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ABSTRACT

Identifying instrument activities within audio excerpts is vital in
music information retrieval, with significant implications for mu-
sic cataloging and discovery. Prior deep learning endeavors in
musical instrument recognition have predominantly emphasized
instrument classes with ample data availability. Recent studies
have demonstrated the applicability of hierarchical classification in
detecting instrument activities in orchestral music, even with lim-
ited fine-grained annotations at the instrument level. Based on the
Hornbostel-Sachs classification, such a hierarchical classification
system is evaluated using the MedleyDB dataset, renowned for its
diversity and richness concerning various instruments and music
genres. This work presents various strategies to integrate hierar-
chical structures into models and tests a new class of models for
hierarchical music prediction. This study showcases more reliable
coarse-level instrument detection by bridging the gap between de-
tailed instrument identification and group-level recognition, paving
the way for further advancements in this domain.

1. INTRODUCTION

The identification of instruments within an audio excerpt poses
an enduring challenge in the field of Music Information Retrieval
(MIR). This task is inherently intricate due to the poly-instrumental
nature of real-world music, where the pitches of multiple instru-
ments often intertwine. Furthermore, the task is complicated by
substantial variations in timbre and performance style among in-
struments, further hindering recognition endeavors. Even trained
musicians may encounter perceptual similarities among specific
instruments, adding another layer of complexity to the recognition
process.

Instrument identification bears significant implications across
various domains, including music cataloging and discovery. It aids
in tasks such as song retrieval [1], facilitates genre recognition sys-
tems [2], and contributes to recommendation systems [3]. While
the recognition of more common instruments benefits from abun-
dant available data, challenges arise in genres such as orchestral or
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opera, as well as with rare or non-western instruments, for which
data is much more scarce.

Hierarchical classification systems have been proposed to ad-
dress the complexities of instrument recognition. These systems
enable the prediction of instruments at various levels of specificity,
demonstrating particular promise in handling imbalanced datasets
and scenarios involving few-shot learning [4]. However, existing
work in this domain has been confined to specific genres and a
restricted set of instruments. This study assesses the scalability of
hierarchical approaches on a more complex dataset, like MedleyDB,
and proposes different formulations of the hierarchical problem.

1.1. Instrument detection

The field of instrument detection incorporates a diverse array of
methodologies, spanning from signal processing techniques to con-
temporary deep learning approaches. Meanwhile, multi-label clas-
sification for audio signals has attracted considerable interest across
various domains [5].

In the 2000s, Marques et al. [6] conducted instrument classi-
fication on brief 0.2s music excerpts utilizing Gaussian Mixture
Models (GMM) and Support Vector Machines (SVM), with features
extracted through Mel-Frequency Cepstral Coefficients (MFCC). In
a similar vein, Essid et al. [7] showcased the advantages of GMMs
over SVMs by employing MFCC features preprocessed with Prin-
cipal Component Analysis (PCA), even in the context of longer
mono-instrument samples.

More recently, Deep learning models, which have seen suc-
cessful applications across various domains [8], have demonstrated
promise in mono-instrument detection as well. Initially designed for
image recognition tasks, Convolutional Neural Networks (CNNs)
have been effectively repurposed to handle spectrogram-like fea-
tures such as MFCCs or Constant-Q Transforms. Solanky et al.
highlighted in [9] the efficiency of an AlexNet-inspired CNN model
in predominant instrument recognition, while in [10], Avramidis et
al. introduced performance enhancements in instrument recognition
by integrating recurrent components into CNN architectures.

Attention-based models have also emerged as an promising al-
ternative to CNNs in the field of audio classification: transformers,
initially introduced for text classification [11], have been adapted
to image recognition tasks [12]. Jamil et al. [13] used a vision
transformer architecture for audio classification to distinguish harm-
less from malicious drones. In the domain of Music Information
Retrieval, Regunath et al. [5] were able to outperform a CNN ar-
chitecture using a vision transformer for predominant instrument
recognition in polyphonic settings.
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1.2. Hierarchical classification for audio

Exploration of hierarchical structures for classifying audio seg-
ments has been a subject of prior research across diverse domains.
For instance, hierarchical methods have been employed in classify-
ing bird songs, with a class tree rooted in biological taxonomy [14].
Notably, these methods operated on more extended audio excerpts
than the frame-level analysis.

