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ABSTRACT
This contribution presents a Kalman filtering strategy for space-frequency reconstruction of
mechanical sources. The proposed approach is based on the definition of an appropriate state-
space model, where the state equation assumes that the force vector follows a random walk
behavior, while the observation equation is the classical linear relationship between the force and
the measured response through the transfer function matrix of the considered structure. One of the
main challenges of the proposed approach is the fine-tuning of the covariance matrix associated
with the process noise. In this work, it is estimated and adapted at each frequency during the
filtering procedure. A numerical experiment is performed on a simply supported beam excited by
a broadband point mechanical force to evaluate the reconstruction performance of the proposed
approach. Further comparisons with other regularization strategies are also proposed to provide a
fair overview of the results obtained.

1. INTRODUCTION

Force reconstruction problems are of great interest in many engineering applications, such
as structural health monitoring, non-destructive testing, or noise and vibration control. The basic
idea is to estimate the forces acting on a structure from the measured response. The main difficulty
of this class of inverse problems is that they are generally ill-posed in Hadamard’s sense, meaning
that the solution is not unique and that small perturbations in the measured response can lead to
large variations in the estimated solutions.

If we focus our scope on force reconstruction problems in the frequency domain, several
strategies have been developed to deal with the intrinsic ill-posedness of the problem. Among the
methods available in the literature, one can cite the Truncated Singular Value Decomposition [1]
or methods deriving from the virtual work principle such as the Virtual Field Method [2] or the
Force Analysis Technique [3]. However, despite the recent advent of machine learning techniques
[4], the most widely used approach in the frequency domain is the regularization method, which
consists in introducing a penalty (regularization) term to the minimization problem to stabilize it
by constraining the space of admissible solutions. The most common regularization strategies are
the Tikhonov regularization [5], the ℓq -regularization [6] or the mixed-norm regularization [7].

In this contribution, we propose a Kalman filter-based strategy for space-frequency force
reconstruction. The proposed approach is based on the definition of an appropriate state-space
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model, where the state equation assumes that the force vector follows a random walk behavior,
while the observation equation is the classical linear relationship between the force and the
measured response through the transfer function matrix of the considered structure. One of the
main challenges of the proposed approach is the fine-tuning of the covariance matrix associated
with the process noise. In this work, it is estimated and adapted at each frequency during the
filtering procedure. A numerical experiment is performed on a simply supported beam excited by
a broadband point mechanical force to evaluate the reconstruction performance of the proposed
approach. Further comparisons with other regularization strategies are also proposed to provide
a fair overview of the results obtained.

2. KALMAN FILTER DERIVATION

This section describes the theoretical foundations of the proposed frequency-domain
Kalman filtering, which rely on three main pillars: the definition of an appropriate state space
model, the derivation of the filtering algorithm based on the Bayesian paradigm, and some
practical considerations related to its implementation.

2.1. State space model

The state space model consists of a state equation, describing the evolution of the system
state between two frequency steps, and an output equation relating the measured data to the
system state. Here, the state of the system is the force vector to be reconstructed at a given
frequencyωk and noted uk , while the output is the measured response yk . From these definitions,
the state space model can be defined as follows:{

uk+1 = uk +wk

yk = Hk uk +vk
, (1)

where Hk is the transfer function matrix of the considered structure at frequencyωk , while wk and
vk are the process noise and measurement noise vectors, respectively. The noise vectors wk and vk

are assumed to be two independent complex Gaussian variables with zero mean and covariance
matrices denoted Qk and Rk , respectively.

2.2. Filtering algorithm

The Kalman filter is a recursive algorithm that estimates the state of a linear dynamic system
from a series of noisy measurements [8]. It is composed of two main steps, which consists in
updating the state estimate by combining the prior estimate with the information brought by a
new measurement. From a Bayesian perspective, a Kalman filter can be divided into four parts [9]:

0. Model definition – It consists mainly in rewriting the state space model given by Equation 1 in
Bayesian terms, namely:

uk+1 ∼ p(uk+1 |uk ) =Nc (uk+1 |uk ,Qk )

yk ∼ p(yk |uk ) =Nc (yk |Hk uk ,Rk ),
(2)

where Nc (x |m,P) is the complex multivariate Gaussian distribution over the random vector x with
mean vector m and covariance matrix P.

