be extended to analyze districts
with higher sensor density and be adapted for application
in other cities. We aim to utilize deep learning algorithms
to optimize future sensor deployment planning.

I. INTRODUCTION

Madrid, the capital of Spain, has emerged as a leading
smart city, leveraging advanced technologies to enhance
urban living and sustainability. With approximately 7
million residents and a rapidly growing economy, Madrid
faces significant challenges in traffic management, en-
ergy consumption, and resource optimization. Rapid ur-
banization and technological advancement present both
challenges and opportunities in managing city infras-
tructures. As detailed on the Madrid open data portal
[1], a comprehensive network of traffic sensors serves
as the cornerstone of its IoT infrastructure. This net-
work encompasses more than 7,000 strategically posi-
tioned vehicle detectors across the city, operating at over
4,000 measurement points. These sensors capture diverse
traffic-related parameters at 15-minute intervals, result-
ing in an annual accumulation of approximately 145
million data points [2]. However, the current deployment
of traffic sensors reveals redundancy in the collected

data, as observed from the assimilation of traffic data
[3].

Based on our exploratory analysis, we observed
that a few redundant sensors are available within the
Madrid traffic sensor network. This redundancy leads to
wasted resources, as data from these redundant sensors
is processed unnecessarily, hindering overall network
efficiency. Detecting redundant sensors is crucial for
optimizing the cost-effectiveness of traffic monitoring
systems through streamlined data processing, thereby
enhancing network efficiency. This research aims to
evaluate if some sensors can be deactivated or out into
idle mode without losing the capability to derive their
information content from other strongly related sensors,
thereby optimizing the sensor network. The identified
redundant sensors that are not considered could be put
idle, but eventually reactivated in case of malfunctioning
of some of the core units. This study aims to mini-
mize the required number of sensors while preserving
global information coverage. The majority of the previ-
ous research on optimizing the Madrid traffic network
primarily focused on traffic network simulation [4],
monitoring city traffic [2], and leveraging air pollution
and atmospheric data to enhance road traffic forecasting
[5]. Hence, it is important to establish a methodology for
enhancing the sensor network by identifying redundant
sensors and strategically deploying new ones in alter-
native areas to minimize their count while preserving
essential data. As a result, our research proposes a two-
step approach to improve the efficient ”measurability”
of future smart cities. Firstly, we employ Pearson correla-
tion coefficient analysis and VGG16-based [6] similarity
calculations to identify ’highly-correlated’ traffic sensors
by understanding the similarity and correlation of real
traffic data. Secondly, we utilize an LSTM [7] model
pre-trained with data from one traffic sensor to predict
or infer traffic data from other sensors, thereby reducing
redundancy within the traffic sensor network.

Our contributions can be summarized as follows:
• Raw traffic data collection from Madrid City Open

Data Portal [8] and data preprocessing.
• Proposing an approach to detect redundant traffic



sensor nodes in Madrid city.
• Applying deep learning technologies to real IoT

sensors data analysis, specifically utilizing VGG16
and LSTM models.

• Implementing an algorithm to predict traffic data for
highly correlated traffic sensors using a pre-trained
LSTM model.

Our experimental results demonstrate that the pro-
posed 2-step algorithm achieves promising outcomes.
Within the selected region of Madrid city, consisting of
a total of 45 traffic sensors, our data preprocessing phase
revealed that 34 out of 45 sensors were functioning cor-
rectly as of October 2023. Subsequently, upon applying
the implemented algorithm, we identified 106 instances
of high-similarity relations among the 34 operational
traffic sensors. Additionally, we detected 18 redundant
sensors, from which traffic data can be extrapolated
or predicted using the pre-trained LSTM model. The
average squared R score obtained from this prediction
process is 0.82. In further research, we aim to apply the
proposed approach to larger regions or other cities com-
prising a larger number of traffic sensors. We plan to: i.
Identify redundant traffic sensors and reduce redundancy
in this study. ii. Determine the best positions for future
sensor deployment plans based on correlation analysis.
iii. Explore other deep learning methods that can be
applied for real-time series data analysis to predict traffic
patterns. These efforts will enhance our understanding
and optimization of urban traffic management systems.

