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Abstract. Concentration inequalities, a major tool in probability theory, quantify how much a random variable deviates from a cer-

tain quantity. This paper proposes a systematic convex optimization approach to studying and generating concentration inequalities

with independent random variables. Specifically, we extend the generalized problem of moments to independent random variables.

We first introduce a variational approach that extends classical moment-generating functions, focusing particularly on first-order

moment conditions. Second, we develop a polynomial approach, based on a hierarchy of sum-of-square approximations, to extend

these techniques to higher-moment conditions. Building on these advancements, we refine Hoeffding’s, Bennett’s and Bernstein’s

inequalities, providing improved worst-case guarantees compared to existing results.
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Introduction.
Concentration inequalities have emerged as a major tool in probability theory, finding applications in learn-

ing theory (Devroye et al. 1996), in random matrix theory (Tao 2011) or statistical physics or mechan-

ics (Dembo and Zeitouni 1998). These inequalities quantify how much a random variable deviates from a

certain quantity, usually its mean. Classical examples include Markov’s inequality for bounding probabili-

ties of deviations from zero or Chebyshev’s inequalities for deviation from the mean. In machine learning

and statistics, where the data are often assumed to be independent and identically distributed (i.i.d.), basic

inequalities such as Hoeffding’s inequality, Bennett’s inequality or Bernstein’s inequality (Boucheron et al.

2013, Chapter 6) are extensively used, e.g., for characterizing generalization properties of machine learning

algorithms (Bach 2024). For instance, Hoeffding’s inequality (Hoeffding 1963) states that for X1, . . . ,Xn

i.i.d. random variables taking their values almost surely in [0,1], the sum
∑n

i=1Xi has a subgaussian tail

with deviation t⩾ 0:

P

(
n∑

i=1

(Xi −E[Xi])⩾ nt)

)
⩽ exp

(
−2nt2

)
.

In this work, we provide a principled approach to concentration inequalities for independent univari-

ate random variables with finite moments. Let X be a subset of R and P(X ) be the set of distributions
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on X . Given X1, . . . ,Xn independent random variables generated from distributions p1, . . . , pn ∈P(X ), we

formulate the generalized problem of moments for independent random variables as follows:

ρn = sup
p1,...,pn∈P(X )

Ep1,...,pn [F (X1, . . . ,Xn)] such that ∀i,Epi [gi(Xi)] = µi,

= sup
p1,...,pn∈P(X )

∫
Xn

F (x1, . . . , xn)dp1(x1) · · ·dpn(xn) such that ∀i,
∫
X
gi(xi)dpi(xi) = µi,

(1)

for some functions F : x ∈ X n 7→ R+ and gi : x ∈ X 7→ Rm. For instance, Hoeffding’s inequality involves

F (x) = 1∑n
i=1 xi⩾nt+

∑n
i=1 E[Xi], and therefore Ep1,...,pn [F (x)] = P(

∑n

i=1(Xi − E[Xi]) ⩾ nt). Problem (1)

is an infinite-dimensional non-convex problem. Without further assumptions on F and g, minimizing with

respect to distributions pi is often intractable.

This problem is closely related to the generalized problem of moments formalized by Lasserre (2008),

which extends the traditional problem of moments (Landau 1998) that seeks a measure matching a given set

of moments. The search for optimal multivariate Chebyshev’s inequalities began in the 1960s (Marshall and

Olkin 1960, Isii 1962). Isii (1962, 1964), along with Karlin and Studden (1966), formalized the pursuit of

sharp inequalities by framing it as an optimization problem. Let Y ⊂Rn and P(Y) be the set of probability

distributions on Y . The generalized problem of moments takes the form:

ρ= sup
p∈P(Y)

Ep[F (X)], such that Ep[g(X)] = µ

= sup
p∈P(Y)

∫
Y
F (x)dp(x) such that

∫
Y
g(x)dp(x) = µ,

(2)

where g :Y 7→Rm. Compared to Problem (1), the generalized problem of moments optimizes over distribu-

tions p∈P(Y) that are not necessarily products of their marginals. Under mild assumptions on the moment

vector µ, strong duality holds (Isii 1964, Theorem 3.1). Its Lagrangian relaxation was first formulated by Isii