In the realm of Music Information Retrieval, Fu et al. intro-
duced in [15] a hierarchical approach tailored for singing voice
classification and transcription. On the other hand, Essid et al. [7]
explored hierarchical classification using GMMs, focusing primar-
ily on synthetic music extracts rather than actual recordings and
not at the frame level. In a recent study in 2023, Krause et al. [16]
delved into hierarchical classification methods explicitly designed
for orchestral and opera pieces. Their research demonstrated per-
formance improvements, particularly in scenarios with limited fine-
grained annotations. Furthermore, Garcia et al. [4] investigated
hierarchical classification for few-shot learning situations, aiming
to enable model adaptation to unseen classes, contrasting with the
study’s utilization of predefined classes.

1.3. Work on rare instrument detection

In the domain of rare audio source detection, where annotated data
is scarce or nonexistent, previous research efforts have aimed to
address this challenging task. Various strategies have been explored
in the domain of few-shot learning, including hierarchical method-
ologies akin to those proposed by Garcia et al. [4], along with
approaches centered on continual learning [17]. Continual learning
techniques focus on easily incorporating new instruments into a
model as additional data becomes available. Moreover, attempts
have been made to capitalize on weakly annotated data, where in-
strument presence is identified but precise activation times are not
specified, yielding only incremental enhancements [18].

The utilization of pre-training strategies has emerged as a piv-
otal area of interest. In 2023, Zong et al. [19] employed isolated
notes for pre-training before transitioning to training on polyphonic
data, albeit with a specific emphasis on predominant instrument
recognition exclusively. Another explored avenue involves syn-
thetic data generation achieved through layering mono-instrumental
excerpts with tempo and pitch shifting to produce realistic artificial
multi-instrument tracks [20].

Furthermore, model reprogramming has been proposed, involv-
ing training a smaller model to map inputs to the input space of a
larger pre-trained model. This technique, akin to transfer learning,
harnesses the generalization capabilities of the larger model to miti-
gate data imbalance, consequently significantly reducing training
time requirements [21].

1.4. Contributions and outline of the paper

In this study, we introduce several methodologies aimed at effi-
ciently incorporating hierarchical instrument structures into our
predictive models, and evaluate this novel class of models tailored
for hierarchical music prediction. Importantly, our evaluations are
conducted on the MedleyDB dataset. This dataset is renowned for
its expansive and varied content, which allows us to overcome con-
straints related to particular music genres and a restricted instrument
set. As far as we know, this is the first work on polyphonic instru-
ment recognition using the MedleyDB dataset, providing crucial
baseline performances in this domain.

The paper is organized as follows. Section 2 offers an overview
of the MedleyDB dataset used in our study while Section 3 delves
into the neural network architecture selected for our research. In
Section 4, we explore the various training strategies implemented
to address the hierarchical structures of instruments. The numerical
results derived from our evaluations are presented in Section 5.
Finally, the conclusions and insights are summarized in Section 6.

2. HIERARCHICAL DATASET

This section focuses on the hierarchical dataset utilized in our study.
The primary dataset of interest is MedleyDB, emphasizing its char-
acteristics and composition. We then discuss the challenges of
establishing a train/test split for MedleyDB to prevent overfitting
and ensure a balanced instrument distribution within the sets. Fi-
nally, we introduce a labeling scheme incorporating instrument
group hierarchies and utilize the Hornbostel-Sachs classification
system to categorize instruments based on sound production meth-
ods, balancing granularity and computational efficiency.