The rest of the paper is structured as follows: Sec-
tion II reviews related work on the application of deep
learning technologies in IoT. Section III details our
methodology and system architecture, which includes
the dataset description and the model implementation
pipeline comprising correlation analysis, similarity anal-
ysis, and prediction of traffic data using LSTM. Sec-
tion IV discusses the conclusions drawn from our study,
interprets our findings, and suggests potential future
research directions. Our source code and additional re-
sources are available.1

II. RELATED WORK

Various approaches of machine learning and deep
learning algorithms for optimizing IoT sensor networks
have been explored in the literature, focusing on the
enhancement of network performance, energy efficiency
and the accuracy of data collection and processing.

The application of machine learning algorithms in
wireless sensor networks (WSNs), detailing the use of
supervised learning methods for solving challenges in
WSNs, addresses challenges such as localization, event
detection, media access control, and security. The paper

1Madrid’s Traffic Sensor Redundancy Analysis

[9] highlights several supervised learning algorithms
like K-Nearest Neighbors (K-NN), decision trees [11],
neural networks, support vector machines (SVMs), and
Bayesian statistics, each with its specific applications and
benefits for WSN optimization. Ahmad R. et al. [14]
focused on the security challenges in WSNs, noting how
machine learning can address these by monitoring and
making intelligent decisions. It covers the hurdles ML al-
gorithms face in training and data requirements, propos-
ing solutions to improve sensor’s abilities to identify
threats and maintain security efficiently. These studies
illustrate the diverse applications of advanced learning
algorithms in improving IoT networks’ deployment and
operation.

In a previous study, a novel data mining (NDM)
strategy [15] for the elimination of data redundancy in
the Internet of Things (IoT)-based Wireless Sensor Net-
works (WSNs) was proposed. This strategy effectively
evaluates collected information to decisively eliminate
duplicate and redundant packets, thereby reducing the
redundancy within the WSN. Similarly, S. D. Padiya et
al. [16] analyzed sixteen different methods to evaluate
their redundancy, latency, computational overhead, and
data accuracy. These methods included the Hierarchy
Data Aggregation(HDA) [17], Opportunistic Data Ag-
gregation(OPAG) [18], and Greedy Aggregation (GA)
[19] etc, aiming to enhance the efficiency of IoT sensor
networks by minimizing data redundancy. Adawy et
al. introduce a method to reduce data redundancy in
wireless sensor networks (WSNs) in their study ”Data
Redundancy Reduction in Wireless Sensor Network”
[20]. They tackle excessive network traffic in Dust IoT
systems through sensor clustering, transmitting represen-
tative data values instead of data from all sensors. This
approach significantly cuts down on transmission data
size, as demonstrated by their experimental results, offer-
ing an efficient solution to the bottleneck issues in Relay
Dust Device data transfer to Smart Dust IoT Servers.
Their findings enhance WSN efficiency, contributing to
ongoing research efforts like those by Padiya et al.
[16], who explore data aggregation techniques to reduce
redundancy and boost network performance. These ex-
amples illustrate how ML and DL methodologies are
being leveraged to tackle the complex challenges of IoT
sensor network deployment, including efficient manage-
ment of computational resources and optimization of
network infrastructure to meet the increasing demands
of IoT applications. C. Lanza [21] and Vélez-Serrano
[22] focused on traffic data prediction in Madrid city, but
there is limited research on detecting sensor similarity
for redundancy reduction in the network, which is the
focus of our work.



Fig. 1: Overview of the System Architecture

TABLE I: Traffic Dataset Description

Name Type Description

id Integer Identification of the measurement point.
It is sequential, unique, and unchange-
able.

fecha Date Official date and time of Madrid in the
format dd/mm/yyyy hh:mm:ss.

tipo elem Text Name of the type of measurement
point: Urban or M30.

intensidad Integer Number of vehicles in 15 minutes, ex-
pressed in vehicles/hour. A negative
value implies missing data.

The key attributes of the traffic dataset utilized in our
study: the ’id’ column denotes the unique identifier
assigned to each traffic sensor, the ’fecha’ column
records the date and time of each traffic data capture
and the ’intensidad’ column quantifies the traffic
intensity measured at 15-minute intervals.

III. METHODOLOGY AND SYSTEM ARCHITECTURE

A. System Architecture

Figure 1 depicts the overall systems architecture of
our analysis as a step-by-step process for ease of under-
standing the procedure and to replicate some of the steps
in the generalization. It outlines the systematic approach,
broken down into sequential steps: (1) Collection of Traf-
fic and Geometrical Data from Madrid City Open Data
Portal; (2) Advanced Visualization Techniques employ-
ing PythonAnywhere for 2D and 3D representations; (3)
Cosine Similarity Analysis of traffic flows enhanced with
VGG16 [24]; (4) LSTM [25] Model Implementation
for predictive traffic patterns analysis; (5) Strategically
minimizing redundancy within the sensor network in
Figure 7b to streamline the sensor network without
losing critical traffic data integrity.

