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A comparison of finite strain viscoelastic models based on the

multiplicative decomposition

F. Gouhiera, J. Diania

aLaboratoire de Mécanique des Solides,UMR 7649, École Polytechnique, 91128 Palaiseau, France

Abstract

The constitutive equations of several finite strain viscoelastic models, based on the
multiplicative decomposition of the deformation gradient tensor and written in a
thermodynamically consistent framework, are reviewed to demonstrate their simi-
larities and differences. The proposed analysis shows that dissipation formulations,
which may appear different, are similar when formulated in the same configuration,
allowing the definition of a unified general model. Then, the general model ’s ability
to reproduce the main features of the behavior of rubbers is explored. First, by
comparing its responses to the ones of finite linear viscoelastic models commonly im-
plemented in commercial finite element codes. Cases of monotonic uniaxial tension
and simple shear, relaxation, and sinusoidal simple shear are considered. Second, by
confronting a classic generalized Maxwell rheological scheme to a Zener one with a
non-constant viscosity and exploring the relevance of both options within the general
model ’s constitutive equations.

Keywords: Finite strain, Time-dependent, Viscosity, Nonlinear, Dissipation

1. Introduction

Rubbers are viscoelastic materials that may undergo very large strain, so they
are generally modeled in a finite strain framework. The main features of their time-
dependent stress-strain responses have been extensively characterized in monotonic
and cyclic tests when varying the strain rate or frequency and modulating the strain
amplitude, sometimes including relaxation or creep steps. The experimental results
report strong non-linearities, including the Payne effect (Payne, 1962; Rendek and
Lion, 2010; Delattre et al., 2016), with strain-dependent softening upon first load
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known as the Mullins effect (Mullins, 1969), hysteretic behavior even at low strain
rate (Bergström and Boyce, 1998; Amin et al., 2006; Diani et al., 2006), and stress
relaxation depending on the applied strain (Amin et al., 2006). Some of these fea-
tures are also witnessed in other soft materials, like biological tissues, hydrogels, and
propellants, whose constitutive equations very often rely on models initially written
for rubbers (Bergström and Boyce, 2001; Haslach, 2005; Samadi-Dooki and Voyiad-
jis, 2019; Mao et al., 2017; 0̈züpek and Becker, 1992; Kumar et al., 2018). So far in
the literature, two prevalent approaches have been used to describe the dissipative
processes arising in finite strain viscoelasticity for these materials: the hereditary
integrals and the internal state variable formulation with differential evolution equa-
tions.

The former relies on an extension of the Boltzmann superposition principle to
the finite strain theory, resulting in a relationship between the stress tensor and the
total strain history through a nonlinear constitutive functional. The first constitutive
model introducing such a strain memory is to the credit of Green and Rivlin (1959),
where the stress response is described by means of multiple integral constitutive
equations, also known as the Volterra integral series. Based on the fading memory
assumption, Coleman and Noll (1960, 1961) introduced a theory not limited to in-
finitesimal strain but restricted to the recent past, then extended by (Wang, 1965).
Pipkin and Rogers (1968) approximated the multi-step strain history by a linear
combination of single step strain functions through a nonlinear hereditary integral,
this framework encompassing all formerly developed theories. As for other notewor-
thy models using this approach (Bernstein et al., 1963; Lockett, 1972; Christensen,
1980; Fung, 1981), only a single hereditary integral including different constitutive
assumptions is generally held for numerical purposes and to ease the material param-
eter identification. The main problem of this approach stands in the fact that strong
nonlinearities with large perturbations from the thermodynamic equilibrium would
require high-order multiple nonlinear integrals from the Volterra developments. For
further details on the hereditary integral approach, the reader may refer, for instance,
to (Drapaca et al., 2007; Wineman, 2009).

In a first effort to use the internal state variable framework, Schapery (1964,
1966) described the stress-strain relationship with nonlinear elastic and linear vis-
coelastic constitutive equations, also called “finite linear viscoelasticity”, for which
the internal variable was of non-equilibrium stress or overstress nature. One of the
first implementations of this kind is from Simo (1987), who introduced an additive
split of the stress into equilibrium and non-equilibrium parts, as well as a linear rate
equation for internal stress variables, to define a viscoelastic model. This framework
has been taken over (Simo and Ju, 1989; 0̈züpek and Becker, 1992; Holzapfel and
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Simo, 1996; Kaliske and Rothert, 1997; Holzapfel et al., 2002), mainly due to its
computational efficiency (Govindjee and Simo, 1992). It remains the default model
in large strain viscoelasticity for several finite element software, such as Abaqus,
Ansys, Comsol, or Nastran. However, due to the linear evolution law, the model is
designed for small perturbations from the equilibrium state (Reese and Govindjee,
1997; Haslach, 2005; Latorre and Montáns, 2016). Furthermore, it has been shown
to produce some unphysical responses (Yagimli et al., 2023), and its thermodynamic
consistency remains a topic of debate even recently (Govindjee et al., 2014; Liu et al.,
2021).

Another path has been to consider viscoelastic strain internal variables. Extend-
ing the work of Green and Tobolsky (1946), Lubliner (1985) applied the multiplicative
decomposition of the deformation gradient tensor from (Sidoroff, 1974) to propose
a linear evolution equation for its strain internal variables. The case of finite linear
viscoelasticity was finally overcome with two finite strain viscoelastic models (Le Tal-
lec et al., 1993; Lion, 1997), both based on the same multiplicative decomposition
and validating the second law of thermodynamics. However, Le Tallec et al. (1993)
considered incompressible materials only and implemented the simpler finite linear
viscoelasticity version of their model, and Lion (1997) did not propose a numerical
implementation. As a result, Reese and Govindjee (1998) proposed the most com-
plete version of such a finite nonlinear viscoelastic model for compressible materials,
including a finite element code implementation.

These three models, written on the same basis, use different strain internal vari-
ables to characterize the viscoelasticity and different evolution laws, according to
the modeling configuration, either reference (Le Tallec et al., 1993), intermediate
(Lion, 1997) or current (Reese and Govindjee, 1998). Later, other finite viscoelas-
tic models using strain energy densities based on the Zener or generalized Maxwell
schemes (for instance (Huber and Tsakmakis, 2000; Amin et al., 2002; Kumar and
Lopez-Pamies, 2016)) have been written with either of the evolution laws proposed
by the three pioneering contributions. One may note that the Poynting-Thomson
rheological scheme has rallied less interest, albeit constitutive equations written in
the intermediate configuration (Huber and Tsakmakis, 2000) or the reference one
exist (Boukamel et al., 2001; Méo et al., 2002; Laiarinandrasana et al., 2003).

To better represent the highly nonlinear viscoelastic stress-strain responses of
rubbers, Bergström and Boyce (1998) considered a Zener model with a non-constant
viscosity, on top of adding some physical meaning to their constitutive equations.
This option was also adopted by other authors, in the case of a generalized Maxwell
model with viscosities depending on the strain amplitude (Rendek and Lion, 2010;
Delattre et al., 2016) to reproduce the Payne effect, or in the case of a Zener model to
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avoid dealing with multiple viscoelastic branches, as reviewed in (Ricker et al., 2023).
The model (Kumar and Lopez-Pamies, 2016), which provides the best representations
of the cyclic uniaxial tension behavior of rubbers, defines the viscosity as dependent
on six parameters and two coupled internal variables. Until now, to the author’s
knowledge, it has not been shown how the viscosity evolved during simple tests, such
as cyclic uniaxial tension or cyclic simple shear. By doing so, we aim to compare the
responses of this model to those of a classic generalized Maxwell model with constant
parameters for simple loading cases. The purpose is thus to highlight the advantages
and limitations of the defined viscosity function.

Therefore, the classic finite strain viscoelastic framework is recalled in what fol-
lows, as well as the chosen main constitutive assumptions and their consequences.
Then, a review of three models (Le Tallec et al., 1993; Lion, 1997; Reese and Govind-
jee, 1998) is proposed, highlighting their main differences and similarities by rewriting
them with the same quantities and unified notations. Based on the results, a com-
parative study of the finite linear viscoelastic model of Simo (1987) with the finite
viscoelastic evolution equations is proposed through classic loadings exhibiting time-
dependent behavior. Lastly, characteristic features displayed by Zener models with
non-constant viscosities, as well as the Prony series, are shown through different tests
to provide future users with a clearer vision of their choices.

2. General constitutive equations

The classic variables within the finite viscoelastic framework, along with useful
tensor notations and mathematical operations, are listed in A.5 from Appendix A.

2.1. Kinematics

Considering χ the mapping function between positions of a material point M ,
X(M) in the reference configuration C0 and x(M) in the current configuration Ct,
the material deformation gradient writes as F = ∇Xχ(X, t), and allows transform-
ing any vector dX from C0 into dx = FdX in Ct. The transformation Jacobian,
J = det(F), characterizes the material volume change, while the polar decomposi-
tion,

F = R U = V R, (1)

defines the symmetric positive definite right and left pure stretch tensors, U and V,
and the orthogonal tensor R associated with pure rotation motions.
The symmetric right and left Cauchy-Green tensors, C and b, are introduced as,

C = FT F = U2 , b = F FT = V2, (2)

4



operating on the reference and current configurations respectively, and associated
strain measures are given by the Green-Lagrange E and Euler-Almansi e tensors,

E =
1

2
(C− I) , e =

1

2

(
I− b−1

)
. (3)

Note that the spatial tensor e can be retrieved by applying a push-forward of the
material strain tensor to the current configuration, e = F−T E F−1.

Remark 1. At this point, it is worth noting that material or Lagrangian quantities
refer to the reference configuration, while spatial or Eulerian ones refer to the current
configuration. The push-forward operation transforms a tensor from the reference
configuration into its counterpart in the current configuration, while the pull-back
is the inverse operation. According to the covariant or contravariant nature of the
tensor, the mathematical operation differs, as one will read in what follows. More-
over, push-forward or pull-back operations may be applied between an intermediate
configuration and the reference or the current one.

