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Genome-scale community modelling reveals
conserved metabolic cross-feedings in
epipelagic bacterioplankton communities

Nils Giordano 1,4, Marinna Gaudin 1,4, Camille Trottier 1, Erwan Delage1,
Charlotte Nef2, Chris Bowler 2,3 & Samuel Chaffron 1,3

Marine microorganisms form complex communities of interacting organisms
that influence central ecosystem functions in the ocean such as primary pro-
duction and nutrient cycling. Identifying the mechanisms controlling their
assembly and activities is a major challenge in microbial ecology. Here, we
integrated Tara Oceans meta-omics data to predict genome-scale community
interactions within prokaryotic assemblages in the euphotic ocean. A global
genome-resolved co-activity network revealed a significant number of inter-
lineage associations across diverse phylogenetic distances. Identified co-active
communities include species displaying smaller genomes but encoding a
higher potential for quorum sensing, biofilm formation, and secondary
metabolism. Community metabolic modelling reveals a higher potential for
interaction within co-active communities and points towards conserved
metabolic cross-feedings, in particular of specific amino acids and group B
vitamins. Our integrated ecological and metabolic modelling approach sug-
gests that genome streamlining and metabolic auxotrophies may act as joint
mechanisms shaping bacterioplankton community assembly in the global
ocean surface.

Marine microbes constantly interact among each other and with
their environment, forming complex and dynamic networks.
These communities and their interactions play crucial ecological
and biogeochemical roles on our planet, forming the basis of the
marine food web, sustaining biogeochemical cycles in the ocean,
and regulating climate1. Complex networks of trophic interac-
tions, mediated through metabolic cross-feeding and ecological
successions, can influence the nature of microbial interactions
(e.g., mutualism or competition), in space and time, and thus
significantly shape microbial community assembly2. Expanding
our understanding of microbial trophic interactions is funda-
mental given their capacity to modulate ecological niches3, con-
strain microbial biogeography4, drive microbial diversification5,

and modulate the eco-evolutionary dynamics of microbial
communities6. Because most microbes are difficult to isolate and
cultivate in lab-controlled environments7, and given the large
diversity of molecules that can be excreted into the environment
(e.g., waste metabolites, secondary metabolites, exoenzymes,
siderophores), we are just starting to grasp the complexity and
diversity of microbial interactions and cross-feeding relationships
existing in nature8. In particular, we lack a mechanistic under-
standing of metabolic auxotrophy and its role in constraining
marine microbial community composition and assembly9.

While species co-occurrence networks are useful tools to model
the large-scale structure of microbial communities10 and to resolve
biome-specific ecological associations11, these approaches are
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inherently limited since correlation metrics do not provide evidence
for direct biotic interactions, and do not allow to disentangle true
biotic interactions from environmental preferences (niche overlap)12.
Thus, we still lack a comprehensive and mechanistic understanding
of biotic and abiotic interactions shaping community assembly of
microbial communities. Ecosystem modelling approaches are
therefore needed to capture and predict emergent properties
resulting from complex interactions within microbial communities,
such as resilience, niche space, and biogeography, that shape
microbial communities and ecosystems13. Recent experimental work
has demonstrated the significant impact of underlying cross-feeding
metabolic networks in shaping community assembly14 and ecological
successions15 in synthetic microbial communities. Using microbial
community assembly experiments in soil, coupled with a simple
resource-partitioning model, functional convergence was shown to
be mainly driven by emergent metabolic self-organization, while
taxonomic divergence seemed to arise from multi-stability in popu-
lation dynamics14. In another system, coculture experiments of a
marine microbial community able to degrade chitin demonstrated
the hierarchical preferences for specific substrates, underlining the
sequential colonization of metabolically distinct groups, and identi-
fying hierarchical cross-feedings shaping the dynamics of commu-
nity assembly15.

Recent large-scale environmental surveys of marine microbial
ecosystems (e.g., Tara Oceans16, Malaspina17, Bio-GO-SHIP18,
BioGEOTRACES19) have generated large volumes of metagenomics
data that enable the reconstruction of genomes from uncultivated
species referred to as Metagenome-Assembled Genomes (MAGs)20,21.
Together with whole genome sequences (WGS) from cultured
organisms and single amplified genomes (SAGs) from single cell
isolates, these resources have been used to expand our knowledge of
microbial diversity in the ocean, but have also demonstrated that a
large fraction of the diversity remains to be explored22,23. In this
context, genome-resolvedmetagenomics provides an opportunity to
enrich co-occurrence signalswith genetic information fromgenomes
and functional information from genome-scale metabolic models.
Integrating this knowledge into association networks can inform us
about the functional self-organisation of microbial communities24,
contribute to our understanding of species interactions mechanics,
and identify general ecological laws that structure microbial com-
munities. While community metabolic modelling approaches have
recently been applied to study the self-organisation of microbial
ecosystems25 and to gain insights into molecular mechanisms of
interactions in soil26, wastewater27, and gut microbiome
communities28, few studies so far have focused on the modelling of
marine plankton ecosystems15,29, and were limited to specific single
communities.

Here, we describe an integrated ecological and metabolic
modelling approach (Supplementary Fig. 1) with the goal to delineate
metabolically cohesive consortia underlying genes-to-community
assembly and ecosystem functioning at global scale30. We combined
co-activity ecological information inferred from meta-omics with
community metabolic simulations using genome-scale metabolic
models to uncover putative biotic interactions mediated by meta-
bolic cross-feedings among marine prokaryotic genomes. Through a
multi-omic approach integrating Tara Oceans metagenomic and
metatranscriptomic datasets, we inferred a global ocean genome-
resolved ecological network from whole-genome transcriptomic
activities. We used general genomic scaling laws31 as a framework to
characterise the functional content of co-active environmental gen-
omes, and identified functional gene categories likely driving meta-
bolic dependencies. We then reconstructed genome-scale metabolic
models and uncovered putative cross-feeding interactions within co-
active consortia through the use of community-level metabolic
modelling.

Results and discussion
Genomic scaling laws reveal features of uncultivated marine
prokaryotic genomes
Tobuild a comprehensive catalogueofmarineprokaryotic genomes,we
collected and assembled public whole-genome sequences (WGS) from
marine prokaryote isolates32, single-amplified genomes22 (SAGs), as well
as previously reconstructed MAGs from hundreds of public metagen-
omes including Tara Oceans metagenomes21. This integrated marine
prokaryotic genome database counted 7658 non-redundant species-
level representative genomes (delineated by a 95% ANI threshold over
60%of genome length, seemethods and SupplementaryData 1). Herein,
we only considered genomes meeting sufficient quality standards
(n= 5678), that is High-Quality (HQ) MAGs (≥90% complete and ≤5%
contamination), Medium-High-Quality (MHQ) MAGs (≥75% complete
and ≤10% contamination), and Medium-Quality (MQ) MAGs (≥50%
complete and ≤25% contamination). HQ and MHQ MAGs were not sig-
nificantly different from WGS genomes in terms of gene density (Sup-
plementary Data 2). A phylogeny of these genomes was established
usingdomain-specificmarker genesof theGenomeTaxonomyDatabase
(GTDB)33, highlighting a total of 107 phyla (with unclassified) including
highly represented phyla in marine environments, such as Proteo-
bacteria, Bacteroidetes, Actinobacteria, and Cyanobacteria34 (Fig. 1a).