(1964) as follows:

ρ= inf
α∈R,β∈Rm

α+βµ such that ∀x∈Y, F (x)⩽ α+β⊤g(x),

= inf
α∈R,β∈Rm

α+βµ+sup
x∈Y

{F (x)− (α+β⊤g(x))}.
(3)

where α ∈R corresponds to the dual variable associated to the constraint
∫
Y dp(x) = 1, and β ∈Rm to the

constraint
∫
Y g(x)dp(x) = µ. The dual Problem (3) is convex as it is expressed as the pointwise supremum

of affine functions. Yet, it is unclear how to deal with the constraint “∀x∈Y, F (x)⩽ α+β⊤g(x)”, because

it corresponds to infinitly many linear constraints in (α,β).

Those problems are now traditionally approached via convex reformulations or approximations using

semidefinite programming (SDP). Bertsimas and Popescu (2005) first investigated optimal bounds for

Ep[F (X)] = P(X ∈ S) assuming X and S to be semi-algebraic sets. For univariate random variables, they

efficiently solved it using a single SDP, allowing them to derive tight bounds. For multivariate random

variables, they proposed a series of semidefinite relaxations using sum-of-square representations (SoS).
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More generally, Lasserre (2008) investigated the generalized problem of moments and derived a hierar-

chy of SDPs converging to the optimal value (extending the methodology developed for approximating

global optimization problems (Lasserre 2001)). Simultaneously, Vandenberghe et al. (2007), Comanor et al.

(2006) reformulated the generalized Chebyshev inequality as linear matrix inequalities (LMI) using an S-

procedure.

These SDP-based approaches, along with tight guarantees, often allow reconstructing corresponding

worst-case distributions (Bertsimas and Popescu 2005, Section 5.1) (Vandenberghe et al. 2007, Section 2.2).

These extremal distributions turns out to be discrete (Rogosinski 1958, Theorem 1) and may even be speci-

fied with m+2 Dirac, where m is the number of constraints in (2). When the distributions in the problem

under consideration are continuous with additional properties like symmetry or unimodality, these bounds

may no longer be sharp. Therefore, Popescu (2005) generalized Chebyshev’s inequality to convex classes

of distributions generated by an appropriate parametric family of distributions. Building on Choquet’s the-

ory and conic duality, they provided a SDP reformulation (resp. approximation) of the generalized problem

of moments for such univariate (resp. multivariate) distributions. From this framework, Van Parys et al.

(2015) extended Gauss inequalities to multivariate unimodal distributions and outlined a methodology for

computing worst-case unimodal distributions related to this problem.

Research questions and assumptions. Throughout this work, we assume X1, . . . ,Xn to be inde-

pendent random variables in X ⊂ R with finite moments ∀i,Epi [g(Xi)] = µi ∈ Rm. For all i, we define

Pµi
(X ) = {pi ∈ P(X ),

∫
X gi(xi)dpi(xi) = µi} the set of (univariate) distributions on X with moment µi.

If in addition, X1, . . . ,Xn follows the same distributions with moments µ1 = µ2 = · · ·= µn, they are said

to be independent and identically distributed (i.i.d.). We assume that F is an indicator function, that is for

S an appropriately selected compact semi-algebraic subset of X n that emerges from the problem under

consideration, ∀x ∈ X n, F (x) = 1x∈S . The generalized moment problem for independent variables takes

the form:

ρn = sup
∀i,pi∈P(X )

∫
x∈Xn

1x∈Sdp1(x1) · · ·dpn(xn) such that ∀i,
∫
X
g(xi)dpi(xi) = µi,

= sup
∀i,pi∈Pµi (X )

∫
x∈Xn

1x∈Sdp1(x1) · · ·dpn(xn).
(4)

In this formulation, independence is encoded by explicitly accounting for the constraint “∀x ∈ X n, p(x) =

p1(x1) · · ·pn(xn)”. Classical concentration inequalities correspond to upper bounds to these problems for

specific choices of gi’s. It is natural to wonder how tight such bounds are. To this end, we propose construc-

tive and tractable approaches to upper bounding Problem (4), along with a comparison to existing bounds.