Denoting Ḟ = l F the material time derivative of the deformation gradient tensor,
the spatial velocity gradient tensor is then introduced as l = ∇xẋ. Its additive
decomposition into symmetric and skew parts,

l = d + w, (4)

defines d = 1
2

(
l + lT

)
the rate of deformation and w = 1

2

(
l− lT

)
the spin tensor.

Noteworthy point, the following relationship,

Ċ = 2FT d F, (5)

between the right Cauchy-Green tensor rate and the rate of deformation will be
useful later.

2.2. Multiplicative decomposition

Rubberlike materials may undergo large strain and show nearly incompressible
time-dependent behavior leading to multiplicative splits of the deformation gradient
tensor into volumetric and isochoric parts (Flory, 1961; Ogden, 1976) on the one
hand,

F = J1/3 F̄, (6)

and into elastic and viscous parts (Sidoroff, 1974) to model rheological Maxwell
elements on the other hand,

F = Fe Fv. (7)
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Remark 2. Since the introduction of the multiplicative decomposition in elastoplas-
ticity by Lee (1969) and its application to viscoelasticity by Sidoroff (1974), the or-
der in which the decomposition should be performed has been an ongoing debate.
In elastoplasticity, the reversed decomposition seems to be kinematically equivalent
to Sidoroff’s decomposition for isotropic materials (Clifton, 1972; Lubarda, 1999).
However, it is worth noting that their physical meanings differ, and the case at hand
will define the most suitable decomposition. In the context of viscoelasticity, La-
torre and Montáns (Latorre and Montáns, 2015, 2016) proposed a way to model
anisotropic finite strain viscoelasticity, using either the Sidoroff decomposition or the
reverse decomposition. Interestingly, the nonlinear evolution equations written in a
Lagrangian framework are similar for both models (refer to Eq. (68) in (Latorre and
Montáns, 2015) and Eq. (40) in (Latorre and Montáns, 2016)). However, only the
reverse decomposition allows all defined quantities to be entirely determined in the
reference configuration. Furthermore, both models provide different responses even
under isotropic conditions when large strain rotational loadings are considered, such
as a simple shear test (refer to Figure 5 in Latorre and Montáns (2016)). The debate
around viscoelastic materials continues, with Bahreman et al. (2022) recently show-
ing that Sidoroff’s decomposition leads to unexpected viscoelastic behavior. However,
Sadik and Yavari (2024) argued that the previous observation was based on incorrect
assumptions. Additionally, they expected both decompositions to result in an equiva-
lent theory, similar to the decompositions in anelasticity (Yavari and Sozio, 2023).
At this point, Sidoroff’s decomposition seems preferable in the case of isotropic vis-
cosity, while the reversed one appears more interesting in the anisotropic case.

Doing so introduces an intermediate configuration corresponding to the fictive
unrelaxed state obtained after the instantaneous removal of the elastic deformation
gradient (Figure 1). Contrary to elastoplasticity, note that the intermediate con-
figuration in viscoelasticity is generally not stress free (Latorre and Montáns, 2016;
Sadik and Yavari, 2024).

Remark 3. The nature of the intermediate configuration introduced to model vis-
coelasticity has often led to confusion. Given that the viscoelastic multiplicative de-
composition originated from elastoplasticity, these two kinds of modeling were fre-
quently mistakenly considered as similar dissipative processes, even though they are
very different in nature. Recently, Sadik and Yavari (2024) addressed this issue by
comparing the stress in the intermediate state in viscoelasticity and anelasticity (e.g.,
elastoplasticity). While the stress completely vanishes in the latter case, it is shown
that the intermediate configuration in viscoelasticity is generally not stress-free, in
agreement with other contributions (Latorre and Montáns, 2016; Ciambella et al.,
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Current

Con iguration

Intermediate

Con iguration

Reference

Con iguration

Figure 1: Representation of the introduced configurations.

2024). When considering the multiplicative decomposition in Eq. (7), it is worth
noting that the system only reaches its thermodynamic equilibrium once the elastic
deformation gradient Fe has finished evolving. This means that the relaxed interme-
diate configuration coincides then with the current configuration so that F = Fv (see
section 2 in Latorre and Montáns (2016)).

Assuming that the volumetric part may show viscoelasticity and applying the
multiplicative elastic/viscous decomposition, one gets,

F = (JeJv)
1/3 F̄e F̄v. (8)

The following kinematic relations are then defined for the isochoric Cauchy-Green
tensors related to the intermediate configuration,C̄e = F̄T

e F̄e = F̄−Tv C̄ F̄−1
v ,

b̄v = F̄v F̄T
v = F̄−1

e b̄ F̄−Te .

(9a)

(9b)

Furthermore, the spatial velocity gradient is then expressed in terms of its elastic part
le = Ḟe F−1

e operating in the current configuration and its viscous part lv = Ḟv F−1
v

in the intermediate one,
l = le + Fe lv F−1

e . (10)

2.3. Thermodynamic principles

According to the theory of thermodynamic irreversible processes with internal
variables (Coleman and Gurtin, 1967), independent sets of observable variables such
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as temperature and strain tensors, as well as internal state variables such as vis-
coelastic strain tensors Ak, are introduced. The Helmholtz free energy per unit mass
ψ is then introduced as a function of these thermodynamic variables. By assum-
ing isothermal processes, the combination of thermodynamic conservation principles
reduces to the Clausius-Duhem inequality,

S :
1

2
Ċ− ρ0ψ̇ ≥ 0, (11)

written here in a Lagrangian framework, introducing the mass density ρ0 with respect
to the reference configuration C0 and the second Piola-Kirchhoff stress tensor S.
Following the arguments of Coleman and Gurtin (1967), one gets the relation between
the stress and the strain energy density W ,

S = 2ρ0
∂ψ

∂C
= 2

∂W
∂C

. (12)

The remaining dissipation inequality enforces the following requirement for the in-
ternal variables Ak,

−
∑
k

∂W
∂Ak

: Ȧk ≥ 0, (13)

which is classically satisfied for each Ak individually for simplicity purpose. In what
follows, we will apply this assumption of internal variable separation since it has
been adopted by the models that will be discussed.

Two approaches have been prevalent in the literature to ensure a consistent evo-
lution of the internal variables. The two-potential framework (Germain et al., 1983)
relies on the introduction of a dissipation potential Φ, convex, positive and zero-
valued at origin, function of the flow internal variables Ȧk and such that,

∂W(Ak)

∂Ak

+
∂Φ(Ak, Ȧk)

∂Ȧk

= 0. (14)

The dissipation potential Φ as well as the strain energy density W must satisfy
the material symmetries, i.e. by remaining invariant under any change of reference
configuration.

Provided that such a dissipation potential is defined, the thermodynamic con-
sistency is automatically satisfied (Méo et al., 2002; Laiarinandrasana et al., 2003;
Kumar and Lopez-Pamies, 2016). However, the existence of such a dissipation po-
tential is not that simple a priori, and some authors have preferred to start from the
internal dissipation inequality Eq. (13) to develop consistent evolution equations for
their internal variables (Lion, 1997; Reese and Govindjee, 1998).
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(a) Zener model
(b) Poynting-Thompson

model

...

(c) generalized Maxwell model

Figure 2: Rheological schemes classically applied for the representation of viscoelas-
tic materials.

2.4. Strain energy density W
By extension of the linear viscoelasticity to finite strain, rheological schemes

defined by linear combinations of spring and dashpots in series or parallel are usually
adopted. The Zener (Figure 2a) and Poynting-Thompson (Figure 2b) schemes are
probably the most commonly used. Both tend towards the same equations in linear
viscoelasticity but not in finite strain. As an extension of the Zener model, the
generalized Maxwell scheme allows for several relaxation times through n additional
viscoelastic branches parallel to the purely elastic one (Figure 2c). Although not
considered in this paper, developments about the Poynting-Thompson model may
be found in (Huber and Tsakmakis, 2000; Boukamel et al., 2001; Méo et al., 2002;
Laiarinandrasana et al., 2003).

Based on the Zener rheological scheme (Figure 2a), it is commonly assumed
(Reese and Govindjee, 1998; Kumar and Lopez-Pamies, 2016) that the free energy
ψ may be additively decomposed into an equilibrium free energy ψeq and non-
equilibrium free energy ψneq. Accounting now for several relaxation mechanisms,
one considers n Maxwell branches (k = 1, ..., n) as in Figure 2c. Accordingly, the
equilibrium part related to the purely elastic branch depends on the total deforma-
tion gradient F, while the non-equilibrium parts related to the Maxwell branches
depend on their corresponding elastic contribution Fk

e with F = Fk
e Fk

v , so that,

ψ = ψeq(F) +
n∑
k=1

ψneqk (Fk
e). (15)

In passing, note the abuse of notation ψneqk (F,Fk
v) = ψneqk (F Fk

v
−1

) = ψneqk (Fk
e) that

is usually made (Latorre and Montáns, 2015; Kumar and Lopez-Pamies, 2016). In
thermodynamic equilibrium, each free energy ψneqk is expected to vanish at a given
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time, resulting in non-equilibrium stresses, also known as overstresses (Lion, 1997),
equal to zero.

Following the volumetric-isochoric split of F in Eq. (6), the strain energy density
may also be additively decomposed in the form,

W(F,F1
v, ...,F

n
v ) = U(J, J1

e , ..., J
n
e ) +W(F̄, F̄1

e, ..., F̄
n
e ). (16)

Due to material frame indifference, the strain energy densityW reduces to a function
of the right Cauchy-Green tensors,

W(C,C1
e, ...,C

n
e ) = U(J, J1

e , ..., J
n
e ) +W(C̄, C̄1

e, ..., C̄
n
e ). (17)

According to previous statements, both the volumetric and isochoric strain energy
density functions U and W can be split additively such as,

U(J, J1
e , ..., J

n
e ) = U eq(J) +

n∑
k=1

Uneqk (Jke ),

W(C̄, C̄1
e, ..., C̄

n
e ) =Weq

(C̄) +
n∑
k=1

Wneq

k (C̄k
e).