In biology, scaling relationships and scaling laws are numerous
(e.g., Kleiber’s lawofmetabolic rate scalingwithbodymass in birds and
mammals) and have been studied extensively35. For bacteria, within
prokaryotic genomes, the number of genes in most high-level func-
tional categories (regrouping related gene functions into broad func-
tional categories such as COG and KEGG BRITE functional hierarchies)
has been shown to scale as a power-law to the total number of genes in
the genome36. A potential explanation for these observed scaling laws
among microbial genomes is a conserved average duplication rates
within each functional category. In addition, these genomic scaling
laws have been shown to be conserved across microbial clades and
lifestyles, supporting the observation that they are universally shared
by all prokaryotes31. However, these genomic scaling laws have never
been investigated within uncultured genomes so far. Here, we thus
revisited this universal law for environmental marine genomes (MAGs
and SAGs). To ensure a sound and fair comparison between WGS and
environmental genomes, we limited our analysis to MHQ genomes,
which displayed a similar gene density as compared to WGS (Supple-
mentary Fig. 2b). We showed that MHQ genomes did actually fit the
same law as WGS genomes (Fig. 1b), and thus limited all subsequent
analyses to MHQ genomes only. This analysis also revealed that MHQ
MAGs were systematically smaller in genome size and number of
predicted CDS as compared with WGS genomes. This observation is
coherent with the assumption that a large fraction of naturally occur-
ringmarine genomeshave likely adapted tooligotrophic surface ocean
specific lifestyles through genome streamlining37. Scaling laws are a
powerful and sound way to compare functional potentials among
genomes as they allow to reveal unexpected deviations from the
general trend while taking into account genome size variations.
Investigating the genomic scaling laws for high-level functional cate-
gories (seemethods), we showed that this adaptation has differentially
impacted a majority of metabolic functions (75%) within environ-
mental genomes (MAGs and SAGs), but with notable increase potential
in MAGs for metabolic functions likely playing a key role in mediating
biotic interactions, such as for xenobiotic degradation, terpenoid and
polyketide metabolism, as well as lipid metabolism, but a decrease
potential to synthesize cofactors and vitamins (Supplementary Fig. 3
and Supplementary Data 3). This decreased metabolic potential for
cofactors and vitamins in environmental genomes likely reflects the
importance of syntrophicmetabolism, such asmetabolism of essential
enzyme cofactors38, and associated bacterial traits for microbial
interactions39, to sustain microbial life in the surface ocean that is lar-
gely depleted in B vitamins40.
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Abiotic factors shaping genome community composition and
activity
Next, we mapped Tara Oceans metagenomics and metatran-
scriptomics sequencing reads from surface (SRF) anddeep chlorophyll
maximum (DCM) samples (N = 118) onto our genome collection to
generate a global ocean abundance and expression profiling of
microbial communities in relationship with abiotic environmental
factors (see SupplementaryData 4). Averagemapping rateswere 16.0%
and 12.3% for metagenomes and metatranscriptomes, respectively
(Fig. 2a and Supplementary Fig. 4). The presence, abundance, and
activity of a given genome was determined as follows: first, the
occurrence of a genome was determined by its horizontal metage-
nomic coverage of minimum 30%; second, its abundance was com-
puted using its vertical metagenomic coverage normalised by its
genome length. Finally, its activity corresponded to the ratio of its
vertical metatranscriptomic coverage over its vertical metagenomic
coverage (see methods for details). Using the same Tara Oceans
dataset, gene and transcript abundances have previously been shown
to be highly correlated41. Here, we observed an overall relatively good
concordance between genome-wide abundance and expression
(Spearman rho=0.68, p =0), albeit a number of genomes displayed
lower genome-wide expression levels (Fig. 2b), highlighting the com-
plementary information brought by genome expression signals com-
puted here. Thus, this observation prompted us to compute genome-
wide activities, integrating abundance and expression levels at the
genome scale (see methods). Principal Coordinates Analyses (Fig. 2c)
did not reveal a clear structuration of community genome

assemblages and activities by ocean basin, but allowed us to identify
abiotic factors driving community composition in abundance and
activity. Genome community composition was mainly driven by tem-
perature, pH, and Photosynthetically Available Radiation (PAR), while
genome community activity was mainly driven by temperature,
phosphate (PO4) and iron concentrations (see methods and Supple-
mentary Data 5).

Temperature has previously been shown to be one of the main
factors constraining epipelagic bacterioplankton community
composition34, which is confirmed here for both genome-wide com-
munity abundance and activity. The effect of (small) pH changes on
marine microbial communities has mainly been shown
experimentally42,43, but often not considering the natural variability of
pH in the surface ocean44. Other studies have reportedminor effects of
acidification on the productivity of natural picocyanobacteria
assemblages45. Here, the observed association between genome
community composition and pH could partly be explained by seasonal
variability encountered during global sampling. While genome com-
munity activity was principally associated to temperature, distinct
environmental factors, namely PO4 and iron concentrations, were also
significantly associated to community activity. This observation
emphasises the major role of nutrients and/or cofactors (co-)limita-
tions in structuring global ocean microbial activity46,47.

Biotic drivers of genome activity community structure
While abiotic factors are known to be significant drivers of microbial
community structures in the ocean, biotic factors (such as

Fig. 1 | A database ofmarine bacterial and archaeal genomes from isolates and
uncultivated genomes reconstructed frommarine metagenomes.
a Phylogenetic tree of the database of marine genomes (N = 7658) dereplicated at
species level (95% Average Nucleotide Identity or ANI). Reference genomes (WGS)
were obtained fromMarRef, MarDB, and aquatic progenomes, while Metagenome-
Assembled Genomes (MAGs) and Single-Amplified Genomes (SAGs) were also
obtained from different studies (see “Methods”). A total of 107 phyla (including
unclassified) were detected (the top 20 most represented phyla are highlighted).
b A comparison of genome size and number of predicted CDS, both corrected by
genome completeness (division by completeness), revealed that a genome scaling

law is conserved for High and Medium-High Quality (HQ and MHQ) genomes
(completeness ≥75% and contamination ≤5%), and that MAGs overall displayed
significantly smaller genomes (p = 5.58 × 10 − 194, two-sidedMann–Whitney U test on
log-transformed distributions). The box extends from the lower to upper quartile
values of the data (Q1 and Q3), with a line at the median (Q2). The whiskers extend
from the box to show the range of the data and are defined as follows: where IQR is
the interquartile range (Q3-Q1), the upper whisker will extend to last data point less
than Q3+ 1.5 × IQR. Similarly, the lower whisker will extend to the first data point
greater than Q1–1.5 × IQR. Beyond the whiskers, data are plotted as individual
points.
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competition, parasitism, or mutualism) are expected to play an
equally important role48, though the latter are more difficult to study
in natural communities. Microbial association networks are useful
abstractions that represent potential biotic interactions and capture
emergent properties (e.g., connectivity, functional redundancy) that
result from these putative interactions49. But so far, most studies
have been limited to the organismal level by predicting these eco-
logical associations using taxonomicmarker genes (e.g., 16 S and 18 S
rRNA genes). Integrating genomic information into association net-
works can be particularly useful to draw and test hypotheses about
the functional self-organisation of microbial communities24. Here, we
went beyond by inferring a global ocean association network from
genome activities that were inferred by integrating genome-wide
abundance and transcript levels (here activity refers to a genome-
wide ratio between transcript and genomic vertical coverages, as
described above, and see methods for details). Thus, we used sam-
ples with both metagenomics and metatranscriptomics data avail-
able to compute genome-wide co-activity. We make the general
assumption that a co-activity signal is a better proxy to capture biotic
interactions as compared to co-abundance, given the latter is an
integration of all past metabolic activities that cannot identify
microbial cells that were actually transcriptionally active at sampling
time. In other words, we expect genome-wide co-activity (integrating
abundance and transcript levels) to be more sensitive as it inherently
has a better time-resolution when searching for microbial
interactions.