2.1. MedleyDB

MedleyDB [22] is a dataset of 122 annotated polyphonic record-
ings containing a large diversity of genres and instruments. It was
curated primarily to support research on melody extraction by pro-
viding melody f0 annotations, but each track also contains precise
instrument activations, making it usable for instrument recogni-
tion. The dataset is filtered to only include the 94 tracks with no
instrumental bleeding, in order to prevent erroneous instrument
activation detections. As seen in Fig. 1, the distribution of instru-
ments in MedleyDB is quite tail-heavy, featuring many instruments
that appear in only a few of the tracks. This makes the resulting
dataset extremely challenging. Indeed, it contains nearly as many
instruments as tracks, which means the rarer instruments are usually
showcased in a minimal context only.

We divide each track into non-overlapping frames of one-
second duration. We consider an instrument active within a frame
if it is active at any point during that duration. This method raises
concerns regarding the potential misclassification of instruments
if they are only briefly active at the beginning or end of a frame.
However, our analysis demonstrates that such occurrences are rare,
with less than 0.26% of frames containing an instrument active for
less than 0.1 second.

2.2. Data train-test split

We split the MedleyDB dataset into train and test recordings to
train and evaluate our MIR system. To our knowledge, no standard
train/test split has been established for MedleyDB in prior work.
Establishing such a split is challenging: using extracts from the
same song in both training and testing has been shown to lead to
overfitting, but some instruments are very rare and only appear in a
single recording. Ensuring a similar label distribution then becomes
quite challenging, especially given that we are working with only
94 tracks for 76 instruments. Ultimately, we select 20% of the
recordings to ensure a similar instrument distribution between both
sets. Due to the inclusion of a 17-minute long recording in the
test set, we obtained a test set that is slightly larger than expected,
with 14000 excerpts in the training set and 5000 in the test set. We
were unable to pick an alternate split to reduce the test set size, as
alternatives resulted in strong instrument distribution shifts between
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Figure 1: Tail-heavy distribution of MedleyDB instrument occur-
rence. The numbers in the legend refer to the Hornobel-Sachs
taxonomy.

the training and the test data. This strong constraint on the dataset
also made us unable to use k-fold validation. Special care is further
taken to ensure the test set features various music genres. In the
end, four instruments, each appearing in a single track, are present
only at test time.

2.3. Hierarchical classification

We specify the labels further than a simple instrument name, adding
labels per instrument group. We therefore end up with two pri-
mary sets of labels: I, indicating the instrument’s name, and G,
containing labels for instrument groups.

The hierarchical classification system selected is referred to as
Hornbostel-Sachs [23], organizing instruments according to their
sound production method. This classification system is versatile
and can effectively categorize a wide array of instruments from
diverse cultural backgrounds. Its adaptability is particularly advan-
tageous for datasets like ours, which are characterized by diverse
instruments. Moreover, the Hornbostel-Sachs features up to five
levels of depth, enabling us to configure the level of precision of the
tree easily. For this study, we opted for a depth of two, balancing
granularity and computational efficiency. With this configuration,
we split all instruments into 8 different groups, shown in Fig. 1.

However, this classification system has its drawbacks. Indeed,
categorizing instruments based on their sound production method
does not directly account for the output sound profile. This aspect
poses challenges, especially when dealing with synthesized sounds.
For instance, under this taxonomy, a drum machine would fall into
a distinct class from a traditional drum despite producing similar
sounds. We chose not to address these challenges specifically, as
differentiating between synthetic and acoustic instruments may be
required in certain contexts. The taxonomy can easily be adapted
for tasks that do not require such a distinction.

Simple chordophones

Male rapper Yangqin Female singer

Non-free aerophones

Tuba Trombone

. . .

Figure 2: Partial representation of the Hornbostel-Sachs class tree

3. MODEL ARCHITECTURE

In this section, we give details on the model’s architecture used as
the base brick of our hierarchical classification system.