Then, we raise the issue of reconstructing worst-case distributions that can potentially match these bounds

in some scenarios.
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Contributions. We propose constructive approaches for computing concentration inequalities of inde-

pendent variables given a set of moments. To this end, we start by considering variational formulations to

Problem (4):

ρHn = inf
H∈H

sup
∀i,pi∈P(µi)

∫
Xn

H(x)dp1(x) · · ·dpn(x) such that ∀x∈X n, F (x)⩽H(x), (5)

where H is a well-chosen set of functions. It is straightforward that Problem (5) yields an upper bound to

the generalized problem of moments for independent random variables, that is:

ρn ⩽ ρHn .

Efficiently leveraging the variational formulation (5) requires strategies to enforce the constraint ∀x ∈

X n, F (x) ⩽ H(x) and to bound the objective. The choice of the function families H ensure these two

requirements are satisfied. We propose two natural and complementary strategies based on convex opti-

mization, each relying on different choices for H.

1. The first strategy revolves around a family of product-functions ∀x ∈ X n,U(x) =
∏n

i=1 ui(xi)

inspired from classical probability proofs and variational probabilistic inference (Jaakkola and Jordan

1999). Given such a function, we define a separable approach by formulating Problem (5) as n univariate

subproblems. We then develop a variational approach by optimizing over the family of product-funtions.

When F is log-convex and first-order moments are finite with ∀i,E[gi(Xi)] = E[Xi] = µi, the variational

approach takes the form of a finite-dimensional convex optimization reformulation, that can be efficiently

solved. This strategy significantly improves Hoeffding’s inequality for small values of n and accurately

meets the asymptotic large deviations for large n. Moreover, this approach allows the reconstruction of

distributions involved at the optimum of the upper bound Problem (5). However, when it comes to higher-

order finite moments, the variational approach formulates as a nonconvex problem that cannot be solved

efficiently anymore.

2. The second strategy relies on a family of polynomial upper bounds, which is particularly suited

to higher-moment conditions. Referred to as a polynomial approach, this strategy formulates as a non-

convex optimization problem that can be effectively approximated by a series of sum-of-square formula-

tions (Lasserre 2008). This approach contributes to refining Bernstein’s and Bennett’s inequality, which are

fundamental probabilistic bounds.

3. Finally, we extend the polynomial approach to a feature-based approach relying on broader families

of upper bounds H. Compared to the variational approach, this method refines Hoeffding’s inequality using

higher-order polynomials when applied to two random variables. While this methodology introduces finer

approximations ρn ⩽ ρHn , it often requires well-chosen relaxations to approximate ρHn .
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Outline of the paper. Section 1 focuses on computing Problem (5) derived from a family of product-

functions, which is particularly suited to first-order moment assumptions. We formally compare these

bounds to existing results. In Section 2, we study in depth the variational and separable approaches associ-

ated with Hoeffding’s inequality. Furthermore, we propose a methodology for reconstructing distributions

that match the separable or variational optimization problem in the worst-case scenario. Section 3 consid-

ers a family of polynomial upper bounds and approximate the resulting upper optimization Problem (5)

using sum-of-square formulations. Thereby, we derive numerical evaluations of Bennett’s and Bernstein’s

inequality. Finally, we introduce a feature-based framework that expands the scope of upper bounds fami-

lies, providing a comprehensive approach to Hoeffding’s inequality that includes both the polynomial and

variational methodologies.

Codes. All codes are provided at https://github.com/CMoucer/

ConcentrationInequalities. We use standard solvers SCS (O’Donoghue et al. 2016) and

MOSEK (ApS 2022).

1. A variational approach based on product-functions.
Classical functions F (·) usually correspond to the probability tails of a sum of independent random vari-

ables, specifically, F (X) = 1∑n
i=1 Xi∈S representing P(

∑n

i=1Xi ∈ S). This applies, among others, to

Hoeffding’s, Bennett’s, and Bernstein’s inequalities (see, e.g., (Boucheron et al. 2013, Bach 2024, Ver-

shynin 2018) and references therein). Their proofs typically rely on the Cramér-Chernoff technique, which

essentially combines the exponential Chernoff’s inequality with the independence of random variables.