B. Dataset Description

Since 2015, Madrid has been releasing public sector
data on the digital platform Madrid City Council’s Open
Data Portal as the first European city to sign the Inter-
national Open Data Charter. The platform datos.gob.es
hosts an extensive catalog of data related to mobility,

which currently contains 1,820 datasets grouped under a
category called ”Transport.” In this study, we collected
data from these open data platforms to analyse traffic
patterns. Table I contains the dataset description and key
attributes we selected in our analyses. We have chosen
the traffic data in Madrid city for October 2023, which
contains 12,946,685 data items. Additionally, there are
4,892 data items relevant to the geometric localization
of all traffic sensors, as presented in table II.

TABLE II: Description of Geometric Data

Name Type Description

district Integer Identifier for the district where the point is
located.

id Integer Unique and unchanging identifier for the
point.

name Text Measurement point name, identified by
street or access details for Madrid.

longitude Real Longitude in WGS 84 system (EPSG:
4326).

latitude Real Latitude in WGS 84 system (EPSG: 4326).

Geometric data analysis involved key features: ’id’ and
’district’ to assess the current deployment of traffic
sensors, while ’longitude’ and ’latitude’ were employed
to pinpoint the precise localization of each sensor. We
have utilized this geospatial data to accurately pinpoint
the real-world locations on the visualization map in
Figure 2.

After analyzing the current deployment of traffic sen-
sors, we selected District 19 to implement the proposed
approach, which includes 45 traffic sensors. This deci-
sion aims to reduce computational time and hardware
resource demands, initiating a compact deep model that
will subsequently transfer its learning to other regions
and cities. Furthermore, to enhance our understanding
of the existing sensor deployment, we have developed
a map2 for visual references that include all geometric
data of the traffic sensors II. This map, as depicted in
Figure 2, provides a comprehensive overview of the
traffic sensor deployments across the city of Madrid.
All currently deployed traffic sensors are represented by

2PythonAnywhere:https://www.pythonanywhere.com/



circular nodes, with different colors signifying different
districts.

Fig. 2: Traffic Sensors’ Locations
All currently deployed traffic sensors are visualized on
the map, with District 19 selected for further analysis.
This district is highlighted by a red rectangle on the right
side of the figure. The visualization is accessible directly
via Map.

We have preprocessed the dataset by splitting the data
column fecha into two columns date and time.This helps
us to extract all traffic data for a certain period and
region. We used MinMaxScaler from scikit-learn for
normalization 3, which is shown in Equation 1.

Xscaled =
X −Xmin

Xmax −Xmin
(1)

where X is the original value, Xmin is the minimum
value, Xmax is the maximum value and Xscaled is the
scaled value of the feature.

Figure 3 presents an example of normalized traffic
data for the sensor with id ’3695’ recorded on 2023-
10-02. The data comprises 96 traffic intensity values
captured every 15 minutes over 24 hours. These values
have been normalized to the interval (0,1), where higher
values indicate greater traffic intensity.

Fig. 3: Traffic data for 2023-10-02 (Sensor ID: 3695)

3https://scikit-learn.org

C. Model implementation Pipeline

Our model implementation pipeline comprises two
primary steps aimed at identifying the similarity among
different sensors in the network, thereby facilitating the
identification of redundant sensors within the network.
We conduct correlation analysis and similarity analysis
on the traffic intensity values extracted from 45 traffic
sensors located at the ’district’ ’19’. We have first
exported all normalized traffic data figures for one day,
one week, and one month and various methods have
been applied to compute traffic flow similarity.

1) Correlation Analysis: To identify traffic sensors
with high similarities, we began by computing the Pear-
son correlation coefficient [26] of the normalized traffic
data from all traffic sensors in District 19 using the
following formula:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2)

where:

rxy is the Pearson correlation coefficient between
variables x and y,

xi and yi are individual data points,
x̄ and ȳ are the means of x and y, respectively,
n is the number of data points.