1. Initialization – This step requires the prior knowledge of the initial state u0, as well as the
prediction of the state ũ1 at the next frequency step. These requirements are summarized as
follows:

u0 ∼ p(u0) =Nc (u0 | û0,P0), (3)
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where û0 and P0 are the mean vector and covariance matrix of the prior estimate, respectively.

u1 ∼ p(u1 |u0) =
∫

u0

p(u1 |u0) p(u0)du0 =Nc (u1 | ũ1, P̃1), (4)

where ũ1 and P̃1 are the mean vector and covariance matrix of the predicted estimate, respectively.
These quantities are expressed as:

ũ1 = û0 and P̃1 = P0 +Q0. (5)

2. State update – This step consists of applying the Bayes’ rule to update our prediction of the
input vector, given the information provided by the measurement at the current frequency step k,
that is:

uk ∼ p(uk |y1:k ) ∝ p(yk |uk ) p(uk |y1:k−1) =Nc (uk | ûk ,Pk ), (6)

where y1:k = {y1, . . . ,yk } is the set of all the measurements up to the current frequency step k, while
ûk and Pk are the mean vector and covariance matrix of the updated estimate, respectively. The
latter quantities are expressed as:

ûk = ũk +Kk (yk −Hk ũk ) and Pk = (Inu −Kk Hk ) P̃k , (7)

where Kk = P̃k HH
k (Hk P̃k HH

k +Rk )−1 is the Kalman gain, Inu is the identity matrix of size nu (nu :

number of reconstruction points) and xH is the Hermitian adjoint of x.

3. State prediction – This step consists of predicting the state of the system at the next frequency
step k +1, that is:

uk+1 ∼ p(uk+1 |y1:k ) =
∫

uk

p(uk+1 |uk ) p(uk |y1:k )duk =Nc (uk+1 | ũk+1, P̃k+1), (8)

where ũk+1 and P̃k+1 are the mean vector and covariance matrix of the predicted estimate,
respectively. These quantities are expressed as:

ũk+1 = ûk and P̃k+1 = Pk +Qk . (9)

The practical implementation of the standard Kalman filter deriving from the previous steps
is summarized in Alg. 1. Note that the algorithm can be run in both forward or backward mode,
depending on the availability of an accurate starting solution at the first frequency step.

Algorithm 1: Standard Frequency domain Kalman filter
Input: yk , Hk , û0, P0, Qk , Rk

Output: ûk , Pk

1. Initialization – ũ1 = û0, P̃1 = P0 +Q0

for each time step k > 0 do

2. State update
Kk = P̃k HH

k (Hk P̃k HH
k +Rk )−1

ûk = ũk +Kk (yk −Hk ũk )
Pk = (Inu −Kk Hk ) P̃k

3. State prediction – ũk+1 = ûk , P̃k+1 = Pk +Qk
end
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2.3. Practical considerations

The main challenges of the proposed approach concern the computation of an accurate
starting solution and the proper tuning of the covariance matrices associated with the process
and measurement noise vectors.

3.1 Computation of the starting solution

Due to the recursive nature of the Kalman filter, it is crucial for a proper estimation of the
excitation field at the very first frequencies to have an accurate starting solution. In this work, the
starting solution is computed by a Bayesian regularization, which consists in estimating u0 as the
solution of the following optimization problem:

(û0, τ̂i ) = argmax
(u0,τi )

p(y0 |u0)
nu∏

i=1
p(u0i |τi ) p(τi ), (10)

where the likelihood function p(y0|u0) and the prior distribution p(u0i |τi ) and p(τi ) are chosen
as follows:

p(y0 |u0) =Nc (y0 |H0 u0,R0)

p(u0i |τi ) =Nc (u0i |0,τ−1
i )

p(τi ) =G (τi |αi ,βi ),

. (11)

Here, G (τi |α,β) is the gamma distribution over the precision parameter τi with shape parameter
α= 1 and rate parameter β= 10−18.

The optimization problem Equation 10 is solved by an iterative procedure, not described
here for the sake of brevity, which is initialized with the solution of the standard Tikhonov
regularization problem.