Note that the model is not the primary focus of the paper, and
alternative architectures (e.g., based on ResNets [24]) could also be
used here. We employ a convolutional network inspired by the VGG
architecture [25], featuring a series of conv-conv-pool processing
blocks. This architecture was chosen because VGGish models
have shown good performance for MIR from spectral features
for various downstream tasks [26], and require significantly less
computing performance than transformer-based approaches. This
series of processing blocks create feature maps of depth 64, then
128, and finally 256 while aggregating context along the temporal
and pitch dimensions and are followed by a standard classification
head. Batch normalization is further used after each layer for
regularization, and a leaky ReLU is used for activation. We finally
apply dropout before fully connected layers in the classification
head. The exact architecture is specified in Table 1.

The network takes MFCC of an audio extract as input and
outputs a vector of 85 values in [0, 1] corresponding in activities of
all classes in I ∪ G. The MFCC input was chosen to consist of 1 s
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of audio segments, computed using a hop-size of 1s on recordings
sampled at 22.5 kHz, using 80 bins.

Layer Output shape Parameters

Input (1, 80, 22)

Conv2d (64, 80, 22) 640
Batch normalization (64, 80, 22) 128

Conv2d (64, 80, 22) 36 928
Batch normalization (64, 80, 22) 128

MaxPool2d (64, 40, 11)

Conv2d (128, 40, 11) 73 856
Batch normalization (128, 40, 11) 256

Conv2d (128, 40, 11) 147 584
Batch normalization (128, 40, 11) 256

MaxPool2d (128, 20, 5)

Conv2d (256, 20, 5) 295 168
Batch normalization (256, 20, 5) 512

Conv2d (256, 20, 5) 590 080
Batch normalization (256, 20, 5) 512

MaxPool2d (256, 6, 1)

Conv2d (256, 1, 1) 393 472
Batch normalization (256, 1, 1) 512

Squeeze (256)

Dropout (256)
Dense (256) 65 792

Dropout (256)
Dense (128) 32 896

Dropout (128)
Dense (85) 10 965

Output: Sigmoid (85)

Table 1: Model architecture used for our classification system.
Leaky ReLUs are used as the activation function.

4. MODEL TRAINING

We have tested four different approaches to model training in a
hierarchical context, which we highlight here. We start by focusing
on the impact of various loss functions, before introducing a new
multi-model architecture1.

4.1. Standard approach

In our initial approach, we treat the labels from the combined set
I∪G as a unified entity and train the model on these grouped labels.
This method has the advantage of being relatively straightforward
but completely disregards the inherent hierarchical structure within
the data. Consequently, it may yield inconsistent predictions, as
nothing prevents the model from mistakenly predicting a group
label along with an instrument that doesn’t belong to that group.

As a first approach, we train a model using a standard cross-
entropy loss. To counterbalance the pronounced class imbalance
within the dataset, the loss is reweighted by inverse label frequency.
This standard loss reweighting technique forms a good baseline

1The code to train our model is publicly available on github.

but remains extremely limited. Therefore, we also test a loss built
specifically for imbalanced datasets, the focal loss Lf . This loss,
initially defined for object detection [27], is defined as a slight
variation on the cross-entropy loss:

Lf (ŷ, y) = −(1− pt(ŷ, y))
2 · log(pt(ŷ, y)) (1)

with pt the predicted probability of the correct class. This loss
function has the advantage of dynamically giving more importance
to misclassified samples during training. Indeed, for a sample
classified correctly with high confidence, 1 − pt nears 0, which
causes the term to have little impact on the loss.

This approach makes for a good baseline, but is unable to treat
the labels in I and G differently. In a second approach, we attempt
to apply a weight to each tree level in the loss function. For a given
loss function L, we define:

Lweighted(ŷ, y) = 1I(y)·αL(ŷ, y)+1G(y)·(1−α)L(ŷ, y). (2)

We then run a grid search for different α values, with L a cross-
entropy loss. The results are presented in Fig. 3. The maximal
F1-score across all nodes is obtained for α = 0.1, that is, putting
much more emphasis on the group-level loss term. The curve
presented in Fig. 3, however, shows no clear trend.

Figure 3: F1-score depending on alpha value for Lweighted.

Every model is trained for 30 epochs using the Adam optimizer
with a batch size of 32 and a learning rate of 0.001. The training
was done on an Nvidia 1660Ti card, with each model taking around
30 minutes to train.