Fig. 4: Correlation Matrix results for 2nd Oct. 2023
The markers denote the correlation values of traffic
sensor intensities in District 19. Red markers represent
correlations ranging from 0.8 to 0.9, black markers
indicate correlations between 0.9 and 0.95, and green
markers signify sensor pairs with computed Pearson
correlation coefficients exceeding 0.95.

As depicted in figure 4, the traffic data collected by
sensors in the selected district on 2nd October 2023
exhibit a high correlation. We noted similarities in the



traffic patterns throughout a week’s analysis with an
average correlation of 0.77 and 0.80 during workdays.

2) Similarity analysis: We utilized two distinct
similarity measures to identify sensors with similar
behavioral patterns: cosine similarity and deep learning-
based similarity measure.

i) Cosine Similarity
Cosine similarity [27] measures the similarity between
two vectors of an inner product space. The cosine sim-
ilarity between two vectors A and B can be computed
using the formula 3:

(
∑n

i=1(Xi −Xmin)× (Yi − Ymin)√∑n
i=1(Xi −Xmin)2 ×

√∑n
i=1(Yi − Ymin)2

(3)

where:

X is the original value,
Xmin is the minimum value of the feature,
Xmax is the maximum value of the feature,
Xscaled is the scaled value.

The two different vectors for traffic intensity when
applying the formula3 are the normalized histograms of
pixel intensities from each traffic image. Each vector
represents the normalized distribution of pixel values
for a single image, which is used for comparing traffic
patterns through cosine similarity calculations. As
shown in the figure 5, the cosine similarity values
for the entire month which range from 0.98 to 1.00.
These values indicate minimal differences, making it
challenging to discern significant differences. Hence,
we tried to explore different deep learning methods and
algorithms to understand the similarity and we achieved
the best performances with VGG16 model. Details of
its architecture are explained below.

Fig. 5: Cosine Similarity Matrix results for Oct. 2023
The computed cosine similarity values for the entire
month range from 0.97 to 1.00 using the formula 3.

ii) Deep learning-based similarity measure
To scale up the similarity results, we deployed a Vi-
sual Geometry Group 16 (VGG16) [24] deep neural
network which comprised 13 convolutional layers and
5 Max Pooling layers, followed by convolutional layers
to reduce the dimension and the number of parameters
of the feature maps created by each convolution step.
This model was initially trained on the ImageNet dataset,
enabling it to extract high-level features from images.
Leveraging its exceptional performance across diverse
image classification benchmarks, VGG16 often serves
as a preferred pre-trained model for transfer learning in
computer vision tasks. In our study, aiming to understand
the correlation and similarity among traffic data from
various sensors in a better way, we employ the pre-
trained VGG16 model loaded via the Keras library.

Algorithm 1 Traffic Flow Preparation

1: procedure VISUALIZETRAFFICINTENSITY
2: Prepare save directory (‘traffic day1‘).
3: Retrieve unique sensor IDs.
4: for each sensor ID in unique IDs do
5: Prepare sensor data for visualization:
6: Combine date and time into datetime.
7: Normalize intensity: intensity−min intensity

max intensity−min intensity
8: Plot normalized intensity versus datetime.
9: Save and close the plot.

10: end for
11: end procedure

To prepare input for the VGG model, figures repre-
senting normalized traffic intensity for each sensor on
a specific day were generated using a custom Python
script. In total 102 traffic flow figures are generated from
’district’ ’19’ sensor data, 34 for single-day(2nd Oct.
2023) data, 34 for 5 workdays in the first week(2nd Oct.
- 7th Oct.) and 34 for the entire month. As stated in
Algorithm 11, the process involved creating a directory
to store the figures, extracting traffic data for each
sensor, and converting date and time information into
a DateTime format for time-series analysis. The traffic
intensity values were then normalized, and plots were
created to visually represent these values over time.
Each plot was saved as a PNG file, which not only
facilitates easy visualization but also serves as input for
the VGG model. These images allow the VGG model
to potentially learn and recognize patterns or anomalies
in traffic conditions based on visual data, illustrating an
innovative approach to applying deep learning in traffic
management and analysis. Figure 6 depicts the distribu-
tion of the similarity of the sensors after employing the
deep learning-based approach.