We inferred a genome-resolved co-activity network using the
dedicated probabilistic learning algorithm FlashWeave (FW, see
methods) that can efficiently detect and remove undirect associations

among features50. FW first infers a global correlation network resulting
from significant partial correlation tests with Fisher’s z-transformation
(“sensitive”mode) between genomepairs co-activity profiles. Next, FW
uses a local-to-global learning algorithm that implements conditional
independence tests to detect and remove indirect associations. The
resulting network integrates only direct associations, whose edges are
weighted by the partial correlation strength. This genome-resolved co-
activity network was significantly different than the corresponding
genome-resolved co-abundance network, with a higher number of
edges in co-activity, and only a small fraction of shared edges (3%)
(Supplementary Fig. 5). This strong difference between both networks
can reflect the distinct information carried out by abundance and
activity profiles, but can also be partially explained by the heuristics-
based inference of direct associations as implemented in FW. The co-
activity network revealed a larger number of significant positive
associations across diverse phylogenetic distances (PD), while nega-
tive associations were mainly observed between phylogenetically dis-
tant genomes (Fig. 3a). In addition, the distributions of phylogenetic
distances for negative and positive associations were significantly
different (Mann-Whitney U-test with Bonferroni correction,
p = 1.494 × 10 – 30). It also revealed two distinct types of positive asso-
ciations: relative phylogenetically close associations (0< PD < 1) that
likely reflected niche overlap, and phylogenetically distant associa-
tions (PD ≥ 1) likely reflecting a higher potential for cross-feeding
interactions51. As previously reported for co-existing genomes across
various biomes24, co-active genomes tended to be functionally closer
(both in terms of encoded KO genes and expressed KO genes, see
methods) than expected at random (Mann–Whitney U-test with Bon-
ferroni correction, p = 1.187 × 10 − 25). This observation may reflect the

Fig. 2 | Genome-wide abundance and activity profiling of marine prokaryotic
genomes in the global surface ocean. a World map of Tara Oceans sampling
stations (N = 81) for which euphotic (SRF and DCM) metatranscriptomes are avail-
able for a prokaryote-enriched size fraction (0.22–3μm). The percentage of map-
ped RNA reads are depicted for each euphotic sample (N = 118). b Genome-wide
abundance and expression were significantly associated (Spearman rho=0.68,
p =0), albeit a number of genomes display lower expression levels. c Principal

Coordinates Analyses (PCoA) for genome community abundances (across 107
samples withmetagenomics data) and activities (across a subset of 71 samples with
both metagenomics andmetatranscriptomics data available). Genome community
abundance and activity (PCo1) are significantly associated with temperature.
Community abundance (PCo2) is also associated with pH and Photosynthetically
Available Radiation (PAR), while community activity is associatedwith PO4 and iron
concentrations.
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impact of ecological preferences or niche overlap on evolution, that
could be explained by adaptation to a same niche and/or by potential
higher rates of horizontal gene transfer (HGT) in specific biomes52.
Marine co-active genomes also tended to be smaller in size as com-
pared to detected but non-co-active genomes, although displaying
similar gene densities as assessed by genomic scaling laws (Supple-
mentary Fig. 6), and despite the fact that most genomes detected in
photic samples corresponded to MAGs (Fig. 1a) overall smaller in size
(Fig. 1b). In addition, comparative genomics analyses based on scaling
laws allowed us to take into account genome size (see methods). By
identifying deviations from the power law (or linear law in log-log
scale), we used scaling laws as a tool to properly identify enriched or
depleted metabolic potentials within groups of genomes. In other
words, to identify if a genome or group of genomes harboured fewer
or more genes in a category than what would be expected given its
size. A linear least-squares regressionwasperformedon a log-log scale,
and the distribution of residuals for each category (difference between
actual y-axis value and expected y-axis value) were compared. When
significantly different, these distributions indicated that the two

categories might not follow the same scaling laws. This revealed that
co-active genomes displayed (in proportion) a higher metabolic
potential for lipid, carbohydrate, and amino acid metabolism (Sup-
plementary Fig. 7 and Supplementary Data 6), but also for terpenoids
and polyketides, quorum-sensing and biofilm formation, as well as for
secondarymetabolite biosynthesis (Fig. 3b–d). Overall, these enriched
genomic potentials in co-active genomes point towards keymetabolic
functions for energy harvest and storage (i.e., lipid, carbohydrate and
amino-acids metabolism), likely key in nutrient-limited regions of the
global ocean47. But they also underline key genomic enriched potential
(i.e., antimicrobials and quorum-sensing) of marine genomes likely
prone to a wide diversity of biotic interactions39.

Higher metabolic interaction potential in co-active bacter-
ioplankton communities
To go beyond correlation-based and enrichment analyses and move
towards a mechanistic understanding of marine microbial commu-
nity functioning, we sought to model the community metabolism of
co-active marine microbial genomes. To do this, we first

Fig. 3 | A genome-resolved co-activity network reveals biotic factors shaping
marine prokaryotic community structure. a A genome-resolved co-activity net-
workwas inferred from genome-wide activities in euphotic samples, and revealed a
larger number of significant positive associations between genomes across diverse
phylogenetic distances. Based on encoded KO gene presence/absence, and
expressed KO gene presence/absence, using Jaccard distances between genomes
as a proxy for functional distance (using KEGG), co-active genomes were func-
tionally closer than expected at random (p = 1.187× 10 − 25, two-sided
Mann–Whitney U test on log-transformed distributions). b–d Scaling laws in the
functional content of genomes highlighted broadmetabolic categories enriched in
co-active genomes versus genomes detected as active in samples. Notably, co-
active genomes displayed a higher functional potential for terpenoid and polyke-
tide metabolism (p = 1.46 × 10 − 7, two-sided Mann–Whitney U test on log-

transformed distributions), for cellular community metabolism (quorum-sensing
and biofilm formation, p = 4.00 × 10 −4, two-sided Mann–Whitney U test on log-
transformed distributions), and for the biosynthesis of other secondary metabo-
lites (p = 4.73 × 10 − 9, two-sided Mann–Whitney U test on log-transformed dis-
tributions). Dashed-red lines are the best linear fit on a log-log scale (parameters
given in Supplementary Data 3). The box extends from the lower to upper quartile
values of the data (Q1 and Q3), with a line at the median (Q2). The whiskers extend
from the box to show the range of the data and are defined as follows: where IQR is
the interquartile range (Q3-Q1), the upper whisker will extend to last data point less
than Q3+ 1.5 × IQR. Similarly, the lower whisker will extend to the first data point
greater than Q1–1.5 × IQR. Beyond the whiskers, data are plotted as individual
points. See Supplementary Data 6 for a complete list of functions enriched in co-
active genomes.
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reconstructed genome-scale metabolic models for each MHQ gen-
ome (WGS or MAGs) using CarveMe53 and quality checked them
using MEMOTE54 (Supplementary Materials). We then used Species
Metabolic Coupling Analysis (SMETANA), a constraint-based techni-
que commonly applied for modelling interspecies dependencies in
microbial communities55. Here, SMETANA was used to compute
several interaction scores (community-wide or pairwise) to predict
metabolic interaction potential and reveal possible metabolic
exchanges and cross-feedings within delineated communities of co-
active genomes. Notably, the Metabolic Resource Overlap (MRO)
score quantifies how many species in a given community compete
for the same metabolites, and the Metabolic Interaction Potential
(MIP) score quantifies howmany metabolites can be shared between
species to decrease their dependency on external resources. In
addition, the SMETANA score, integrating several metrics to estimate
the metabolic dependencies within a given community, was used to
evaluate the probability of each potential cross-feeding interaction
among identified co-active genome communities. Here, we analysed
co-active genome communities identified by clustering the global co-
activity network using the Markov clustering algorithm (seemethods
for details).