4.2. Specialized models

The previous approaches remained limited by treating labels from
I and G as interchangeable, without any true accounting for the
data’s hierarchical structure. To overcome this problem and im-
prove performance, we abandon the idea of a generalized model
predicting groups and instruments in one pass and instead build a
two-pass prediction system. To do so, we define a first model for
group prediction, followed by specialized models for instrument
prediction within each group. We train eight models using this
approach: one group model trained with labels from G and seven
specialized models, each predicting a subset of instruments from I.

For simplicity, all models use the same VGG-like architecture,
and all models are trained using the focal loss on the entirety of the
dataset. This model has a much greater capacity than the baseline
models. However, artificially increasing the capacity of the baseline
models (by adding two extra conv-conv-pool blocks) shows no
significant performance increase, which allows us to suggest that
any changes in performance are due to the change in architecture,
not in capacity. At inference time, the models are run in succession:
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the group-level model is run first, followed by each instrument-level
model. This has a significant impact on inference speeds, making
them eight times slower. The effect could likely be mitigated by
implementing a gating structure, and only calling the instrument-
level models if the group-level prediction is above a given threshold.

5. RESULTS AND DISCUSSION

Considering the pronounced data imbalance and the absence of
prioritization between false positives and negatives within the ap-
plication, we use the F1-score metric [28] for evaluation:

F1 =
2× precision × recall

precision + recall
. (3)

As shown in Table 2, the balanced cross-entropy performs
similarly to the focal loss, with the latter having a slightly better
performance for instrument prediction. This is unsurprising, given
that the focal loss allows reweighting at a label granularity rather
than simply for the tree levels. The fact that both performances
are similar suggests that the focal loss’ primary role is probably in
rebalancing loss terms between group and instrument-level labels.

On the other hand, the weighted cross-entropy approach shows
inferior performance and fails to learn instrument labels. Overall,
we notice that performance for groups is significantly higher than
for instruments across all models. This result is in accordance with
our initial expectations, given that the reason for implementing
groups was hopes for better performance in groups even when
fine-grain instrument detection is unachievable.

Groups Instruments
F1 Precision Recall F1 Precision Recall

Balanced cross-entropy 0.74 0.76 0.72 0.41 0.53 0.35
Focal loss 0.74 0.76 0.73 0.43 0.52 0.37

Weighted cross-entropy 0.64 0.51 0.86 0.17 0.52 0.06
Group-specialized models 0.78 0.76 0.81 0.45 0.50 0.40

Table 2: Performance of the different models. Averages are micro-
averages, giving equal weight to each sample. The best method for
each metric uses boldface.

Figure 4: Precision and recall per group, and as functions of the
number of training and test samples for group-specialized models.

This performance disparity is greatly lessened at a group level,
as can be seen in Fig. 4. We can, however, notice the specific case

of struck idiophones, which shows a much lower recall of 16%.
Looking closer, we notice that this group is often misclassified as
the Struck membranophones group. That is not very surprising,
given the considerable overlap between some of the instruments
within each group. For instance, a gong or cymbals will be classified
as Struck idiophones, but any other auxiliary percussion will be
considered a membranophone by default. A non-negligible amount
of Struck membranophones instruments are also misclassified as
Radioelectric instruments: this is likely due to the presence of the
drum machine in the latter group. This shows the limitation of
the chosen Hornbostel-Sachs class tree, which is very flexible in
both depth and height but also can be prone to separating similarly-
sounding instruments into very different groups.

Figure 5: Precision and recall per instrument, and as functions
of the number of training and test samples for group-specialized
models.
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We observed that our models are generally conservative, with
recall scores notably lower than precision, especially at the in-
strument level. As depicted in Fig. 5, the model demonstrates
reasonable performance for only about fifteen of the most common
instruments, with performance sharply declining to almost zero
precision and recall rates for most of the remaining dataset. Ex-
ceptions exist, with instruments such as the yangqin, the erhu, and
the dizi showing some of the best performances. Given that these
instruments all belong to traditional Chinese music, we can assume
that the model has, to a degree, learned to recognize this distinctive
genre and its associated instruments.