(18a)

(18b)

Furthermore, considering isotropic materials only, one may show that the strain
energy density W writes as a function of the strain invariants,

W(C,C1
e, ...,C

k
e) = U eq(J) +

n∑
k=1

Uneqk (Jke ) +Weq
(Ī1, Ī2) +

n∑
k=1

Wneq

k (Īk1e, Ī
k
2e), (19)

where the classic notations have been introduced,

Ī1 = tr(C̄), Ī2 =
1

2

(
tr(C̄)2 − tr(C̄2)

)
, J =

»
det(C),

Īk1e = tr
(
C̄k
e

)
, Īk2e =

1

2

Ä
tr
(
C̄k
e

)2 − tr
Ä
C̄k
e

2
ää
, Jke =

»
det (Ck

e).

(20)

The insertions of both volumetric and isochoric strain energy densities from Eq. (18)
into the stress-strain relation Eq. (12) allow to define the material constitutive law,
such as,

Jσ = τ = J
∂U
∂J

I + 2 dev

Ç
F̄
∂Weq

(C̄)

∂C̄
F̄T

å
+

n∑
k=1

2 dev

Ç
F̄k
e

∂Wneq

k (C̄k
e)

∂C̄k
e

F̄k
e

T

å
.

(21)
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To obtain the latter, the noteworthy relations between the stress tensors related to
different configurations have been used,

Jσ = τ = P FT = F S FT , (22)

where σ, τ and P stand for the Cauchy, the Kirchhoff and the first Piola-Kirchhoff
stress tensors, respectively.
Note that for isotropic materials, the strain energy density W may be equivalently
written in terms of the left Cauchy-Green tensor b without loss of objectivity, as b
and C tensors share the same invariants.

Remark 4. It is worth mentioning that the general framework written as such leads
to an indeterminacy on the intermediate configuration, which is known within a
rotation. As it will appear in what follows, this indeterminacy does not need to be
resolved in the case of isotropic materials.

Models with viscoelastic strain internal variables that satisfy the thermodynamic
requirement defined in Eq. (13) may differ in the choice of internal variables and as-
sociated evolution laws. The next section proposes a survey on the pioneering ther-
modynamically admissible finite strain viscoelastic models, comparing their internal
variables and their associated evolution laws. For the sake of simplicity, constitutive
equations are written for the Zener rheological scheme, given that the extension to
the generalized Maxwell model is straightforward. In such a framework, note that
the k notation, used to distinguish several relaxation mechanisms, is dropped out
from equations introduced previously to improve clarity. In addition, the viscosity
parameters are assumed constant as further assessments about non-constant ones
will be held in section 5.

3. Survey of finite strain viscoelastic models

The three pioneering finite strain viscoelastic models (Le Tallec et al., 1993; Lion,
1997; Reese and Govindjee, 1998) are first sorted according to the configuration of
their internal variable definition. A rewriting with the same internal variable is then
proposed in a second stage for comparison purposes.

3.1. Current configuration: Reese and Govindjee (1998) formulation

Reese and Govindjee (1998) specified the non-equilibrium strain energy density
Wneq as a function of Ce, and wrote the Clausius-Duhem inequality (Eq. (13)) de-
pending on spatial tensors,

− ∂W
neq

∂Ce

:
∂Ce

∂Fv

: Ḟv ≥ 0 ⇐⇒ ∂Wneq

∂Ce

: (lTv Ce + Ce lv) ≥ 0 , (23)
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which simply leads to,

2
∂Wneq

∂Ce

: (Ce lv) ≥ 0 . (24)

Then, by introducing the spatial elastic left Cauchy-Green tensor be = Fe FT
e and

the non-equilibrium Kirchhoff stress tensor τ neq = 2 Fe
∂Wneq

∂Ce
FT
e , Eq. (24) may be

rewritten in the form,
τ neq b−1

e :
(
Fe lv FT

e

)
≥ 0 . (25)

Even though the latter formulation is valid for anisotropic materials, it should be
emphasized that the isotropy assumption makes τ neq and be commute, and thus
τ neq b−1

e a symmetric tensor. Therefore, Eq. (25) reduces to,

−τ neq :
1

2
(Lv be)b

−1
e ≥ 0 , (26)

where Lvbe stands for the Lie derivative of the contravariant tensor be and is defined
as,

Lvbe = ḃe − l be − be lT . (27)

To satisfy Eq. (26), the authors finally proposed the following isotropic evolution
(see Eq. (25) in (Reese and Govindjee, 1998)),

−(Lv be)b
−1
e =

1

ηd
dev(τ neq) +

2

9ηh
(τ neq : I) I, (28)

with distinct viscosity functions ηh and ηd for the hydrostatic and deviatoric parts.
In addition, the authors assumed that ηh and ηd could be dependent on the elastic
left Cauchy-Green tensor be. As Kumar and Lopez-Pamies (2016) pointed out, such
generality must be restricted to the tensor invariants to comply with the objectivity
principle. Due to the fact that only constant viscosities are considered here, Eq. (28)
may be finally rewritten (see Appendix B.1 for details) by splitting the volumetric
and isochoric internal state variables, Jv and b̄e respectively, into,

J̇v =
J

ηh

∂Uneq(Je)
∂Je

,

(Lv b̄e) b̄−1
e = − 1

ηd
dev (τ neq) = − 2

ηd
dev

Ç
∂Wneq

(b̄e)

∂b̄e
b̄e

å
.

(29a)

(29b)

3.2. Intermediate configuration: Lion (1997) formulation

Lion (1997) addressed the finite strain viscoelastic equations in the intermediate
configuration. In this framework, the strain tensor Γ defined with respect to the
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intermediate configuration Ci is obtained by operating a push-forward of the Green-
Lagrange tensor from the reference configuration C0 such as,

Γ = F−Tv E F−1
v =

1

2
(Ce − I) +

1

2

(
I− b−1

v

)
= Γe + Γv, (30)

leading to the additive split of the strain tensor into its elastic and viscous parts.
The stress tensor Tneq operating in Ci is obtained from the non-equilibrium second
Piola-Kirchhoff stress tensor Sneq in a similar fashion,

Tneq = Fv Sneq FT
v with Sneq = S− Seq. (31)

In addition, the objective Oldroyd covariant derivative of the strain tensor Γ is
defined as the push-forward of the rate of the Green-Lagrange tensor into the inter-
mediate configuration, written as,

4
Γ = F−Tv Ė F−1

v = Γ̇ + lTv Γ + Γ lv. (32)

By definition, this strain rate may also be additively split into elastic and viscous
parts, such as,

4
Γ =

4
Γe +

4
Γv. (33)

Interestingly, note that the last term simply equals to the viscous strain rate tensor,

so that
4
Γv = dv = 1

2

(
lv + lTv

)
. By introducing Γe into Eq. (13), and noticing that

Sneq : Ė = Tneq :
4
Γ, the Clausius-Duhem inequality from Eq. (11) thus becomes,Å

Tneq − ∂Wneq

∂Γe

ã
:
4
Γe +

∂Wneq

∂Γe

:
4
Γv +

∂Wneq

∂Γe

:
(
lTv Γe + Γe lv

)
≥ 0. (34)

Within the assumption of isotropy, the following simplification is then achieved,

∂Wneq

∂Γe

:
(
lTv Γe + Γe lv

)
= 2Γe

∂Wneq

∂Γe

:
4
Γv. (35)

Accordingly, Lion proposed (see Eq. (31) in (Lion, 1997)) a sufficient condition to
ensure a positive dissipation by specifying the simple evolution equation for the
internal variable Γv,

4
Γv =

1

ηv
(I + 2Γe)

∂Wneq

∂Γe

=
1

ηv
CeT

neq. (36)

13



Although the viscosity function ηv is considered as constant here, Lion (1997) defined
it as a function of the arguments Γv and Tneq, and the temperature. Lastly, the
author also accounted for volume changes by extending Eq. (36),

4
Γv =

1

ηv
dev(CeT

neq) +
1

3ηv
(CeT

neq : I) I

=
1

ηv
dev

Ç
C̄e

∂Wneq
(Γ̄e)

∂Γ̄e

å
+
Je
ηv

∂Uneq

∂Je
I.

(37)

Finally, further developments of Eq. (37), given in Appendix B.2, allow us to write
the evolution equations of the internal variables in the intermediate configuration,

J̇v =
3J

ηv

∂Uneq(Je)
∂Je

,

4
Γ̄v =

1

ηv
dev

(
FT
e τ

neq F−Te
)

=
1

ηv
dev

Ç(
I + 2Γ̄e

) ∂Wneq
(Γ̄e)

∂Γ̄e

å
.

(38a)

(38b)

Briefly, when comparing this volumetric evolution equation with Eq. (29a), one may
note a difference with a factor of 3, while the isochoric one seems at first sight different
from Eq. (29b). Finally, it is necessary to specify that the same viscosity functions are
applied to hydrostatic and deviatoric parts, which means different relaxation times
for both strain types. In contrast, Reese and Govindjee (1998) have chosen equal
relaxation times, implying different bulk and shear viscosity functions in continuity
with linear viscoelasticity.

3.3. Reference configuration: Le Tallec et al. (1993) formulation

Prior to the former propositions, Le Tallec et al. (1993) have written finite
strain viscoelastic constitutive equations for incompressible materials in a Lagrangian
framework. The purpose here is to recall their constitutive equations and extend
them to compressible materials to allow a comparison between all formulations.