Overall, we observed a negative association between the MRO
score and the mean community phylogenetic distance (Pearson
R2 = 0.31, p = 4.16 × 10 − 8, Supplementary Fig. 8), showing that, as
expected, phylogenetically closer co-active genome communities
tended to display a higher metabolic resource overlap, and thus a
higher potential for competition. Co-active genome communities also
displayed an overall lower MIP score as compared with random com-
munities (Mann-Whitney U test, p = 1.45 × 10 − 17, Supplementary
Fig. 9a). Nevertheless, both community-wide (MIP) and pairwise
(SMETANA score) scores of metabolic interactions are significantly
driven by the size of communities under consideration (Supplemen-
taryFig. 9b),whichwe thus normalised by co-active community size, as
previously done and reported55. Following this normalisation and
despite overall higherMRO scores andmean community phylogenetic
distance, co-active genome communities displayed a higher potential
for metabolic interactions as compared with randomly assembled
communities (Fig. 4a). These results show thatmetabolic cross-feeding
interactions can occur across a large spectrum of phylogenetic and
functional distances, suggesting that metabolic dissimilarity is one
among other factors determining the establishment of cross-feeding
interactions among bacteria51.

Given the diverse phylogenetic distances observed among co-
active genomes (Fig. 3a) and associated co-active communities (Sup-
plementary Fig. 8), we sought to delineate distinct community types of
co-active genomes in a non-supervised fashion (see “Methods”). Using
this approach,wedistinguished four types of communities of co-active
genomes: randomly-assembled communities, largely composed of
genome communities with a high mean phylogenetic distance (PD)
and a lowmetabolic cross-feeding potential (CP) score (HPD and LCP),
which we used as a reference to define three other community types
corresponding to two communities with a Low-PD (LPD) and High- or
Low-CP (H/LCP), and a third community with High-PD (HPD) andHigh-
CP (HCP) (Fig. 4b). These four co-active genome community types
displayed distinct taxonomic compositions, with LPD-HCP commu-
nities mainly composed of Gamma- and Alphaproteobacteria, while
HPD-HCP were more diverse including genomes from classes Nitro-
sosphaeria, Marinisomatia, Dehalococcoidia, Alphaproteobacteria,
and Acidimicrobiia (Supplementary Fig. 10). To quantify how the
functional potential of each community was shared between genomes,
we used a proxy of the well-established Gini index (see methods). A
Gini index of 0 can be interpreted as a perfect overlap between the
functions of all members of the consortium, while a Gini index of 1
would be the extreme situation where a single member of the con-
sortium displays all detected KO functions. As anticipated, both HPD

communities (orange andpink)weremoredissimilar to respective LPD
communities (blue and green) with regards to their encoded meta-
bolism proxied by their functional Gini coefficient from KO genes
occurrence profiles (Fig. 4c). Here, we hypothesised that these four
community types displayed distinct signatures of metabolic exchan-
ges and cross-feedings, which we analysed in details below.

Key metabolic cross-feedings driving bacterioplankton com-
munity assembly
To further explore and identify molecular mechanisms driving these
global patterns of predicted metabolic interactions, we analysed pre-
dicted metabolic exchanges within the four co-active genome com-
munity types delineated above. Both HPD-HCP and LPD-HCP
communities were predicted to have a higher potential exchange in
specificmetabolites as revealedbyaNMDSanalysis of broadmetabolic
categories (see methods) preferentially exchanged within each com-
munity type (Fig. 5a). Here, the first two dimensions of co-variation
(Dim1 and Dim2) highlighted amino acids (AAs), B-vitamins, organo-
sulphur compounds, aliphatic amines, n-alkanals, and aromatics as
metabolic categories most preferentially exchanged within HPD-HCP
and LPD-HCP community types (Fig. 5b). Despite large differences in
mean PD within these communities, preferentially exchanged meta-
bolic categories appeared to be conserved in HPD-HCP and LPD-HCP
community types, suggesting these predicted metabolic exchanges
may be ancient and evolutionarily conserved13, although we cannot
exclude some of these metabolites might be metabolic wastes that
could be exported to the environment as a stress response. Never-
theless, this observation raises a key question regarding which evolu-
tionary mechanisms can actually stabilize metabolic cross-feedings
within naturalmicrobial communities56. Although little is known about
the coevolutionary consequences of cooperative cross-feeding, stable
coevolution is expected to increase productivity in cross-feeding
communities, which has been corroborated by experimental
evidence57.

Investigating the biogeography of HCP communities (Supple-
mentary Fig. 11) revealed that they were detected at global scale (i.e.,
across all samples) but displaying different degrees of regionalization
(i.e., no single HCP community is detected across all samples). We
observed a structuration along a latitudinal gradient of these com-
munities, in relation to temperature, as previously reported using Tara
Oceans amplicon sequencing data11. While HCP communities were
associated to relatively different concentrations of Chlorophyll A and
different levels of Net Primary Production (VGPMmodel), it should be
noted that most ocean regions sampled during Tara Oceans corre-
sponded to low productivity regions / oligotrophic zones. Zooming in
broad metabolic categories, we identified specific metabolites pre-
dicted to be preferentially exchanged within all four community types
(Fig. 5c). When considering inorganic compounds for community
metabolic modelling, most preferentially exchanged compounds
among all community types were phosphate and iron cations (Sup-
plementary Fig. 12), likely due to the essential uptake of these limiting
nutrients and co-factors in the ocean46. Thus, in order to focus on
actual biotic metabolic exchanges predicted, we did not consider
inorganic compounds as previously done in other studies25.

Considering detailed predicted metabolic exchanges (using
SMETANA sum scores) we identified compounds that were pre-
ferentially exchanged within each community type (Fig. 5c and Sup-
plementary Data 7). In particular, acetaldehyde, benzoate, thiamine
(vitamin B1), ethanol, and L-glutamate were significantly more fre-
quently exchanged within LPD-HCP communities, while in HPD-HCP
communities exchanges of benzoate, thiamine, L-arginine, as well as
D-glucose and D-ribose were significantly more prevalent (Supple-
mentary Data 8). The relative importance of predicted AA exchanges,
and in particular biosynthetically costly AAs (e.g., methionine, lysine,
leucine, arginine), likely reflects the key role of syntrophic interactions
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enabling cooperative growth in scarce environments56. Such division
ofmetabolic labour forAAs canpromote a growth advantage for cross-
feeding species, as the fitness cost of overproducing AAs has been
experimentally shown to be less than the benefit of not having to
produce them when they were provided by their partner58. Consider-
ing predicted L-glutamate exchanges, glutamic acids have been
reported as potential auxophores (i.e., a compound that is required for
growth by an auxotroph) in aquatic environments59. Notably, arginine
and glutamate are linked in Cyanobacteria60 and plants61 through the
metabolism of glutamate that involves the glutamate dehydrogenase
for arginine synthesis, and which is an important network of nitrogen-
metabolizing pathways for nitrogen assimilation. In marine micro-
organisms, nitrogen (N) cost minimization is an important adaptive
strategy under global N limitation in the surface ocean, acting as a
strong selective pressure on protein atomic composition62 and the
structure of the genetic code63. Given that arginine plays an important
role in the N cycle because it has the highest ratio of N to carbon

among all AAs, the combined selective pressure at genomic level and
for biosynthetic (N) costminimizationmayexplain the recurrent cross-
feeding predictions of glutamate and arginine observed herein.
Overall, these results support amino acid auxotrophy as a potential
evolutionary optimizing strategy to reduce biosynthetic burden under
nutrient (in particular N) limitation while promoting cooperative
interactions56,64.