Furthermore, we are also able to confirm that the error of the
model is caused by generalization issues. The performance of the
model on the training set is excellent, as can be seen in Fig. 6 and
Fig. 7. Initial experiments with a validation set also allowed us to
check that the model did not overfit the training data.

Figure 6: Precision and recall for group-specialized models on the
training data.

Figure 7: Precision and recall on training data for group-
specialized models.

An important complicating element in instrument prediction
lies in instrument co-occurrence. Let us define C ∈ R|I|×|I|

where C(i, j) represents the total instances of both the ith and
jth instrument appearing together in a training set excerpt 2. This
co-occurrence matrix is subsequently normalized within the range
of [0, 1] utilizing the methodology outlined in [29]:

C′(i, j) =

0 if i = j
C(i, j)−min C(·, j)

max C(·, j)−min C(·, j) otherwise.
(4)

Because of the chosen normalization, the matrix is not symmetric
and should be read "row-wise."
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Figure 8: Excerpt of the normalized co-occurrence of instrument
labels in the training data.

An excerpt from this matrix, in Fig. 8, shows these strong rela-
tions between some instruments. For instance, we can confirm the

2|X| is the cardinal number of set X
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speculated strong co-occurrence rate between Chinese instruments
or notice that the violin and viola are always simultaneously present
in the training data. Furthermore, displayed in Fig. 9 (resp. Fig. 10)
is a co-occurrence matrix illustrating instances of ghost detection
(resp. missed detection). Specifically, within Fig. 9, the entry at
(i, j) denotes the occurrences of instrument j in an excerpt when
the model incorrectly predicted a false positive for i. In Fig. 10, the
element at (i, j) signifies the occurrences of predicted instrument
j in an excerpt where i was erroneously identified as a false nega-
tive. These outcomes are standardized using the same methodology
described in Eq. (4), and the results should be read "row-wise."
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Figure 9: False positive co-occurrence.
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Figure 10: False negative co-occurrence.

Interestingly, instrument co-occurrence does not invariably re-
sult in false predictions, as the outcomes appear to be instrument-
specific. Notably, the model’s proficiency in recognizing instru-
ments varies significantly. For instance, the model does not seem
to have learned to effectively recognize the dizi, and seems to be
detecting the guzheng and the yangqin as a proxy instead. Besides,
the model encounters challenges in distinguishing between specific
instrument categories. For example, it frequently confuses digital
drum machines with drum sets and mixes the double bass with
the electric bass. An interesting fact is the ghostly detection of a
distorted electric guitar when singers, electric bassists, and drum
set players are present. This result aligns with expectations due to
the widespread use of these instruments in Western music.

6. CONCLUSION

This paper shows that the hierarchical approach proves highly bene-
ficial in rare instrument recognition within complex datasets. While
the F1-score at an instrumental level shows poor performance of
45%, the group-level score reaches up to 78%, allowing for much
more reliable coarse-level instrument detection.

Looking ahead, there are a few areas that could be explored
further. It would be interesting to investigate how to assess the
system’s adaptability to new instruments, particularly within es-
tablished groups, to gauge its flexibility across various musical
contexts. This would also allow us to bridge the gap between hi-
erarchical systems and few-shot learning approaches. The current
system’s performance could also be evaluated on different datasets.
Future works should also explore alternative input features for
the neural network, such as audio scattering [30], and consider
different hierarchical systems more tailored to machine learning
methodologies. The chosen instrument hierarchy is likely to have
a strong impact on results, and exploring automatic hierarchical
classification for instruments [31] represents an intriguing avenue
to improve detection. Alternative model architectures should also
be explored, such as the promising Vision Transformer-based mod-
els. From the performance point of view, the specialized models
can be simplified, making them smaller and faster to run. Such a
study would make the models more efficient, which is crucial in
real-world applications.
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