Specifically, they use moment-generating functions as follows:

P

(
n∑

i=1

(Xi −µi)⩾ nt

)
⩽ inf

λ⩾0
e−λntE[eλ

∑n
i=1(Xi−µi)] = inf

λ⩾0

n∏
i=1

e−λ(µi+t)E[eλXi ],

and then optimize over λ ⩾ 0 for obtaining the smallest possible valid upper bound within this family. A

natural, but richer, family of inequalities for obtaining concentration bounds involves constructing upper

bounding functions as products of univariate functions, which are classical in probabilistic variational infer-

ence:

U =

{
U :X n 7→R+ such that ∀x∈X n,U(x) =

n∏
i=1

ui(xi) and ∀i, ui :X 7→R+

}
. (6)

In the Cramér-Chernoff technique, the functions ui correspond to moment-generating functions with ∀xi ∈
X , ui(xi) = eλ(xi−µi−t) and serve as natural upper bounds to the indicator function 1∑

i=1(xi−µi)⩾nt ⩽∏n

i=1 e
λ(xi−µi−t).

Throughout this section, we assume the existence of a product-function U ∈ U (6) such that ∀x ∈
X n, F (x)⩽U(x), from which we define two strategies. First, we introduce a separable approach that gen-

eralizes classical probability proofs. Second, we optimize over the family of product-functions (6) and show

how it formulates as a convex optimization problem. Depending on the moments and product-functions

under consideration, we demonstrate that these approaches yield tractable upper bounds.

https://github.com/CMoucer/ConcentrationInequalities
https://github.com/CMoucer/ConcentrationInequalities
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1.1. The separable approach.

Let U ∈ U be a product-function verifying ∀x ∈ X n, F (x)⩽ U(x). This section studies the properties of

the optimization problem:

ρUn = sup
∀i,pi∈Pµi (X )

∫
Xn

U(x1, . . . xn)dp1(x1) · · ·dpn(xn).

This problem naturally provides an upper bound to the generalized problem of moments for independent

random variables (4), specifically ρn ⩽ ρUn . By definition, the function U ∈ U has a product structure ∀x ∈
X n,U(x) =

∏n

i=1 ui(xi). This allows the separation of the integral over X n into n integrals over X , thus

decoupling the optimization problem into n independent optimization problems over pi ∈ P(X ). In other

words, the family U aligns with the structure imposed by independence:

ρUn = sup
∀i,pi∈Pµi (X )

∫
X
· · ·
∫
X

n∏
i=1

ui(xi)dp1(x1) · · ·dpn(xn) =

n∏
i=1

sup
pi∈Pµi (X )

∫
X
ui(xi)dpi(xi).

For univariate distributions with µi in the interior of X , strong duality holds. Then,

ρUn =

n∏
i=1

inf
αi∈R,βi∈Rm

{αi +β⊤
i µi} such that ∀ xi ∈X , ui(xi)⩽ αi +β⊤

i gi(xi),

=

n∏
i=1

inf
αi∈R,βi∈Rm

sup
xi∈X

{ui(xi)−β⊤
i (gi(xi)−µi)}.

(7)

Problem (7) is finite-dimensional and convex, as it is the pointwise supremum of affine functions (Boyd

and Vandenberghe 2004, Section 3.2.3). In the case of i.i.d. random variables, the problem simplifies sig-

nificantly to a single optimization problem with ρUn = (ρexp1 )
n. However, computing supxi∈X{ui(xi) −

β⊤
i (gi(xi)− µi)} often remains numerically intractable. Under strong assumptions, such as the finiteness

of the support or the convexity of the objective function on a compact set, it reduces to a finite number of

constraints. Proposition 1 outlines a useful tractable setting that will be used in Section 2 for improving

Hoeffding’s inequality.

PROPOSITION 1. Let X be compact and xi 7→ ui(xi)− β⊤(gi(xi)−µi) be convex. Then, Problem (7)

formulates as a tractable convex optimization problem with a finite number of constraints:

ρUn =

n∏
i=1

inf
αi∈R,βi∈Rm

{αi +β⊤
i µi} such that ∀x∈Extremal(X ), ∀i, ui(xi)⩽ αi +β⊤

i gi(xi).