B-vitamins, which are essential micronutrients for marine
plankton65, are predicted here to significantly structure bacter-
ioplankton community activity, which supports the hypothesis that
B-vitamin mediated metabolic interdependencies contribute to shap-
ing natural microbial communities66. A recent environmental genomic
survey in estuarine,marine, and freshwater environments has revealed
that most naturally occurring bacterioplankton are B1 (thiamine)
auxotrophs67. Vitamin interdependencies and auxotrophies, in parti-
cular for thiamine, have been recently predicted through a
metagenomics-based association network in a soil microbial
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Fig. 4 | Community-wide metabolic modelling reveals a higher metabolic
interaction potential within marine prokaryotic communities. a Microbial
communities were delineated on the global co-active genome network using the
MCL graph clustering algorithm (see “Methods”). Communitymetabolicmodelling
was performed using SMETANA on co-active communities (N = 95, dark grey, fre-
quencies as bars and proportions as dashed line) and compared to random com-
munities (N = 110, light grey). Boxplot insert: Co-active communities (dark grey)
overall displayed a significantly higher metabolic interaction potential (SMETANA)
score as compared with random communities (Mann–Whitney U test two-sided,
p = 1.09× 10 − 3). b Distinct metabolic interactions community types were identified
within co-active marine prokaryotic communities (black points) and differentiated
from random communities (grey points), the latter largely displaying an overall
higher mean phylogenetic distance and lower metabolic cross-feeding potential
score (HPD-LCP, orange quadrant): (i) Communities with overall low mean phylo-
genetic distance and low metabolic cross-feeding potential score (LPD-LCP, blue
quadrant), (ii) communities with overall low mean phylogenetic distance and high
metabolic cross-feeding potential score (LPD-HCP, green quadrant), and (iii)

communities with overall high mean phylogenetic distance and high metabolic
cross-feeding potential score (HPD-HCP, pink quadrant). LPD co-active commu-
nities had a mean phylogenetic distance smaller than 95% of the random commu-
nities, while HCP have a mean SMETANA score above 95% of the random
communities (dotted black lines). c HPD communities (orange N = 33, and pink
N = 8) weremore dissimilar to respective LPD communities (blue N = 47, and green
N = 7) according to their functionalGini coefficient inferred fromKEGGmetabolism
KO genes occurrence profiles (Mann–Whitney U test two-sided with Benjamini-
Hochberg correction, LPD-LCP vs. LPD-HCP p = 4.88 × 10 − 2, LPD-HCP vs. HPD-LCP
p = 2.77 × 10 − 3, HPD-LCP vs. HPD–HCP p = 4.89× 10 − 2, LPD-LCP vs. HPD-LCP
p = 1.30× 10−3). The box extends from the lower to upper quartile values of the data
(Q1 and Q3), with a line at the median (Q2). The whiskers extend from the box to
show the range of the data and are defined as follows: where IQR is the interquartile
range (Q3-Q1), the upper whisker will extend to last data point less than
Q3+ 1.5 × IQR. Similarly, the lower whisker will extend to the first data point greater
than Q1–1.5 × IQR. Beyond the whiskers, data are plotted as individual points.
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community, and confirmed in microcosm experiments68. Another
comparative genomics assessment of vitamin B12 (cobalamin) depen-
dence and biosynthetic potential in >40,000 bacterial genomes pre-
dicted that 86% of them require the cofactor, while only 37% encode a
complete biosynthetic potential, the others being split into partial

producers and salvagers69. In addition to thiamine, the joint impor-
tance in the metabolite exchanges of ornithine, glutamate and
methionine, which are all products of enzymes dependent on vitamin
B12

70, confirms that access to vitamin B12 plays a significant role in
structuring microbial community interactions. Furthermore,

Fig. 5 | Community metabolic modelling predicts specific metabolic cross-
feedings within co-active marine prokaryotic communities. a A NMDS analysis
revealed that HPD-HCP and LPD-HCP communities are predicted to have a higher
potential exchange in specific metabolic categories. Point size represents the size
of each community in number of genomes. Coloured ellipses are visual aids to
emphasize the distribution of points by categories. b Overall, the higher potential
for exchanges in HPD-HCP and LPD-HCP communities is driven by specific meta-
bolic categories (NMDS Dim1 and Dim2), in particular amino acids, B vitamins,
organo-sulphur compounds, and aliphatic amines. cWithin these broadmetabolic
categories, specific metabolite exchanges are identified within each co-active
genome community type. Similar rows in the heatmap were clustered together by

hierarchical clustering (UPGMA algorithm). In particular, exchanges of acet-
aldehyde, benzoate, thiamin (vitamin B1), ethanol, and L-glutamate are predicted in
LPD-HCP, while in HPD-HCP exchanges of benzoate, thiamin, L-arginine, as well as
D-glucose and D-ribose are predicted. Truncated metabolite names are (from top
to bottom): L-alanine-D-glutamate-meso-2,6-diaminoheptanedioate-D-alanine, N-
Acetyl-D-glucosamine(anhydrous)N-Acetylmuramic acid, Sn-Glycero-3-phos-
phoethanolamine, and L-alanine-D-glutamate-meso-2,6-diaminoheptanedioate.
Stars denote a significant difference between categories (Mann–Whitney U,
Benjamini-Hochberg correction, corrected p value ≤0.05, all test results are avail-
able in Supplementary Data 8).
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acetaldehydes are known intermediates supporting prokaryotic
growth after breaking down substrates such as ethanolamine and
propanediol using metabolic pathways involving vitamin B12-depen-
dent enzymes71. Taken together, our results thus support the prevalent
reliance of bacterioplankton on exogenous B1 and B12 precursors/
products and on the bioavailability of micronutrients as important
factors influencing bacterioplankton growth and community
assembly.

Given the identification of AAs, B vitamins and associated product
exchanges as key metabolic mediators driving bacterioplankton
community assemblies, we investigated the gene occurrence and
activities of associated transporters in co-active communities (Sup-
plementary Fig. 13). Transporter-associated reactions and associated
genes were directly extracted from CarveMe models (using the gene-
reaction rule), and classified into nine different types of transporter
mechanisms, and two directions (import or export). This analysis
revealed a vastmajority of ABC systems for import reactions of specific
AAs and B vitamins predicted exchanged, while more diverse trans-
porter types (e.g., diffusion, proton antiport) were responsible for
export reactions (Ext. Data Fig. 13a) across the four community types
(Ext. Data Fig. 13b). Transporter gene activities (abundance-normal-
ized expressions) confirmed and validated their transcriptional activity
in genomes of the four types of co-active communities. Next, we also
investigated the graph centrality of AAs andB vitamins donor and non-
donor species within the co-activity network of bacterioplankton
communities using the closeness centrality metric. The closeness
centrality measures nodes centrality in a network by calculating the
reciprocal of the sum of the length of the shortest paths between the
node and all other nodes in the graph. The more central is a node, the
closer it is to all other nodes. Overall, this revealed that donor species,
in particular for AAs and B vitamins, displayed significantly higher
closeness centrality than non-donor species (Supplementary Fig. 14).
This observation supports the hypothesis that donor species may
influence community assembly via cross-feeding interactions through
more central positions or hubs in the ecological network. Given that
metabolic interdependencies predicted here are mainly observed
among co-active genomes that are overall smaller in size (Supple-
mentary Fig. 6), we also compared the genome sizes of donor vs. non-
donor species, which revealed that genomes of non-donor species
tended to be significantly smaller in size as compared to genomes of
donor species (Supplementary Fig. 14). This observation is in support
of the Black Queen Hypothesis (BQH)72,73, stating that species can gain
a fitness advantage through genome streamlining, which is often
observed (including herein) in free-living marine bacterioplankton
genomes occurring in nutrient-limited ocean regions74. Genome
streamlining can reduce the nutrient requirements associatedwith the
maintenance of more genetic material and limits energetically costly
metabolic activities. Here, genome streamlining and metabolic cross-
feeding may act as joint mechanisms shaping free-living bacter-
ioplankton community assembly in the oligotrophic surface ocean.
Nonetheless, abiotic factors, such as temperature, are also likely con-
jointly impacting genome size of the surface ocean microbiome75.
Although our prediction results underline the key role of metabolic
cross-feeding supporting positive interactions between microbes,
manymicroorganisms in nature are prototrophic and are able to grow
on simple substrates without the help of others76. Also, some meta-
bolic cross-feeding predicted herein may be due to substrate-based
metabolic partitioning, allowing some community member to inde-
pendently utilizes distinct substrates released or degraded from the
same source77. Trade-off mechanisms such as resource allocation,
design constraints, and information processing, can concomitantly
shape microbial traits in the wild and lead to different biological
adaptations leading to generalist or specialist lifestyles78. However,
recent experimental work demonstrated that obligate cross-feeding
can significantly expand the metabolic niche space of interacting