3.2 Noise covariance matrices tuning

The tuning of the covariance matrices associated with the process noise and measurement
noise vectors requires special attention as it can greatly affect the quality of the filtering process.
In this work, the measurement noise covariance matrix Rk is assumed to be constant and diagonal.
Its entries, i.e. the noise variances of each measurement channel, are estimated from the data
using the described proposed in Ref. [10].

The process noise covariance matrix Qk is more difficult to tune because it reflects the degree
of confidence in the state transition model (state equation). A common practice is to assume
that this matrix is isotropic and to set the value of the variance parameter to an arbitrarily large
value. However, this approach is not satisfactory, since it does not take into account the specific
characteristics of the system under consideration. In fact, setting the variance parameter to too
low a value can lead to the state being fixed at a constant value given by the starting solution,
while setting it to too high a value can lead to a poor convergence of the filtering process.
Several approaches have been proposed in the literature to estimate the variance parameter, such
as the L-curve criterion [11]. Other strategies aim at estimating the covariance matrix as a whole,
e.g. using an expectation-maximization algorithm [12].
In this work, the process noise covariance matrix is updated at each frequency by revisiting and
adapting the time-domain Bayesian approach proposed by Sedehi et al. in Ref [13]. The estimation
procedure can be summarized as follows:

1. Prediction step at k−1 – The predictive prior distribution of the covariance matrix Qk−1 is given
by:

p(Qk−1 | ûk−1) =IW c (Qk−1 |Ψk−1,νk−1), (12)
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where IW c (X |Ψ,ν) is the complex inverse Wishart distribution over the complex random matrix
X with scale matrixΨ and degrees of freedom ν.

2. Update at step k – After some calculation not detailed here, the posterior distribution of the
covariance matrix Qk is given by:

p(Qk−1 | ûk ) =IW c (Qk−1 |Ψk ,νk ), (13)

where Ψk and νk are the updated scale matrix and degrees of freedom, respectively. They are
expressed as:

Ψk =Ψk−1 +
(
ûk − ûk−1

)(
ûk − ûk−1

)H and νk = νk−1 +1. (14)

By assuming that the process noise varies slowly, it is possible to assume that p(Qk | ûk ) ≈
p(Qk−1 | ûk ). Finally, the updated covariance matrix Qk is chosen as the mean of the updated
predictive prior distribution, that is2:

Qk = Ψk

νk −nu
with νk > nu . (15)

Finally, to initialize the procedure, the scale matrix Ψ0 and the degrees of freedom ν0 must
be defined by the user. In the rest of this paper, these parameters are chosen so thatΨ0 = 10−10 Inu

and ν0 = nu +1.

3. NUMERICAL EXPERIMENT

The structure under consideration is a simply supported stainless steel beam. The beam
is 1 m long, 3 cm wide and 1 cm thick. The material properties are E = 210 GPa for the Young’s
modulus and ρ = 7850 kg.m-3 for the density. A structural damping factor is assumed and set to
1%.

Along the beam, a set of 20 accelerometers are mounted on the structure and one of these
sensors is collocated with the excitation at x0 = 63 cm as presented in Fig. 1.

Excitation Measurements

xz

y

Figure 1: Definition of the numerical experiment

Regarding the excitation spectrum to identify, it is supposed that the structure is excited by
a white noise point force with mean 2 N and variance 0.1 N2 between 100 Hz and 1 kHz. The
frequency resolution is set to 0.5 Hz. In this frequency range, the beam has 4 modes (211 Hz,
375 Hz, 586 Hz and 844 Hz).

In this numerical experiment, the noiseless vibration data have been generated using a finite
element model. Then, they have corrupted by an additive Gaussian white noise with a controlled
signal-to-noise ratio set to 25 dB. On the other hand, the transfer functions matrices, required to
construct the state-space representation, have been computed analytically from a classical mode
expansion using the first 10 modes of the structure (i.e. up to 2.3 kHz).