First and foremost, Le Tallec et al. (1993) introduced the viscous right Cauchy-
Green tensor Cv as their internal variable, which leads to write the internal dissipa-
tion inequality Eq. (13) as,

−∂W
neq

∂Cv

: Ċv ≥ 0. (39)

As the aforementioned models, the authors avoided the definition of a dissipation
potential a priori. Hence, to ensure a positive dissipation rate, the most simple form
is adopted for their internal variable,

−ν ˙̄
C−1
v = −∂W

neq

∂Cv

, (40)
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where ν is a real-valued parameter associated with a viscosity. An important point
to underline here is that Le Tallec et al. (1993) assumed F−1

v =
√

C−1
v , leading them

to write 2 dv =
√

C−1
v Ċv

√
C−1
v . It is then straightforward to show the positiveness

of the internal dissipation Eq. (39) for all processes since

−∂W
neq

∂Cv

: Ċv = 4 ν dv : dv. (41)

Additionally, the constitutive equations write for incompressible materials with iso-
choric viscoelastic processes in the form (see Eq. (3.10) in Le Tallec et al. (1993)),

S = 2
∂W
∂C
− pC−1 and − ν ˙̄

C−1
v = −∂W

neq

∂Cv

+ qC−1
v (42)

with p and q unknown Lagrange multipliers. By considering then the simpler case of
isotropic materials and using Eq. (B.24) from Appendix B.3, the former evolution
equation turns into,

−ν ˙̄
C−1
v = F−1

v

∂Wneq

∂Ce

Ce F−Tv + qC−1
v . (43)

Lastly, by following the argument of incompressibility on both elastic and viscoelastic
parts, one may show that

d

dt

[
det(C−1

v )
]

= tr

Å
Cv

˙̄
C−1
v

ã
= 0 ⇐⇒ tr

Å
∂Wneq

∂Ce

Ce + q I

ã
= 0, (44)

which provides the necessary expression of q leading to the evolution equation of the
internal variable C−1

v ,

˙̄
C−1
v = −1

ν
F−1
v dev

Å
∂Wneq

∂Ce

Ce

ã
F−Tv . (45)

As a final step of this section, the development of the equation above in a compressible
framework, detailed in Appendix B.3, leads to the following evolution equations,

J̇v =
J

ηh

∂Uneq(Je)
∂Je

,

˙̄
C
−1

v = − 2

ηd
F̄−1
v dev

Ç
∂Wneq

(C̄e)

∂C̄e

C̄e

å
F̄−Tv .

(46a)

(46b)
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Table 1: Summary of the constitutive equations of the three pioneering finite strain
viscoelastic models as defined by their authors.

Model Reese and Govindjee (1998) Lion (1997) Le Tallec et al. (1993)

Configuration Current Intermediate Reference

Variable be Γv C−1
v

Objective Rate Lv be (Lie)
4
Γv (Oldroyd)

˙̄
C−1
v

Isochoric − 2
ηd

dev
Ä
∂Wneq

(b̄e)

∂b̄e
b̄e
ä

1
ηv

dev
Ä(

I + 2Γ̄e

) ∂Wneq
(Γ̄e)

∂Γ̄e

ä
− 2
ηd

F̄−1
v dev

Ä
∂Wneq

(C̄e)

∂C̄e
C̄e

ä
F̄−Tv

Volumetric
J

ηh

∂Uneq(Je)
∂Je

3J

ηv

∂Uneq(Je)
∂Je

J

ηh

∂Uneq(Je)
∂Je

3.4. Comparison of evolution laws

Considering the developments obtained from the three models above, the internal
variables and evolution equations for both volumetric and isochoric parts are listed
in Table 1. At first sight, only the volumetric evolution equations seem to be similar.
Therefore, to compare the isochoric evolution laws in depth, the three models are
rewritten in the reference configuration with the same internal variable, C̄v.

For that purpose, the following noteworthy relationships are used

Lv b̄e = F̄
˙̄

C
−1

v F̄T ,
4
Γ̄v =

1

2
F̄−Tv

˙̄Cv F̄−1
v ,

˙̄
C
−1

v = −C̄−1
v

˙̄Cv C̄−1
v . (47)

Note that the first and second equations are detailed in (Reese and Govindjee, 1998)
and (Lion, 1997) respectively, while the last one is a simple definition. Recognizing
also that,

F̄−1
e dev (τ neq) F̄e = 2 dev

Ç
∂Wneq

∂C̄e

C̄e

å
, (48)
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the rest comes straightforward from Eqs. (29b), (38b) and (46b) to,
Reese and Govindjee (1998) : ˙̄Cv = 2

ηd
F̄T
v dev

Ä
∂Wneq

∂C̄e
C̄e

ä
F̄v,

Lion (1997) : ˙̄Cv = 4
ηv

F̄T
v dev

Ä
∂Wneq

∂C̄e
C̄e

ä
F̄v,

Le Tallec et al. (1993) : ˙̄Cv = 2
ηd

F̄T
v dev

Ä
∂Wneq

∂C̄e
C̄e

ä
F̄v.

(49)

An interesting outcome is that the indeterminate rotation part Rv that has been
mentioned in Remark 4, drops out from the above equation with isotropic mate-
rials (Haupt, 2002). This becomes even more explicit when one rewrites the non-
equilibrium strain energy density Wneq

as a function of elastic strain invariants,

˙̄Cv =
2

ηd

ï
ᾱ

Å
C̄− 1

3
tr
(
C̄ C̄−1

v

)
C̄v

ã
+ β̄

Å
C̄ C̄−1

v C̄− 1

3
tr
(
C̄ C̄−1

v C̄ C̄−1
v

)
C̄v

ãò
,

(50)

where the functions ᾱ =
∂Wneq

∂Ī1e

+ Ī1e
∂Wneq

∂Ī2e

and β̄ = −∂W
neq

∂Ī2e

have been introduced.

In addition, a careful reading of Eq. (49), clearly shows the difference by a factor
of 2 between the evolution equation of Lion (1997) and the two others, this result
being however consistent with Eq. (47.1) from (Lion, 1997). On this premise, the
linearization of these models is in favor of (Le Tallec et al., 1993; Reese and Govin-
djee, 1998) for their solution, which recovers directly the classic infinitesimal strain
equations. Finally, the major finding of this survey is that, even though the consti-
tutive choices were quite different at the beginning, the three models finally define
the same nonlinear evolution for their constitutive equations. One explanation for
this result could stem from the simplest possible choice systematically made to en-
sure the positiveness of the dissipation, given that all models are based on the same
underlying mechanical foundations, the thermodynamic principles and the Sidoroff
(1974) multiplicative decomposition.

Remark 5. Navigation between the different configurations, and thus between the
different formulations, is made possible by means of the right push-forward / pull-
back operations. A choice between one or the other formulation is then led by the
problem at hand. Without getting into deep details about the resulting integration
map arising from the choice of configuration, each exhibits pros and cons. First, the
intermediate configuration has no physical meaning since a fictitious state was cre-
ated by the multiplicative decomposition, so it is preferable to work with measurable
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quantities. Second, the Lagrangian formulation is suitable for all kinds of materi-
als, especially when dealing with anisotropic viscoelastic materials (Nguyen et al.,
2007; Areias and Matouš, 2008; Latorre and Montáns, 2015; Reese et al., 2021), the
calculations are made in the reference configuration and then push-forwarded to the
current one to get the Cauchy stress. Third, the current configuration appears as a
judicious selection to describe stress and strain, particularly for finite element imple-
mentation (Hasanpour et al., 2009), assuming that the proper tensors and objective
rates are used.

Finally, it is worth recalling that in previous studies, comparisons were made be-
tween two configurations: the reference and intermediate configuration (Lion, 1997;
Naghdabadi et al., 2012), or the reference and current one (Latorre and Montáns,
2015). Lion (1997) specified the evolution equation in the reference configuration
based only on strain invariants and did not discuss the connection between his for-
mulation and that of Le Tallec et al. (1993). Naghdabadi et al. (2012) and Latorre
and Montáns (2015) defined constitutive equations based on logarithmic strain ten-
sors without providing a thorough comparison to former models. This point, among
others, will be resolved in the next section.

3.5. Connection with other finite strain viscoelastic models

Another model (Bergström and Boyce, 1998, 2001) played a major role in model-
ing the finite strain time-dependent behavior of incompressible rubberlike materials.
Based on the physical representation of polymer chain extensions and reptations,
they defined continuum mechanics constitutive equations that may be compared to
the previous ones. Their theory starts with the additive decomposition of the spatial
velocity tensor l as in Eq. (10),

l = le + Fe lv F−1
e = le +

∼
l v ,

∼
l v =

∼
dv +

∼
wv. (51)

The assumption of zero viscous spin rate,
∼
wv = 0, has been made by Bergström

and Boyce (1998) in order to make the unloading unique (see also Bergström and

Boyce (2001)). In addition, the Eulerian inelastic strain rate
∼
dv is defined as a

function of the deviatoric driving stress N and the effective creep rate function θ̇,
this latter depending on both the inelastic stretch and stress invariants (see Eq. (13)
and Eq. (24) in (Bergström and Boyce, 1998)). Thus, the evolution equation for this
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model can be summarized as follows,
∼
dv = θ̇N, N =

dev (τ neq)

τneqiso

,

θ̇ = θ̇0 (λvchain − 1 + ξ)C
Å
τneqiso√

2 τ̂

ãm
, λvchain =

 
tr(Cv)

3
,

(52a)

(52b)

with τneqiso = ||dev (τ neq) || =
√

dev (τ neq) : dev (τ neq) the effective stress measure,

the reference creep rate θ̇0, a dimension-purpose positive constant τ̂ and a material
constant C restricted to [−1, 0] by reptational dynamic in the original contribution
and later extended to C < 0 by (Dal and Kaliske, 2009). The parameter ξ → 0,
which was not present in the original version, has been introduced (Bergström and
Boyce, 2001) to prevent numerical divergence when λvchain = 1. As noted by other
authors (Reese and Govindjee, 1998; Dal and Kaliske, 2009), this model replicates
the model of Reese and Govindjee (1998) when a constant effective creep rate (C = 0,
m = 1) is applied and the effective creep rate is expressed in terms of viscosity as θ̇ =
τneqiso /(2ηd). In other words, the model of Bergström and Boyce (1998) can be seen as
a variation of earlier models, with the key difference being that its viscosity depends
on strain and stress levels. Additionally, this model has been implemented for finite
element analyses, working either in a Lagrangian framework with Eq. (46b) (Areias
and Matouš, 2008) or in an Eulerian framework with Eq. (29b) (Dal and Kaliske,
2009) following the implementation procedure proposed by Reese and Govindjee
(1998).