bacterial populations3, thus potentially positively selecting cross-
feeding bacterial populations.

The metabolic cross-feedings and interdependencies predicted
here can be extremely useful to draw hypotheses for testing in the
laboratory, for example through co-culture experiments. Focusing
on one of themost abundant photosynthetic organisms on Earth, the
marine cyanobacteria Prochlorococcus sp., we further analysed pre-
dicted exchanges within a small community of six genomes (‘coact-
MHQ-014’, see Supplementary Data 7) including one genome of
Prochlorococcus marinus, three genomes of Pelagibacteraceae (two
Pelagibacter sp. and one MED-G40 sp.), one genome of order Rho-
dospirillales (family UBA3470), and one genome of phylum Dada-
bacteria (TMED58 sp.). The community biogeography of this
consortium revealed a globally distributed activity in both SRF and
DCM, but restrained to mainly Westerlies (temperate) stations
between 30° to 60° in absolute latitude (mean 33.8°N/27.4°S in SRF,
mean 34.3°N/21.7°S in DCM) (Supplementary Fig. 15). Most robustly
predicted exchanges within this community included the exchanges
of several amino acids (L-arginine, L-homoserine, L-lysine, and L-
phenylalanine), of vitamin B1 provided by a Pelagibacter sp. to two
other genomes (MED-G40 sp. and family UBA3470), but also of
D-ribose provided by the Rhodospirillales genome (family UBA3470)
to Prochlorococcus marinus. The latter prediction provides a putative
mechanism by which heterotrophic bacteria (such as from the order
Rhodospirillales) can facilitate the growth of Prochlorococcus
marinus79. While thesemetabolic exchanges remain predictions, they
readily allow to formulate novel hypotheses to be further validated in
the lab through co-culture experiments.

In sum, these results underline the global-scale importance of
trophic interactions influencing the co-activity, assembly, and
resulting community structure of marine bacterioplankton
communities2. Our computational predictions support in particular
amino acids and B vitamin auxotrophies29,67 as likely important
mechanisms driving bacterioplankton community assembly in the
nutrient-limited surface ocean. Given that these metabolic inter-
dependencies are mainly observed among co-active genomes that
are overall smaller in size, these results support the Black Queen
Hypothesis72 as a potentially important mechanism shaping bacter-
ioplankton community assembly in the global euphotic ocean. The
integrated ecological and metabolic modelling framework devel-
oped herein has revealed the genomic underpinnings of predicted
metabolic interdependencies shaping bacterioplankton community
activity and assembly in the surface ocean. It also revealed putative
trophic metabolic interactions occurring among the most abundant
bacterioplankton cells in the ocean (i.e., Prochlorococcus and Pela-
gibacter). Ultimately, these in silico predictions will have to be vali-
dated experimentally, through (high-throughput) co-culturing80.
Finally, the computational framework developed here can readily be
applied to study other microbiomes, in which mechanistic predic-
tions of biotic interactions may also serve for generating novel
hypotheses for co-culturing, with the goal to better capture the vast
uncultivated microbial majority across microbial ecosystems. Over-
all, this framework integrating ecosystem-scale meta-omics infor-
mation through ecological and metabolic modelling paves the way
towards an improved functional and mechanistic understanding of
microbial interactions driving ecosystem functions in situ.

Methods
A database of species-level marine prokaryotic genomes
A database of genomes frommarine prokaryotes was assembled using
several specialised databases as well as genomes reconstructed within
specific studies. These databases included whole-genome sequences
from marine prokaryote isolates (WGS), single-amplified genomes
(SAGs), and metagenomic-assembled genomes (MAGs). The main
database source for our genome collection was the Marine
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Metagenomic Portal81 through the use of the databases MarRef v4.0
(N = 943,mostly high-qualityWGS, available at https://mmp.sfb.uit.no/
databases/marref/)81, MarDB v4.0 (N = 12,963, available at https://
mmp.sfb.uit.no/databases/mardb/)81, and aquatic representative gen-
omes from the ProGenomes database v1.032 (N = 566, available at
http://progenomes1.embl.de/data/habitats/aquatic/aquatic.repr.
contigs.fasta.gz). This collection of well-documented genomes was
complemented by 5,319 MAGs assembled from four distinct studies,
namely: Parks et al.82 (N = 1,765; available at ENA under BioProject
PRJNA348753), Tully et al.83/20 (N = 2597; available at ENA under Bio-
Project PRJNA385857), and Delmont et al.21 (N = 957; available at
https://doi.org/10.6084/m9.figshare.4902923). The Parks et al. study
contained genomes reconstructed from non-marine biomes. Thus, a
selection of 1,765 genomes was extracted by searching for specific
keywords: “tara, marine, sea, ocean, mediterranean” (case insensitive).
Note that depending on their study of origin, includedMAGsmay have
been reconstructed using different assembling and binning methods.
Details about included genomes and their origins are reported in
Supplementary Data 1. Overall, our marine genomes catalogue con-
tained 19,791 highly redundant genomes (WGS, MAGs and SAGs).
Genomes from this non-dereplicated catalogue were further filtered
and quality-controlled before their inclusion in our study. We used
CheckM v1.0.1884 to estimate the quality of the 19,791 genomes in our
marine genomes catalogue (see SnakeCheckM in ecosysmic reposi-
tory). Through the annotation and counting of single-copy marker
genes (SCGs), CheckM estimates the level of completeness, con-
tamination, and strain heterogeneity of individual genomes. We used
those metrics to classify our genomes into three categories: high-
quality (HQ) for ≥90% completeness and ≤5% contamination
(N = 8736),medium-to-high-quality (MHQ) for ≥75% completeness and
≤10% contamination (N = 4547), and medium-quality (MQ) for ≥50%
completeness and ≤25% contamination (N = 5381). Genomes that did
notmeet at least theMQthresholdwere tagged as low-quality (LQ) and
discarded from the database (N = 1127). Quality estimates were used in
the de-replication process that was performed using dRep v2.2.385 (see
dReplication in ecosysmic repository) using default parameters. dRep
uses average nucleotide identity (ANI) and filters out redundant gen-
omes via a 2-step clustering strategy: a fast coarse-grained clustering
by MASH ANI (threshold used: 90% ANI over 60% of the genomes),
followed by a slow fine-grained clustering through NUCMER ANI in
clusters identified in the previous step only (threshold used: 95% ANI
over 60% of the genomes). This process allowed to identify and select
most complete and less contaminated genomes within each species
cluster, which yielded 7658non-redundant species-level genomeswith
an average nucleotide identity below 95%, a threshold previously
reported to delineate species level for prokaryotes86. These genomes
were assigned taxonomic information using GTDB-Tk v0.3.287 (see
SnakeGTDBTk in ecosysmic repository), which also allowed us to place
our genomes within a phylogenetic tree using iTOL v588. Since GTDB-
Tk reconstructs two independent trees for Archaea and Bacteria, we
linked themat the root using a distanceof 0.12289, as recommendedby
the authors and tool maintainers (https://github.com/Ecogenomics/
GTDBTk/issues/209).