In comparison to the outcomes presented in Figure 5,
the range of cosine similarity values depicted in Figure 6



Fig. 6: Cosine Similarity Matrix results with VGG16
The figure displays the cosine similarity computed for
all functioning traffic sensors within the selected district,
from October 2, 2023, to October 31, 2023.

has been notably expanded from a very limited interval
of (0.97, 1.00) to a more inclusive range of (0.60, 1.00).
This expansion, enabled by the incorporation of the
VGG16 deep learning model, significantly enhances the
utility of the cosine similarity metrics for redundancy
analysis. Previously constrained interpretability due to
the narrow value range is now alleviated, rendering
the results both more precise and substantially more
informative for subsequent analytical processes.

The distribution of similarity values, derived using
the VGG16-based similarity measure, demonstrates a
distinct pattern: approximately half of the values surpass
the established threshold of 0.85, while the remainder
fall below this benchmark. This threshold of 0.85 is
strategically chosen based on the dataset characteristics.
Consequently, traffic sensor pairs that consistently ex-
hibit a cosine similarity exceeding 0.85 across one-day,
one-week, and one-month intervals are considered as
’highly similar sensors’.

All traffic sensors are represented by blue and orange
nodes. The size of each node indicates the number of
similar sensors connected to it; larger nodes have more
connections. On the map in Figure 7a, isolated orange
nodes can be indicative of either anomaly detection or
sensors that have no similar traffic sensors during the
chosen period, which could be one day, one week, or
one month. Corresponding to Figure 7a, as illustrated
in Figure 7b, nodes represent individual traffic sensors
within the specified area, with edges connecting those
deemed as ”similar sensors”. Larger nodes, characterized
by darker colors such as ’6194’, ’6216’, and ’6506’,
etc., denote sensors with a higher number of ”similar

(a) Visualization of similar sensors in district 19

(b) Network Graph of similar sensors

Fig. 7: Visualization and Network Graph of highly
similar sensors

sensors”. On the contrary, smaller nodes with lighter
colors, such as 6219 and 6203, represent sensors that
do not exhibit significant overlap in captured traffic with
other sensors.

D. Prediction of Traffic Data using LSTM
By predicting future traffic patterns, the network can

intelligently allocate resources, such as sensor activa-
tions/deactivations, to areas where they are most needed.
This allows for efficient utilization of resources while
ensuring adequate coverage and data accuracy. Predic-
tive models can dynamically adjust the activation and
deactivation of sensors based on anticipated changes in
traffic patterns. This ensures that sensors are active when
they are most likely to capture valuable data and can
be made idle during periods of low activity to conserve
energy and resources. In addition, predictive models can



Algorithm 2 LSTM-based Traffic Prediction

1: procedure TRAFFICPREDICTION(raw data)
2: Read the raw traffic data.
3: Preprocess the data:
4: a. Convert sensor IDs to string type.
5: b. Select the specified sensor and target sen-

sors.
6: c. Extract relevant columns from the raw data.
7: d. Drop rows with missing values.
8: e. Merge date and time columns into a date-

time column.
9: f. Set the datetime column as the index.

10: g. Split the data into features (X) and target
variables (y).

11: h. Scale the features using MinMaxScaler.
12: Construct an LSTM model:
13: a. Add an LSTM layer with specified units

and activation function.
14: b. Add a dense layer with specified units.
15: c. Compile the model using the specified op-

timizer and loss function.
16: Train the LSTM model:
17: a. Use a different number of epochs and batch

size.
18: b. Monitor training loss and validation loss.
19: Evaluate the model’s performance:
20: a. Calculate the squared R score and mean

absolute error (MAE).
21: end procedure

be used to identify periods or specific locations where
redundant sensors are less necessary due to low traffic
volume or predictable patterns. Therefore, we explore
sensor prediction deep learning algorithm based on Long
Short-Term Memory (LSTM) [25] targeting the biggest
node (sensor ’6506’) identified in the network graph in
Figure 7b, as the pilot study.

Algorithm 21 outlines the training procedure of the
LSTM model utilizing traffic intensity data from the sen-
sor ’6506’, identified as a key node within the network
topology, as depicted in Figure 7b. The model employs
traffic intensity values (’intensidad’) as the input to pre-
dict subsequent traffic intensity values, aiming to capture
short-term fluctuations in traffic flow. Specifically, the
model inputs consist of current traffic intensity values,
and its output is the predicted intensity for the next
time step, facilitating dynamic traffic management for
similar sensors. After the training phase, the LSTM
model is optimized for deployment to predict traffic
data for sensors depicted by smaller, lighter-colored
nodes in Figure 7b, specifically [’6208’, ’6922’, ’6200’,
’6206’, ’6195’, ’6209’, ’3783’, ’6197’, ’6923’, ’6194’],
which demonstrate high similarity with sensor ’6506’.