Huber and Tsakmakis (2000) proposed finite strain viscoelastic laws for incom-
pressible isotropic materials, modeled by either Zener or Poynting-Thompson rhe-
ological schemes, and defined in the intermediate configuration. The constitutive
equations are the same as those proposed by Lion (1997), expressing the right part
of Eq. (36) with a Mandel-like tensor instead. To model the high damping rubber
behavior in shear and compression, Amin et al. (2002, 2006) reused the constitutive
equations from Huber and Tsakmakis (2000). More specifically, they introduced a
viscosity function depending on some invariants of dv and Mandel-type stress tensor
to represent well experimental features that, according to the authors, cannot be
reproduced with constant viscosities.

Naghdabadi et al. (2012) proposed to introduce the logarithmic strain to express
the evolution equation in a compressible framework. In doing so, both volumetric and
isochoric equations were first written in an intermediate configuration (see Eq. (27)
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in Naghdabadi et al. (2012)),

˙̄
ln Jv =

1

ηh

∂Uneq

∂ ln Je
, d̄v =

1

ηd
F̄T
e

∂Wneq

∂h̄e
F̄−Te with h̄e =

1

2
ln b̄e, (53)

then restated into the initial configuration for the isochoric part (see Eq. (43) in
Naghdabadi et al. (2012)),

˙̄Cv =
2

ηd
Ūv

∂Wneq

∂H̄e

Ūv with H̄e =
1

2
ln
(
Ū−1
v C̄ Ū−1

v

)
. (54)

It is then straightforward to show that this hydrostatic evolution equation converges
towards Eq. (29a). Moreover, Eq. (49) may be retrieved by applying some algebraic
calculations on Eq. (54) (see (Sansour, 2001)). Latorre and Montáns (2015) have
also chosen the Hencky logarithmic strain tensor to express the Clausius-Duhem
inequality in both initial and current configurations, with an emphasis on anisotropic
finite strain viscoelasticity. They offered an expression of the evolution of their
internal variable in the reference configuration only. Interestingly, they have shown
that their model recovers the one of Reese and Govindjee (1998) in the case of
isotropy.

More recently, Kumar and Lopez-Pamies (2016) introduced a two-potential frame-
work (as in Eq. (14)) to generalize the finite strain viscoelastic modeling of com-
pressible materials. They highlighted the fact that finite models from Le Tallec et al.
(1993), Reese and Govindjee (1998), and Bergström and Boyce (1998) are all part of
their two-potential general framework, without clarifying their sameness as proposed
here, but rather writing apparently different final expressions for the evolution laws.

Finally, it has been established that, when using a Zener rheological scheme with
constant viscosity, the thermodynamically sound models discussed are essentially
similar. Hence, we will refer to them as the general model and use Eq. (29) in what
follows to ease the understanding. In passing, note that the formulation initially
proposed by Le Tallec et al. (1993) may be seen as the incompressible limit of the
general model.

In the next section, we propose to first compare the general model in uniaxial
tension and simple shear to the still largely applied model of Simo (1987). To make
the comparison as simple as possible, it should be emphasized that a simple Zener
scheme is applied in section 4, implementing directly the evolution equations of the
general model defined previously.

4. Comparison of the general model and Simo’s model responses for sim-
ple loadings
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This section aims at proposing a comparison between the general model and the
model of Simo (1987) from a mere user perspective, due to the latter implementation
in several finite element codes and its resulting prevalence when it comes to model
viscoelasticity in finite strain. On that last point, it should be noted that the ther-
modynamic consistency of such models, based on hereditary integrals, is still an open
debate. On the one hand, some contributions (Reese and Govindjee, 1997; Haslach,
2005; Govindjee et al., 2014; Latorre and Montáns, 2015) have pointed out that the
thermodynamic requirements are not satisfied for all processes. On the other hand,
Holzapfel and Simo (1996) claimed the thermodynamic consistency within some re-
strictive assumptions. Since the model of Simo (1987) is not our primary focus,
interested readers may refer to (Govindjee et al., 2014; Liu et al., 2021) for further
details about thermodynamic considerations and to (Drapaca et al., 2007; Ciambella
et al., 2009; Wineman, 2009; De Pascalis et al., 2014; Berjamin et al., 2021; Yagimli
et al., 2023) for theoretical developments and numerical implementations of some
finite linear viscoelastic models.

4.1. Modeling inputs

Briefly, the finite linear viscoelastic model of Simo (1987) may be summarized by
the simple linear evolution equation,

Q̇ +
1

τ
Q =

d

dt

ñ
dev

Ç
2
∂Wneq

∂C̄

åô
, (55)

where Q is an internal variable of second Piola-Kirchhoff stress tensor type, usually
distinct from S̄neq (see Liu et al. (2021) and references therein). Selecting Q = S̄neq

imposes restrictions in the constitutive equations to enforce the Clausius-Duhem
inequality, as discussed in the preamble of this section.

Due to the linear form of Eq. (55), the internal variable may be estimated through
the convolution integral,

Q =

∫ t

−∞
e−

t−s
τ
d

ds

ñ
dev

Ç
2
∂Wneq

∂C̄

åô
ds. (56)

For the following, the model implemented in Abaqus (2021) was used to estimate
the responses presented in the current contribution.

The comparisons are made for a Zener rheological representation, where only one
relaxation time has been introduced. In addition, the simpler Neo-Hookean form is
adopted for the isochoric part,

W(C̄, C̄e) =
µ∞
2

(
Ī1(C̄)− 3

)
+
µe
2

(
Ī1e(C̄e)− 3

)
. (57)

21



The following strain energy density was selected for the hydrostatic part,

U(J, Je) =
K∞

2
(J − 1)2 +

Ke

2
(Je − 1)2 . (58)

For the numerical calculations, the elastic and viscoelastic shear moduli have
been set to µ∞ = 1 MPa and µe/µ∞ = 9. As for the elastic and viscoelastic bulk
moduli, K∞ = Ke = 20µ∞, to exhibit some compressibility. It is worth noting
that similar results have been obtained for bulk moduli at 103 µ∞, with the only
difference of displaying larger values for the stresses. Finally, the same relaxation
time τ = 1 s was applied for the hydrostatic and deviatoric parts and, by extension
of the linearized theory, both viscosities are set to ηh = Ke τ and ηd = µe τ .

4.2. Uniaxial tension

For uniaxial tensile tests, the left Cauchy-Green tensor may be defined as,

b̄ = λ̄2~e1 ⊗ ~e1 +
1

λ̄
(~e2 ⊗ ~e2 + ~e3 ⊗ ~e3) , (59)

where λ stands for the stretch in the uniaxial loading direction.
Correspondingly, one may define the internal variable b̄e as the solution of the

equation Eq. (29b) in the following form, by denoting b̄j for j ∈ {1, 2, 3} the compo-
nents of b̄e,

b̄e = b̄1~e1 ⊗ ~e1 + b̄2~e2 ⊗ ~e2 + b̄3~e3 ⊗ ~e3, (60)

with the isochoric constraint implying the relation b̄2 = b̄3 = 1/
√
b̄1. Finally, an

analytical expression for the Cauchy stress is found by introducing both Eq. (57)
and Eq. (58) into Eq. (12), and using the relationship Eq. (22),

σ11 = K∞ (J − 1) +Ke
Je
J

(Je − 1)

+
2µ∞
3J

Å
λ̄2 − 1

λ̄

ã
+

2µe
3J

Å
λ̄2
e −

1

λ̄e

ã
,

(61)

where non-equilibrium quantities Je = J/Jv and b̄1 = λ̄2
e are estimated thanks to the

dissipation equations Eqs. (29a) and (29b).
In Figure 3a, the stress-strain responses of both models are compared for mono-

tonic uniaxial tensile loadings at several strain rates. Both models exhibit the same
response for small stretches as they linearize into the infinitesimal strain model.

The models diverge at larger strains, indicating different linear vs. nonlinear
evolution equations. As previously noted by Govindjee and Reese (1997), viscoelas-
ticity dissipates more slowly in Simo’s model than in the general model. This result
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Figure 3: Comparison of the general model and Simo’s model stress-strain responses
in uniaxial tension. (a) Monotonic uniaxial tensile loadings at several strain
rates and (b) uniaxial tensile loadings at several strain rates followed by
relaxation steps.

is also witnessed when applying relaxation steps. In Figure 3b, relaxations follow
uniaxial tensile loadings performed at various strain rates during the same duration.
As a result of these solicitations, one may note that the differences in the dissipative
processes increase with the applied stretch.

4.3. Simple shear

To model a simple shear loading, characterized by the amount of shear γ, the
following deformation gradient tensor is adopted

F̄ = I + γ ~e1 ⊗ ~e2. (62)

The elastic tensor b̄e which results from such a loading writes as (Califano and
Ciambella, 2023),

b̄e = b̄1~e1 ⊗ ~e1 + b̄2~e2 ⊗ ~e2 + b̄3~e3 ⊗ ~e3 + b̄12 (~e1 ⊗ ~e2 + ~e2 ⊗ ~e1) , (63)

with the isochoric constraint implying b̄3 =
(
b̄1b̄2 − b̄ 2

12

)−1
.