2This choice differs from that made in Ref. [13], where the covariance matrix is chosen as the mode of the updated
predictive prior distribution.
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3.1. Application of the proposed strategy

Figures 2 and 3 present the results of the proposed Kalman filtering approach when running
in the forward mode (i.e. from low to high frequencies) and in the backward mode (i.e. from
high to low frequencies), respectively. The analysis of these figures shows that the force location is
properly identified, and the force amplitude is correctly estimated for both modes. A closer look at
the identified force spectrum reveals a slower convergence of the filter in the forward mode than
in the backward mode. This behavior is related to the fact that the filter is initialized with a more
accurate solution in the backward mode than in the forward mode (see Fig. 4).

(a) Space-frequency excitation field (b) Excitation spectrum

Figure 2: Input force estimated by the proposed Kalman filter run in the forward mode

(a) Space-frequency excitation field (b) Excitation spectrum

Figure 3: Input force estimated by the proposed Kalman filter run in the backward mode
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(a) Estimation @ 100 Hz (b) Estimation @ 1 kHz

Figure 4: Initial solution used to initialize the Kalman filter - (a) Forward mode and (b) Backward
mode

3.2. Comparison with other strategies

The performance of the proposed Kalman filtering approach is compared with two other
regularization strategies, namely the multiplicative ℓq -regularization [14] and the multiplicative
ℓp,q -regularization [15]. The multiplicative ℓq -regularization consists in solving the following
minimization problem at each frequency:

ûk = argmin
uk \{0}

∥∥yk −Hk uk
∥∥2

R · ∥uk∥q
q , (16)

while the multiplicative ℓp,q -regularization considers all the frequencies at ones by solving the
following minimization problem:

Û = argmin
U\{0}

∥∥Y−H U
∥∥2

R · ∥U∥q
p,q . (17)

In the previous equation, Y = vec(y), U = vec(u) (the "vec" function stands for vectorization),
H = diag(H1, . . . ,Hn f ) and R = In f ⊗R (n f : number of frequencies).

Figure 5 shows that the ℓq -regularization identifies the excitation field reasonably well,
except around some of the resonance frequencies of the structure (211 Hz and 586 Hz). This
behavior is related to the fact that the ℓq -regularization solves the problem at each frequency
independently. On the other hand, the ℓp,q -regularization, as shown in Fig. 6, provides a
consistent reconstruction of the excitation field due to its ability to properly reflect the space-
frequency characteristics of the source.

To compare all the previous results quantitatively, three indicators are used: the global
relative error (GRE), the execution time te and the memory footprint m f . The GRE is defined as:

GRE = ∥u− û∥1

∥u∥1
, (18)

where u and û are the true and estimated excitation fields, respectively.

Table 1 summarizes the performance of the different strategies considered in the paper. The
results show that the proposed Kalman filtering approach provides a consistent reconstruction
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of the excitation field, with a GRE of 2.51% and 2.39% for the forward and backward modes,
respectively. The execution time and memory footprint are also reasonable and similar for
the forward and backward modes, with values around 0.29 s and 156 MiB. On the other hand,
the results provided by the ℓp,q -regularization are in line with those of the proposed Kalman
filtering approach, with a GRE of 2.73%. However, the execution time and memory footprint
are respectively about 3 times and 4 times higher than those of the proposed Kalman filtering
approach. Finally, the multiplicative ℓq -regularization has the worst performance, mainly due to
the large discrepancies observed around the resonance frequencies of the structure.

(a) Space-frequency excitation field (b) Excitation spectrum

Figure 5: Input force estimated by the multiplicative ℓq regularization for q = 0.5

(a) Space-frequency excitation field (b) Excitation spectrum

Figure 6: Input force estimated by the multiplicative ℓp,q regularization for (p, q) = (2,0.5)

4. CONCLUSION

This contribution introduced a frequency-domain Kalman filter for broadband sparse
source reconstruction. The present Kalman filter is similar to that classically used for time-
domain applications. To be successful, the filter must be properly tuned and initialized. For
this purpose, dedicated strategies have been implemented. The numerical experiment has
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demonstrated the potential benefits of the proposed strategy, as it allows to obtain consistent
reconstructions even at resonance frequencies, where sparse regularization generally fails.

Table 1: Comparison of the different strategies

Method GRE (%) te (s) mf (MiB)

Kalman Filter (forward/backward) 2.51/2.39 0.292 156

ℓq -regularization 17.06 1.573 1035

ℓp,q -regularization 2.73 0.967 676
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