As indicated in Table III, sensor ’6506’ served as the
primary source of training data for the LSTM model,
which is tasked with forecasting the traffic patterns of
all target sensors listed.

The model’s training and validation loss showed sta-
bilization and convergence at approximately the 230th
epoch, achieving minimal loss and indicating readiness
for real-world deployment to assist in proactive traffic
management.

TABLE III: Performance Evaluation of LSTM
Model Predictions using Sensor ’6506’

Selected Sensor Target Sensors R2 Score MAE

6506

6208 0.891

49.41

6922 0.830

6200 0.867

6206 0.900

6195 0.774

6209 0.881

3783 0.880

6197 0.862

6923 0.831

6194 0.879

The LSTM model achieved an average Squared R
Score of 0.820, demonstrating its capability to capture
and explain variance in the observations from target
sensors. This score reflects the model’s consistent per-
formance across different sensors and its ability to
generalize effectively to unseen data. The model was
trained using data from prominently featured sensors
in the network graph 7b, which are depicted as larger,
darker nodes, to forecast traffic for sensors represented as
smaller, lighter nodes, indicative of their high similarity.
The predictive accuracy for these ”highly similar sen-
sors,” as listed in the ’Target Sensors’ column, validates
the effectiveness of the approach. This method could po-
tentially reduce the number of necessary traffic sensors,
thus optimizing the deployment of sensor networks and
enhancing traffic management efficiency.

Figure 8 illustrates the comparison between actual and
model-predicted traffic data for sensors [’6208’, ’6922’,
’6200’, ’6206’, ’6195’, ’6209’, ’3783’, ’6197’, ’6923’,
’6194’], utilizing data from sensor ’6506’. The precision
of these predictions confirms the model’s ability to ac-
curately forecast traffic patterns throughout the network.

In the revised network configuration depicted in figure
9, sensor ’6506’ emerges as a distinct, isolated node,
marked in red with a reduced size, illustrating its stream-
lined role within the optimized network. This contrasts
with the original network layout, as seen in figure 7b,
where the refinement process has notably diminished the
network’s complexity, scaling down the sensor nodes
from 32 to 18 and the connectivity edges from 106 to



Fig. 8: Comparison of True and Predicted Traffic Data for Multiple Sensors.
This figure illustrates the actual versus predicted vehicle counts for a selection of traffic sensors: 6208, 6922, 6200,
6206, 6195, 6209, 3783, 6197, 6923, and 6194. The predictions are generated based on data from sensor 6506. The
x-axis denotes the date, while the y-axis represents the number of vehicles detected by each sensor.

19. This substantial reduction underscores the efficacy
of the optimization strategy.

The outcomes of this optimization affirm the pre-
trained LSTM model’s proficiency in accurately fore-
casting traffic data for sensors exhibiting high similarity.
In future, we aim to implement our automated sensor
scheduling algorithm to strategically deactivate certain
nodes based on traffic prediction patterns and coverage
redundancy within the designated region.

IV. CONLCUSION

In this research, we propose an approach to identify
redundant sensors in a traffic sensor network by analyz-
ing correlations and similarity patterns among sensors.
Our results demonstrate that the method significantly
refines the network structure while preserving crucial
traffic data, thereby enhancing the efficiency of the
sensor deployment without compromising data quality.
This balance between optimization and data retention
provides valuable insights for smart city infrastructure
development.

For future studies, we aim to: 1. Utilize traffic data
from Madrid spanning a longer duration to better demon-
strate the stability of our redundancy results. 2. First
apply the proposed approach to other districts beyond the
selected ’District 19’ to analyze the correlation among
a larger number of traffic sensors, and then extend
this application to smart cities other than Madrid as
an automated approach. This will also help identify
challenges with the proposed algorithm and facilitate its

Fig. 9: Optimized Network Graph of similar sensors

improvement. 3. Select more strategic locations for fu-
ture traffic sensor deployment by applying the proposed
two-step algorithm.

It is important to note that our initial experiments used
normal traffic data to establish a baseline performance.
Future work will incorporate abnormal traffic data, such
as incidents and road closures, to improve the predictive
capabilities and robustness of our models in real-world
scenarios.
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