The corresponding Cauchy stress component σ12 is written as,

σ12 = τ12 = µ∞ γ + µe b̄12, (64)

where the component b̄12 may be evaluated using Eq. (29b).
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Figure 4: Comparison of the general model and Simo’s model stress-strain responses
in simple shear. (a) Monotonic shear loadings at several strain rates and
(b) shear loadings at several strain rates followed by relaxation steps.

As shown in Figure 4, the same features are observed for simple shear loadings as
in uniaxial tension. Additionally, as mentioned by (Califano and Ciambella, 2023)
and illustrated in Figure 5, the Rivlin and Rideal (1948) relation, σ11 − σ22 = γ σ12,
always valid in hyperelasticity, may not hold in large viscoelastic deformations.

4.4. Sinusoidal loading

Yagimli et al. (2023) recently conducted a study on the model’s response of Simo
(1987) to cyclic simple shear loadings with varying amplitudes. One significant find-
ing is that noteworthy drawbacks are associated with the latter model. These include
a non-physical overshooting behavior in a specific frequency range and a non-linear
dependence of the stress response on shear amplitude, which is not expected for Neo-
Hookean materials (see Figure 2 of the aforementioned paper). Such a significant
dependence on amplitude has not yet been encountered with the general model. For
instance, we have reproduced Yagimli et al. (2023) shear simulations and compared
them to the general model in Figure 6. However, we have no general proof to offer
since, unlike in (Yagimli et al., 2023) where an analytical solution has been obtained
through the integration of linear equations, the integration of the nonlinear equations
at hand (see Eq. (4.5) of Califano and Ciambella (2023)) is a much tedious task.

Yagimli et al. (2023) suggested improvements to the original constitutive equa-
tions of Simo (1987) to satisfactorily overcome the nonphysical overshooting. The
same features as previously are observed when using the same parameters for the
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Figure 5: Rivlin and Rideal (1948) relation for monotonic simple shear at 0.1 s−1

from Figure 4.

general model and the model of Yagimli et al. (2023). Precisely, the general model
stands below at large strain amplitudes due to faster viscoelastic dissipation.
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Figure 6: Comparison of the shear Cauchy stress σ12 of the general model and Simo’s
model for various amplitudes at the angular frequency ω = 1

6
rad.s−1 using

a Zener scheme with material parameters µ0 = µ∞ + µe = 2 MPa, µ∞ =
2.0e−4 MPa and τ = 1 s.

To further illustrate the nonlinear responses that may be obtained with the gen-
eral model, Figure 7 shows the sinusoidal responses calculated for a shear amplitude
of γ0 = 3 and various angular frequencies. This is done when the Neo-Hookean strain
energy density or the Gent (1996) model with Jm = 9.1 (using his notation) is chosen
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Figure 7: Shear Cauchy stress σ12 at γ0 = 3 of the general model for (a) Neo-Hookean
and (b) Gent strain energy densities with different angular frequencies.

forW . As a result, the general model can exhibit significant nonlinearities depending
on the loading frequency while avoiding unphysical behavior. The parameters used
for Figure 6 are also applied here.

Considering now the general model only, two paths are generally followed, ac-
counting for either constant viscosity parameters or non-constant ones. In the next
section, we will closely examine the advantages and drawbacks of choosing a Zener
model with non-constant viscosity or a generalized Maxwell model with constant
viscosities.

5. Comparison of the generalized Maxwell model and the Zener model
with non-constant viscosity

5.1. Zener model with a non-constant viscosity

A discussion is proposed between two constitutive approaches defined to account
for the multiple time-dependent behaviors of polymers, within the thermodynam-
ically consistent framework exposed in section 3. The first one is based on the
generalized Maxwell rheological scheme with n viscoelastic branches that have con-
stant parameters, by extension of infinitesimal strain viscoelasticity. The second one
assumes a Zener rheological model with a non-constant viscosity function (Bergström
and Boyce, 1998; Lion, 1997; Amin et al., 2006; Kumar and Lopez-Pamies, 2016). It
may be challenging to accurately determine the parameters of the Prony series for
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materials in the rubbery state, especially those far from the glass transition. Addi-
tionally, the computational cost of considering multiple Maxwell branches makes a
compelling argument for using a simpler Zener model.

In the literature, various mathematical viscosity functions have been proposed
(Ricker et al., 2023). Although these functions have different mathematical forms,
they mostly share the same piloting variables, such as the non-equilibrium Kirchhoff
stress invariant, ||τ neq||, or an inelastic strain invariant measure, typically Ī1v, or
both. In this respect, Lion (1997) introduced a viscosity function that relies on
variables defined in the intermediate configuration, making it difficult to measure
or associate with a specific physical meaning. Dal et al. (2020) proposed a function
that depends on the elastic strain invariant Ī1e, with however a similar form to the
proposal from (Bergström and Boyce, 1998). Additionally, some authors proposed
viscosities that are dependent on a scalar measure of the total strain, in addition
to the inelastic strain (Miehe and Keck, 2000) or on the non-equilibrium Kirchhoff
stress invariant (Haupt and Sedlan, 2001; Amin et al., 2006).

In a recent study, Ricker et al. (2023) tested the ability of several viscosity func-
tions to replicate uniaxial tension cyclic tests with increasing maximum stretch, with
and without relaxation steps. They found that the experimental data were better
replicated using the three-parameter viscosity function (Eq. (52b)) from Bergström
and Boyce (1998) and the six-parameter viscosity function from Kumar and Lopez-
Pamies (2016),

ηd = η∞ +
η0 − η∞ +K1(Īβ11v − 3β1)

1 + (K2 J
neq
2 )β2

, (65)

with invariants,

Ī1v = tr
(
b̄v
)
,

Jneq2 =
1

2
||dev (τ neq) ||2 =

1

2
dev (τ neq) : dev (τ neq) .

(66)

The former refers to the viscous strain, while the latter is representative of the strain

rate, since using Eqs. (48)-(49), one can show that Jneq2 ∝ ηd || ˙̄Cv C̄−1
v ||.

Focusing on the aforementioned models, with material parameters fitted by their
authors on the same nitrile rubber experimental data (the parameters are listed in
Tables 2 and 3), one may plot the viscosity changes according to Ī1v and Jneq2 , by
noticing that λvchain =

√
Ī1v/3 and τv =

√
Jneq2 in Eq. (52b). Figure 8 shows both

viscosities increasing similarly with the viscous strain invariant Ī1v. Additionally,
both models show a reduction in viscosity as the strain rate Jneq2 increases. However,
only the six-parameter model (Kumar and Lopez-Pamies, 2016) exhibits plateaus
that reproduce the shear thinning property of rubber materials.
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Parameters Values Units

C
(A)
R 0.29 MPa

C
(B)
R /C

(A)
R 2.5 -

N (A) 6 -

N (B) 4 -

Ĉ = θ̇0/τ̂
m 7 s−1.MPa−m

C −0.6 -

m 5 -

Table 2: Parameters of the viscoelastic model from Bergström and Boyce (1998).

Parameters Values Units

µ1 1.08 MPa

µ2 0.017 MPa

α1 0.26 -

α2 7.68 -

m1 1.57 MPa

m2 0.59 MPa

a1 −10 -

a2 7.53 -

η∞ 0.1 MPa.s

η0 2.11 MPa.s

K1 442 MPa.s

K2 1289.49 MPa−2

β1 3 -

β2 1.929 -

Table 3: Parameters of the viscoelastic model from Kumar and Lopez-Pamies (2016).
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(a) (b)

Figure 8: Changes with respect to Ī1v and Jneq2 of (a) Bergström and Boyce (1998)
and (b) Kumar and Lopez-Pamies (2016) viscosity functions for parameters
listed in Tables 2 and 3.

Now, for the comparison of Bergström and Boyce (1998) and Kumar and Lopez-
Pamies (2016) models with a generalized Maxwell model, a simple method is pro-
posed to identify the parameters of a Prony series that can satisfactorily represent the
loading part of the stress-stretch response. Without having classic dynamic mechani-
cal analysis tests in hand to determine the relaxation times and associated stiffnesses
of the Prony series, sinusoidal tensile responses were generated numerically, setting
the uniaxial stretch to,

λ(t) = λ0 sin (2πf t), (67)

and estimating the stress response with the model of Kumar and Lopez-Pamies
(2016). To remain in the linear regime, a small amplitude of λ0 = 0.001 was con-
sidered, while the frequency f was swept from 10−3 to 106 Hz. The corresponding
storage and loss Young moduli, E ′ and E ′′, have been calculated using a Fast Fourier
Transform analysis. Then, a viscoelastic spectrum (Ek, τk) from the Prony series is
calculated based on the following formulae,

E ′(ω) = E∞+
n∑
k=1

Ek
(ω τk)

2

1 + (ω τk)2
, E ′′(ω) =

n∑
k=1

Ek
ω τk

1 + (ω τk)2
, tan δ = E ′′/E ′. (68)

The results of this identification process, for an 8-branch Prony series with the simple
Neo-Hookean model assuming incompressibility, are shown in Figure 9, with param-
eters listed in Table 4.

The comparison of the model performances is shown in Figure 10, displaying
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Figure 9: Prony series parameters identification: (left) Sinusoidal response for several
frequencies generated with the model of Kumar and Lopez-Pamies (2016)
and FFT analyses (dashed lines); (right) Corresponding storage modulus
and damping factor.

the responses of the Prony series as well as both Zener models with non-constant
viscosities, against Bergström and Boyce (1998) experimental data.