Functional annotations and reconstruction of genome-scale
metabolic models
Coding DNA sequences (CDS) and proteins were inferred using Pro-
digal v2.6.390 and annotated using eggnog-mapper v1.0 on the egg-
NOG v5.091 orthology resource (see GeneAnnotation in ecosysmic
repository). For genomic scaling laws analyses, annotated genes were
regrouped into broad functional categories, using the Clusters of
Orthologous Genes (COGs) 17 functional categories (e.g., replication,
recombination and repair; nucleotide transport and metabolism), and
the KEGG BRITE Functional Hierarchies (e.g., Energy metabolism;
Metabolism of cofactors and vitamins). The sets of annotated genes

were processed using CarveMe v1.5.153 to reconstruct individual
metabolic networks using the generic command “carve --output
--universe --nogapfill --fbc2 --verbose “ (see SnakeCarveMe in eco-
sysmic repository). The template used for each top-down recon-
struction (referred to as “universe” in the original CarveMe paper) was
selected for each genome using the GTDB-Tk taxonomic assignments
as either cyanobacteria, bacteria, or archaea. CarveMewas runwithout
gap-filling with the solver IBM CPLEX v12.10. The main reason for
running CarveMe without gap-filling was to avoid predicting potential
false positive cross-feeding metabolic interactions. Given the uncom-
plete nature of genomes we used, this is a conservative approach, as
without gap-filling we also likely miss potential true cross-feeding
metabolic interactions.

Genomic scaling laws analysis
Since genome size was spanning between several order of magnitudes
in our database, we had to account for its effect when comparing the
functional content of specific groups of genomes (e.g., origin, co-
active or not). For a given functional category, such a relationship can
be modelled by a so-called scaling law36, a power law that links the
number of genes in the category with the total number of genes in the
prokaryotic genome. By identifying deviations from the power law (or
linear law in log-log scale), we used scaling laws as a tool to properly
identify enriched or depleted functional and metabolic potentials
within groups of genomes in our genomic database. In other words, to
identify if a genome or group of genomes harbours fewer or more
genes in a category than what would be expected given its size. Egg-
NOG provides 25 high-level categories and a KEGG Orthology (KO)
equivalent for each Cluster of Orthologous Group (COG) annotation.
The KO database also provides a 4-level hierarchy of (unnamed)
functional categories. We were able to group our 23,224 KO identified
in our catalogue into 54 high-level categories (level 2 in the hierarchy
that presented for us the best compromise between specificity and
tractability of themetabolic functions). For each high-level KO or COG
category, we fitted a linear law on the log-transformed variables using
the function scipy.stats.linregress v1.7.3 (parameter alternative = “

greater”). Functional categories with a R2 below 0.3 were discarded,
and the distribution of residuals were compared (in log-scale) using
theMann-Whitney U test using the function scipy.stats.mannwhitneyu
v1.7.3 (parameter alternative = “two-sided”). P values from all tests
were corrected using Bonferroni and Benjamini-Hochberg multiple-
testing corrections (see Supplementary Data 3, 5, and 8) using the
function stats.multitest.multipletests from the statsmodels Python
package (v0.13.2).

Functional distances and Gini coefficient
We defined the functional relatedness between genomes by comput-
ing KO-based functional Jaccard distances between genome vectors of
KO gene presence/absence. In addition, we computed a com-
plementary functional distance based on gene expression inferred
frommetatranscriptomics data. Similarly, KO-based functional Jaccard
distances between genome vectors of KO expressed gene were used,
with a KO being expressedwhen its expressionwas detected in at least
10 samples.

To quantify how the functional potential of each community was
shared between genomes, we used a proxy of the well-established Gini
index. In Economics, the Gini index “measures the extent to which the
distribution of income (or, in some cases, consumption expenditure)
among individuals or households within an economy deviates from a
perfectly equal distribution”. Inside each predicted co-active con-
sortium, we defined a “functional capital” for each member as the sum
of occurring KO that were present inside the genome, and computed
the Gini index on this value. A Gini index of 0 can be interpreted as a
perfect overlap between the functions of all members of the con-
sortium, while a Gini index of 1 would be the extreme situation where a
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singlememberof the consortiumdisplays all thedetectedKO functions.
Intermediate values represent varying degree of metabolic evenness
between themembers of the community, ameasure thatwe tried to use
to separate niche overlap from potential metabolic complementarity.

Meta-omics profiling and associated environmental
contextual data
We leveraged metagenomics and metatranscriptomics data from
samples of theTaraOceans expeditions (2009–2013)92.We focusedon
samples from prokaryotic-enriched size fractions (0.2–1.6 μm and
0.22–3 μm) in the euphotic zone, including surface (SUR) and deep-
chlorophyll maximum layer (DCM) samples. This yielded 107 samples
across 64 stations for metagenomics data, 118 samples across 81 sta-
tions for metatranscriptomics data, and 71 samples across 45 stations
for which we had both. Prior to metatranscriptomics sequencing,
cDNA synthesis of total RNAs was performed by a random priming
approach preceded by a prokaryotic rRNA depletion step92. Sequen-
cing reads were previously quality-controlled using methods descri-
bed in92.We thenmappedquality-controlled reads onto our 7,658 non-
redundant marine prokaryotic genomes using Bowtie 2 v2.3.4.393 (see
ReadMapping in ecosysmic repository) using the command “bowtie2
-p --no-unal -x -1 -2 -S”with no extra parameter. Reads that successfully
mapped were subsequently filtered using Samtools v1.994 and pySAM
v0.15.2 using MAPQ ≥ 20 and a nucleotide identity ≥ 95% to avoid non-
specific mappings. The identity score ignores ambiguous bases (N) on
the reference but takes gaps into account. The formula used is (NM -
XN) / L with NM the edit distance; that is, the minimal number of one-
nucleotide edits (substitutions, insertions and deletions) needed to
transform the read string into the reference string, XN the number of
ambiguous (N) bases in the reference, and L the length of the read.
Overall, this ensured that the conserved reads were mapped to the
target genome with a high-specificity. The presence, abundance, and
activity of a given genome was determined as follows: first, the
occurrence of a genome was determined by its horizontal metage-
nomic coverage of minimum 30%; second, its abundance was com-
puted using its vertical metagenomic coverage normalised by its
genome length. Finally, its activity corresponded to the ratio of its
vertical metatranscriptomic coverage over its vertical metagenomic
coverage, and no genome activity threshold was set, thus potentially
resulting in null activity for some genomes in some samples. We esti-
mated depth of coverage (i.e., vertical coverage) by dividing the total
mapping of a genome by its size, and breadth of coverage (i.e., hor-
izontal coverage) by dividing the number of mapped bases (at least
one time) by the genome size (see CoverageEstimation in ecosysmic
repository).