The generalized Maxwell model only provides satisfactory representations of the
loading stress-stretch responses. Yet, the associated complex viscosity, defined by
introducing the imaginary unit i as,

η∗ = η′ − i η′′ = G′′

ω
− i G

′

ω
, (69)

shows a similar trend with respect to the frequency (Figure 11) to the one observed
by Bergström and Boyce (1998) for ηd vs. Jneq2 (Figure 8). However, this similarity
should be taken with care beyond the fact that Jneq2 and f are different quantities.
Actually, the theoretical plots of ηd shown in Figure 8 are not necessarily relevant
since Ī1v and Jneq2 are coupled, and their coupling depends on the loading path.
Consequently, it would be more compelling to observe how the viscosity changes
during actual loading conditions. Next, we propose to estimate the stress-stretch
responses of the Prony series and of Kumar and Lopez-Pamies (2016) model for
several classic loading conditions with the previously listed parameters. Beyond
comparing the stress-stretch responses, special attention will be paid to how the
nonlinear viscosity behaves. Remarks about the viscosity function of Bergström
and Boyce (1998) will be added when the trend differs from the one of Kumar and
Lopez-Pamies (2016).
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n τk (s) Gk (MPa)

∞ - 0.79

1 2.35e−03 0.0438

2 9.98e−03 0.0855

3 2.81e−02 0.1666

4 7.01e−01 0.2921

5 1.20e+00 0.3226

6 1.11e+01 0.1522

7 1.00e+03 0.1824

8 3.93e+03 0.2125

Table 4: Parameters identified for a Neo-Hookean finite strain viscoelastic model
with 8 Maxwell elements.

5.2. Uniaxial loading/unloading

It has been established that the generalized Maxwell model provides a poor rep-
resentation of the hysteresis of the rubber data at hand. Especially, the model fails
to reproduce the sharp drop of stress at the beginning of the unloading, unlike the
model of Kumar and Lopez-Pamies (2016). To better understand the latter posi-
tive feature, we have plotted in Figure 12 the changes of viscosity during the load-
ing/unloading uniaxial compression. At the beginning of unloading, the viscosity
exhibits a sudden peak due to the rapid change in Jneq2 . This feature, which allows
for a good reproduction of stress-strain responses, may be questionable from a phys-
ical standpoint. The experimental evidences reported, for instance, in (Bergström
and Boyce, 1998; Bergström, 1999; Amin et al., 2006) show that at the peak stress of
a loading-unloading cycle, filled rubbers exhibit stiffer behavior upon unloading than
loading, even at very low applied strain rates. This raises questions about the signif-
icant change in viscosity required to replicate the experimental data. The physical
and microstructural factors contributing to the stress drop at the start of unloading
remain unclear as to whether it can be solely attributed to a change in viscosity.

5.3. Relaxation at various strain amplitudes and strain rates

It is noteworthy that when instantaneously stretching at various stretch levels
λ0 = 1.1, 1.5 or 2 and then applying a relaxation step, a model like Kumar and
Lopez-Pamies (2016) may show stress relaxations that are dependent on the applied
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Figure 10: Compression loading and unloading curves with viscosity functions of
Kumar and Lopez-Pamies (2016) and Bergström and Boyce (1998) as
well as the Prony series, in comparison with nitrile rubber data.

stretch, as illustrated in Figure 13. Such a behavior is due to the viscosity dependence
on the stretch level and stretch rate. A generalized Maxwell model would show
superimposed curves in place of Figure 13a. Depending on the chosen parameters,
one may end up with a material that relaxes faster for larger stretches, as displayed
here, or the opposite.

On the other hand, when considering uniaxial stretching up to λ0 = 1.5 at several
strain rates, the stress relaxations and the corresponding viscosity changes are de-
picted in Figure 14. During these relaxation processes, different slopes are observed
depending on the initial strain rate value. In the 3D plot, the viscosity appears to
follow the same path for all strain rates, suggesting a similar relationship based on
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quency for the identified Prony series.

1.0 0.8 0.6 0.4
Stretch λ (-)

0.0

−0.5

−1.0

−1.5

−2.0

−2.5

−3.0

 C
au

ch
y 
St
re
ss
 σ

11
 (M

Pa
) Rates (s−1)

0.1
0.01
0.001

(a)

1.0 0.8 0.6 0.4
Stretch λ (-)

10−1

100

101

102

103

104

105

 η
d (

M
Pa

.s)

Rates (s−1)
0.1
0.01
0.001

(b)

Figure 12: Uniaxial tensile loading and unloading at various strain rates performed
with the model of Kumar and Lopez-Pamies (2016): (a) Stress-stretch
responses and (b) viscosity ηd evolutions.
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Figure 13: Stress-stretch curves (a) and viscosity evolutions (b) for relaxations at
different stretch levels reached instantaneously using the viscosity func-
tion of Kumar and Lopez-Pamies (2016).

both invariants. However, it is worth noting that the extreme value of Jneq2 reached
on this path varies depending on the initial strain rate. The generalized Maxwell
model with constant parameters also provides the same general features, as shown in
Figure 15. Therefore, both models may be considered as equivalent in such a case.
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Figure 14: Relaxation following monotonic uniaxial tensions at different strain rates
until λ0 = 1.5 for Kumar and Lopez-Pamies (2016) viscosity function. (a)
Normalized stress-time curves and (b) viscosity evolution for the relax-
ation step.

5.4. Frequency dependence of the sinusoidal loading responses
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rates until λ0 = 1.5 for the Prony series.

Similar to the sinusoidal shear loading in section 4.4, the stress vs. shear responses
are shown in Figure 16a at various frequencies using the viscosity function of Kumar
and Lopez-Pamies (2016). Unrealistic responses are witnessed within a specific range
of frequencies, including 0.1 Hz, with the given parameters. This is illustrated by
the butterfly-like shape of stress vs. shear plots. This undesired feature stems from
the changes in the deviatoric stress invariant Jneq2 , which shows questionable peaks
as illustrated in Figure 16b.

For comparative purposes, the same sinusoidal shear loadings are plotted in Fig-
ure 17a with the viscosity function from Bergström and Boyce (1998). At lower
frequencies, the stress-shear plot shows rhomboid shapes leading to nonlinear sinu-
soidal responses even at small stretch amplitudes and low frequencies. To delve into
this topic, examining the relationship between the viscosity function and the invari-
ant Jneq2 would be interesting, or introducing a more representative one. Finally, in
contrast to the non-constant viscosity models, the identified Prony series exhibits
classic hysteretic loops (Figure 17b).

6. Conclusions

A survey on the finite strain viscoelastic constitutive equations for rubberlike
materials has been proposed. After introducing the classic mechanical framework
for modeling finite viscoelasticity using a multiplicative decomposition of the defor-
mation gradient tensor, the focus was placed on three pioneering models from the
literature that unequivocally satisfy the thermodynamic requirements. By recall-
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Figure 16: Sinusoidal shear loadings at various frequencies and shear amplitude γ0 =
0.25 with the viscosity function of Kumar and Lopez-Pamies (2016). (a)
Stress vs. shear responses and (b) changes of Jneq2 invariant.

ing the evolution equations defined in these papers and rewriting them in the same
configuration, it has been possible to demonstrate that they merge into an identical
general model. This result clarifies the state of the art and simplifies the path for
future contributors to constitutive modeling of soft highly stretchable materials.

In the literature, authors have applied the general model to different rheologi-
cal schemes, such as the generalized Maxwell one with constant viscosities and the
Zener one with a non-constant nonlinear viscosity function. To better understand
the interest of the latter option beyond its lower computational cost, both rheological
schemes have been tested on various loading cases commonly used to characterize
the mechanical behavior of rubberlike materials. It has been observed that, in gen-
eral, more accurate data representations can be achieved through nonlinear viscosity
functions. However, this improvement comes at the expense of questionable features
such as sudden changes in viscosity during cyclic tests or viscosity fluctuations for
sinusoidal loading, which lead to unsatisfactory concavity changes in the stress re-
sponse. When the viscosity parameter is kept constant, it is possible to accurately
reproduce the strain rate dependencies during loading and accurate stress relaxations
by considering several Maxwell branches. However, it is impossible to replicate the
sudden drop in stress at the beginning of the unloading part of cyclic tests and the
dependence on the stretch amplitude, such as the Payne effect.
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Figure 17: Sinusoidal shear loading stress vs. shear responses at various frequencies
and shear amplitude γ0 = 0.25 for (a) the model of Bergström and Boyce
(1998) and (b) the generalized Maxwell model.
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Appendix A. Nomenclature

Table A.5: Definitions and notations useful to the reader.

Symbol Calculation Definition

Mathematical operations and second-order tensor notations

I Identity tensor

∇ Gradient operator

XT Transpose of tensor X

X−1 Inverse of tensor X

X : Y tr(X YT ) Inner product of X and Y tensors

~x⊗ ~y Dyadic tensor-product of ~x and ~y vectors

||X||
√

X : X Frobenius norm of X

tr(X) Trace of tensor X

dev(X) X− 1
3

(X : I) I Deviator operator in current configuration of X

det(X) Determinant of tensor X

sym(X) 1
2

(
X + XT

)
Symmetric part of tensor X

skew(X) 1
2

(
X−XT

)
Antisymmetric part of tensor X

X̄ det(X)−1/3 X Isochoric part of tensor X

Useful notations

C0, Ci, Ct Reference, intermediate and current configuration

˙(•) Time derivative of quantity (•)
(•)e, (•)v Elastic and viscous parts of quantity (•)
(•)eq, (•)neq Equilibrium and non-equilibrium parts of quantity (•)
(•)d, (•)h Deviatoric and hydrostatic parts of quantity (•)

Deformation variables

F Deformation gradient tensor

J det(F) Transformation Jacobian

R R−1 = RT Orthogonal rotation tensor

U, V Right and left pure stretch tensors
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C FT F = U2 Right Cauchy-Green stretch tensor

b F FT = V2 Left Cauchy-Green stretch tensor

E 1
2

(C− I) Green-Lagrange strain tensor

e 1
2

(I− b−1) Euler-Almansi strain tensor

l Ḟ F−1 Velocity gradient tensor

d sym(l) Deformation rate tensor

w skew(l) Spin tensor

Lvbe ḃe − l be − be lT Lie derivative of the contravariant tensor be

Γ F−Tv E F−1
v Strain tensor related to Ci

4
Γ Γ̇ + lTv Γ + Γ lv Oldroyd derivative of the covariant tensor Γ
∼
l v Fe lv F−1

e Viscous velocity gradient tensor related to Ct
∼
dv,

∼
wv sym(

∼
l v), skew(

∼
l v) Viscous deformation rate and spin tensors related to Ct

Energy

ψ Helmholtz free energy per unit mass

W ρ0ψ Strain energy density (per unit reference volume)

U Volumetric strain energy density

W Isochoric strain energy density

Φ Dissipation potential

p, q Lagrange multipliers

Stress tensors

S 2∂W
∂C

Second Piola-Kirchhoff stress tensor

P F S First Piola-Kirchhoff stress tensor

τ F S FT Kirchhoff stress tensor

σ 1
J
F S FT Cauchy stress tensor

Tneq Fv Sneq FT
v Non-equilibrium second Piola-Kirchhoff strain tensor in Ci

Q Internal variable of S type
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Appendix B. Developments for the pioneering finite viscoelastic models

For what follows, let us remind two useful relations,

∂(A−1)ij
∂(A)kl

= −(A−1)ik (A−1)lj, (B.1)

true for any second-order tensor A, and

∂J

∂C
=
J

2
C−1, (B.2)

when J2 = det(C).

Appendix B.1. Evolution equations of Reese and Govindjee (1998)

This Appendix aims to provide the reader a deeper explanation about the transi-
tion from Eq. (28) to Eq. (29). First of all, the isotropic assumption allows to rewrite
τ neq according to be as,

τ neq = 2Fe
∂Wneq

∂Ce

FT
e = 2

∂Wneq

∂be
be. (B.3)

Then, by definition, the non-equilibrium Kirchhoff stress tensor may be decomposed
into deviatoric and hydrostatic parts and become,

τ neq = dev (τ neq) +
1

3
tr (τ neq) I

= 2
∂Wneq

∂be
be + 2

∂Uneq

∂be
be = 2 dev

Ç
∂Wneq

∂b̄e
b̄e

å
+ Je

∂Uneq

∂Je
I.

(B.4)

Hence, the evolution equation proposed in Eq. (28) is rewritten in the form,

−(Lv be)b
−1
e =

2

ηd
dev

Ç
∂Wneq

∂b̄e
b̄e

å
+

2

3ηh
Je
∂Uneq

∂Je
I, (B.5)

and the split of be into isochoric and volumetric parts, as be = J
2/3
e b̄e, gives

(Lv be)b
−1
e = (Lv b̄e)b̄

−1
e −

2

3

J̇v
Jv
. (B.6)

The evolution equations, as proposed in Eq. (29), are then obtained by equalizing
deviatoric, respectively hydrostatic, parts from Eq. (B.5) with Eq. (B.6).
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Appendix B.2. Evolution equations of Lion (1997)

Following the same procedure as before, the present Appendix aims to explain
the transition from Eq. (37) to Eq. (38). For this purpose, the non-equilibrium stress
tensor CeT

neq = Ce
∂Wneq

∂Γe
may be decomposed into deviatoric and hydrostatic parts,

such as,

CeT
neq = dev (CeT

neq) +
1

3
tr (CeT

neq) I

= Ce
∂Wneq

∂Γe

+ Ce
∂Uneq

∂Γe

= dev

Ç
C̄e

∂Wneq
(Γ̄e)

∂Γ̄e

å
+ Je

∂Uneq

∂Je
I.

(B.7)

Then, the evolution equation defined in Eq. (36) is now written as,

4
Γv =

1

ηv
dev

Ç
C̄e

∂Wneq
(Γ̄e)

∂Γ̄e

å
+
Je
ηv

∂Uneq

∂Je
I, (B.8)

and the split of the internal variable rate,
4
Γv = dv, into isochoric and volumetric

parts is given by applying the split Fv = J1/3F̄v, such as

lv = ḞvF
−1
v = l̄v +

1

3

J̇v
Jv

I, then
4
Γv =

4
Γ̄v +

1

3

J̇v
Jv

I. (B.9)

The evolution equations, as proposed in Eq. (38), are then obtained by equalizing
deviatoric, respectively hydrostatic, parts from Eq. (B.8) with Eq. (B.9).

Appendix B.3. Evolution equations of Le Tallec et al. (1993)

The current Appendix presents an extension to compressible materials of Le Tal-
lec et al. (1993) formulation initially designed for isotropic incompressible ones.

First of all, we write the expressions of
∂Ī1e

∂C̄v

and
∂Ī2e

∂C̄v

that we will be needed.

The first strain invariant Ī1e is defined as,

Ī1e = tr(C̄e) = C̄ : C̄−1
v . (B.10)

Then, by using the relationship Eq. (B.1),

∂Ī1e

∂(C̄v)kl
=
∂(C̄)ij (C̄−1

v )ji
∂(C̄v)kl

= −(F̄−1
v C̄e F̄−Tv )kl , (B.11)

∂Ī1e

∂C̄v

=− F̄−1
v C̄e F̄−Tv . (B.12)
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By definition, the second invariant Ī2e writes as,

Ī2e =
1

2

(
tr(C̄e)

2 − tr(C̄2
e)
)

=
1

2

Ä
Ī1e

2 − tr(C̄2
e)
ä
, (B.13)

which gives,

∂Ī2e

∂C̄v

= Ī1e
∂Ī1e

∂C̄v

− 1

2

∂ tr(C̄2
e)

∂C̄v

. (B.14)

By noting that,

tr(C̄2
e) = tr(F̄−Tv C̄F̄−1

v F̄−Tv C̄F̄−1
v ) = tr(F̄−1

v F̄−Tv C̄ F̄−1
v F̄−Tv C̄)

= tr(C̄−1
v C̄ C̄−1

v C̄),
(B.15)

and using again Eq. (B.1), one finds,

∂tr(C̄2
e)

∂(C̄v)kl
= −2(C̄−1

v C̄ C̄−1
v C̄ C̄−1

v )kl = −2(F̄−1
v C̄2

e F̄−Tv )kl . (B.16)

Consequently, Eq. (B.14) writes as,

∂Ī2e

∂C̄v

= Ī1e
∂Ī1e

∂C̄v

− 1

2

∂ tr(C̄2
e)

∂C̄v

= −Ī1eF̄
−1
v C̄e F̄−Tv + F̄−1

v C̄2
e F̄−Tv . (B.17)

Following statements of Le Tallec et al. (1993), see Eq. (40), the evolution equa-
tion of C−1

v may be written in a compressible case as,

−ν ˙̄
C−1
v = −∂W

neq

∂Cv

. (B.18)

The left part of this equation is now written thanks to the split of the internal variable
˙̄

C−1
v into its volumetric and isochoric parts, Jv and C̄−1

v = J
2/3
v C−1

v , introducing
uncoupled viscosity functions,

−ν ˙̄
C−1
v = νh

2

3

J̇v

J
5/3
v

C̄−1
v − νdJ−2/3

v

˙̄
C
−1

v . (B.19)

The right part of Eq. (B.18) becomes,

−∂W
neq(C̄e, Je)

∂Cv

=−
Ç
∂Uneq(Je)
∂Cv

+
∂Wneq

(Ī1e, Ī2e)

∂Cv

å
, (B.20)

−∂W
neq(C̄e, Je)

∂Cv

=
J

2J
5/3
v

∂Uneq(Je)
∂Je

C̄−1
v −

∂Wneq
(Ī1e, Ī2e)

∂Cv

, (B.21)
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when breaking down the non-equilibrium strain energy density function Wneq into
pure volumetric U(Je) and pure isochoric W(C̄e) parts.

Finally, comparing the volumetric parts of Eqs. (B.19) and (B.21), one gets,

J̇v =
3J

4νh

∂Uneq(Je)
∂Je

. (B.22)

As for the isochoric part of Eq. (B.21),
∂Wneq

∂Cv

=
∂Wneq

∂C̄v

∂C̄v

∂Cv

, using the chain rule,

∂Wneq

∂C̄v

=
∂Wneq

∂Ī1e

∂Ī1e

∂C̄v

+
∂Wneq

∂Ī2e

∂Ī2e

∂C̄v

, (B.23)

and the previous results Eqs. (B.12) and (B.17), one obtains

∂Wneq

∂C̄v

= −F̄−1
v

∂Wneq

∂C̄e

C̄e F̄−Tv , (B.24)

and finally,

∂Wneq

∂Cv

=
∂Wneq

∂C̄v

∂C̄v

∂Cv

=
∂Wneq

∂C̄v

∂(J
−2/3
v Cv)

∂Cv

= J−2/3
v

Ç
∂Wneq

∂C̄v

− 1

3

Ç
∂Wneq

∂C̄v

: Cv

å
C−1
v

å
. (B.25)

Hence, by comparing the isochoric parts of Eqs. (B.19) and (B.21), the isochoric
internal variable rate is then defined as,

˙̄
C
−1

v = − 1

νd
F̄−1
v dev

Ç
∂Wneq

∂C̄e

C̄e

å
F̄−Tv . (B.26)

Remark 6. The last two unknowns, νh and νd, are then provided by comparison
with the linear viscoelastic evolution equations written in a compressible framework
in (Le Tallec et al., 1993),

˙tr εv = 3
4
K1

νh
(tr(ε)− tr(εv)) = 1

τ
(tr(ε)− tr(εv)) ,

ε̇′v = µ1
2νd

(ε′ − ε′v) = 1
τ

(ε′ − ε′v) ,
(B.27)

leading to the hydrostatic and deviatoric viscosity functions, νh = 3
4
ηh and νd = ηd

2
.
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