Co-abundance and co-activity networks inference
Genome-resolved co-abundance and co-activity networks were recon-
structed using FlashWeave (FW) v0.18.050. FW first infers a global cor-
relation network resulting from significant partial correlation tests with
Fisher’s z-transformation (“sensitive”mode) between genome pairs co-
abundance or co-activity profiles. Next, FW relies on a local-to-global
learning framework that implements conditional independence tests
to detect and remove indirect associations within this global network.
Several heuristics are then applied to connect these local dependencies
and infer anetwork. Finally, the resultingnetwork integratesonly direct
associations, which edges are weighted by the partial correlation
strength. Starting from all MQ genomes (N = 7658), we defined the
abundance of a genome in a sample by its overallmetagenomic vertical
coverage (also called depth) per 1M base pairs, while its activity was
given by the ratio of its overall metatranscriptomic coverage depth per
1M base pairs over its abundance. Note that this can only be computed
at stations and depths for which we have both metagenomic and
metatranscriptomic signals. A given genome was defined as observed

(i.e., present and/or active) within a sample when at least 30% of its
genome was horizontally covered (also called breadth).

Overall, we were able to compute abundances for 107 samples,
and activities for only 71 samples. To lower spurious correlations,
abundance and activity data points for unobserved genomes were
discarded and genomes with less than 10 observations across our
samples were removed. This was done independently for abundance
(N = 1232 genomes observed in at least 10/71 samples) and activity
(N = 902 genomes active in at least 10/71 samples). Finally, the inherent
compositional nature of the sequencing datasets was taken into
account using centred log-ratio (CLR) transformation and the adaptive
pseudo-count implemented in FlashWeave. Both abundance and
activity matrices were used as input to FlashWeave using parameters
“normalize=true, “n_obs_min=10, max_k = 3, heterogenous=true” (see
the FlashWeave documentation for more information about these
parameters). Genome graph centralities were computed with the net-
workx python library v3.1 using the closeness_centrality function on the
co-activity community networks for which metabolic exchanges were
predicted using SMETANA (see below).

Community metabolic modelling and cross-feeding interaction
predictions
We identified co-active genome communities in the reconstructed co-
activity network using the Markov clustering algorithm95 (MCL)
through the use of run_mcl function with an inflation parameter of 1.5
available in Pythonmarkov_clustering library V.0.0.2.We also generated
randomly-assembled communities by randomly sampling genomes
from the pool of genomes used for network reconstruction (genomes
occurring at least 10 times within the considered samples). These
communities were quality-filtered for MHQ genomes and analysed
using SMETANA 1.2.055 to predict putative metabolic cross-feeding
interactions (see SnakeMETANA in ecosysmic repository). SMETANA
does not use any biological objective functions and is formulated as a
mixed linear integer problem (MILP) that enumerates the set of
essential metabolic exchanges within a community with non-zero
growth of all community species subject to mass balance constraints.
Here, SMETANA was used to compute three distinct metabolic inter-
action scores: (i) the Metabolic Resource Overlap (community-wide)
score (MRO) quantifies how much species in a given community com-
pete for the same metabolites, (ii) the Metabolic Interaction Potential
(community-wide) score (MIP) calculates how many metabolites a
given species can share to decrease their dependency on external
resources, and (iii) the SMETANA score (pairwise between two species)
that evaluates the probability of a cross-feeding interaction (two spe-
cies, one direction, one metabolite) by integrating three additional
metrics: (a) the SCS (species coupling score), which measures the
dependency of one species in the presence of the others to survive, (b)
the MUS (metabolite uptake score), which measures how frequently a
species needs to uptake a metabolite to survive, and (c) the MPS
(metabolite production score), which measures the ability of a species
to produce a metabolite. The SMETANA sum score (sum of the SME-
TANA scores in a given community) is employed by the original authors
and inour study as a community-wide versionof thepairwise SMETANA
score. We limited the communitymetabolic analyses toMHQ genomes
in order to lower the risk of predicting spurious interactions in com-
munities of lower-quality genomes and metabolic models. SMETANA
was run in both global and detailed modes with the solver IBM CPLEX
v12.10, using in each mode the default media provided by the package
(which is a complete media for global analysis, and a community-
specific minimal media for detailed analysis). A set of inorganic com-
pounds were excluded from the analysis as explicitly recommended by
one of the package author (https://github.com/cdanielmachado/
smetana/issues/20#issuecomment-827389107). Other parameters
used were “--flavour bigg --solver CPLEX --molweight”.
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The “community smetana score” reported in the main text is
obtained by summing all smetana scores predicted for a given com-
munity. In order to compare communities of different sizes, this score
was normalised bydividing the “smetana score” by the total number of
potential genome-genome interactions, i.e. N x (N-1) / 2 (withN the size
of the community). We referred to this new score in the main text as
“normalised smetana score”.

In order to classify the different metabolites in the SMETANA
database into metabolite categories (e.g., amino acids, carboxylates),
we first mapped the metabolite identifiers to the MetaNetX database
(available at: https://www.metanetx.org/cgi-bin/mnxget/mnxref/chem_
xref.tsv). From this mapping, we extracted MetaCyc identifiers to
subsequently obtain their ontologies (available at: https://metacyc.org/
groups/export?id=biocyc14-14708-3818508891&tsv-type=FRAMES). In
this process, a number of metabolites could not be assigned to any
metabolite category and were dumped as “uncategorized”.

Transporters activity
Transporter-associated reactionsweredirectly extracted fromCarveMe
reconstructed models and classified into nine different types of trans-
porter mechanisms and two directions (import or export). Reversible
transport reactions were duplicated and counted in both directions.
Gene activities (abundance-normalized expressions) were obtained by
exploiting the so-called gene-reaction rule encodedwithin theCarveMe
models. These rules often involved the expression of multiple genes to
have a functional transporter protein, but since metagenomics and
metatranscriptomics data are known to be sparse (especially at gene
level), we considered a transporter active if at least one of its compo-
nentswas actively transcribed.Overall, we identifiedAAs andBvitamins
transporters and associated reactions, linked them with actual genes
present in co-active genomes, and detect their transcriptional activities
across co-active community types (Supplementary Fig. 13).

Statistical analyses
All statistical tests and analyses were performed using scipy.stats
Python module v1.7.3. All figures were generated using Python v3.7.12
and R v4.2.2. We used statannotations v0.4.4 (https://github.com/
trevismd/statannotations) to append statistical significance to all
boxplots. Stars are used to define significance level as follow: **** for
p ≤ 10 − 4, *** for 10 – 4 < p ≤ 10 – 3, ** for 10 − 3 < p ≤ 10–2, * for
10 – 2 < p ≤ 5 × 10 – 2, and finally ns for p > 5 × 10 – 2. All data analysis sub-
packages were installed in the same environment using Conda v22.11.1,
the versions of which are detailed in the yaml file located in each
repository cited above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The main database source for our genome collection was the Marine
Metagenomic Portal through the use of the databases MarRef v4.0
(N = 943, available at https://mmp.sfb.uit.no/databases/marref/),
MarDB v4.0 (N = 12,963, available at https://mmp.sfb.uit.no/databases/
mardb/), and aquatic representative genomes from the ProGenomes
database v1.0 (N = 566, available at http://progenomes1.embl.de/data/
habitats/aquatic/aquatic.repr.contigs.fasta.gz). This collection of gen-
omes was complemented by 5319 MAGs assembled from four distinct
studies, namely: Parks et al. 2017 (N = 1765; available at ENA under
BioProject PRJNA348753), Tully et al. 2017/2018 (N = 2597; available at
ENA under BioProject PRJNA385857), and Delmont et al. (N = 957;
available at https://doi.org/10.6084/m9.figshare.4902923). All Tara
Oceansmetagenomes andmetatranscriptomes raw reads are available
at ENA under BioProject PRJEB402. All data associated with the

analyses are available in the supplementary materials and at Zenodo:
https://zenodo.org/record/7853699#.ZEQ8ahVBx0Q.

Code availability
All code repositories cited below are available within https://gitlab.
univ-nantes.fr/ecosysmic.
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