Proof. Under the assumptions of Proposition 1, the maximization of the convex function ui(xi) −
β⊤
i (gi(xi)−µi) over the compact set X is achieved at extremal points of X (Boyd and Vandenberghe 2004,

Section 3.2.3). □

This technique faces two major challenges: first, constructing a valid upper bound U ∈ U can be dif-

ficult; second, even with a suitable upper bound, the resulting optimization Problem (7) may be numeri-

cally intractable. The next section focuses on more accurate approximations to the generalized problem of

moments by optimizing over the family of upper bounds (instead of keeping one such upper bound fixed).
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1.2. Optimizing over U .

This section explores Problem (5) for the class of product-functions (6). Combined with the dual formula-

tion (7), we define:

ρvarn = inf
ui⩾0

inf
α∈Rn,β∈Rn×m

n∏
i=1

(αi +β⊤
i µi) such that ∀i,∀xi ∈X , ui(xi)⩽ αi +β⊤

i (xi),

∀x∈X n, F (x1, . . . , xn)⩽
n∏

i=1

ui(xi).

(8)

Optimizing with respect to u1, . . . , un ⩾ 0, it holds that:

ρvarn = inf
α∈Rn,β∈Rn×m

n∏
i=1

(αi +β⊤
i µi) such that ∀xi ∈X ,∀i,αi +β⊤

i g(xi)⩾ 0,

∀x∈X n, F (x1, . . . , xn)⩽
n∏

i=1

(αi +β⊤
i g(xi)).

(9)

As expected, Problem (9) shows no dependence on the ui’s. In Proposition 2, we formally compare ρn (4)

to ρvarn (9) and to ρUn (7) for any function U ∈ U .

PROPOSITION 2. Let U ∈ U , ρUn be defined in (7), ρn in (4) and ρvarn in (9). Then it holds that

ρn ⩽ ρvarn ⩽ ρUn .

In addition, the equality ρUn = ρvarn holds for optimal values (u⋆, α⋆, β⋆) such that ∀xi ∈ X , ui,⋆(xi) =

αi,⋆ +(βi,⋆)
⊤gi(xi).

Proposition 2 provides optimal product-functions U ∈ U , as affine functions of the moments. This specific

structure indicates that moment-generating functions, used in the Cramér-Chernoff method, are not optimal.

Computing (αi,⋆, βi,⋆) often remains difficult (that is, solving Problem (9) which is finite-dimensional but

nonconvex). Proposition 3 ensures a convex reformulation of Problem (9).

PROPOSITION 3. Let ρvarn be defined in (8). Then, it holds that

log(ρvarn ) = inf
α∈Rn,β∈Rn×m

n∑
i=1

{αi +β⊤
i µi − 1}+ sup

x∈Xn

{
log(F (x))−

n∑
i=1

log(αi +β⊤
i gi(xi))

}
. (10)

In addition, if x 7→ log(F (x))−
∑n

i=1 log(αi +β⊤
i gi(xi)) is convex and X is compact, then,

sup
x∈Xn

{
log(F (x))−

n∑
i=1

log(αi +β⊤
i gi(xi))

}
= sup

x∈Extremal(Xn)

{
log(F (x)−

n∑
i=1

log(αi +β⊤
i gi(xi))

}
.

Proof. First, let us consider the logarithm log(ρvarn ) = infα∈Rn,β∈Rn×m

∑n

i=1 log(αi + β⊤
i µi) +

supx∈Xn{log(F (x) −
∑n

i=1 log(αi + β⊤
i gi(xi))}. Noticing that inft⩾0{

(
tαi + tβ⊤

i µi − 1
)
− log(tαi +

tβig(xi))}= log(αi+β⊤
i µi)− log(αi+βig(xi)), we conclude the reformulation in (10). The second asser-

tion follows by maximization of a convex function over a compact set. □
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Proposition 3 details a set of assumptions on X , F and g, under which the constraints

“ log(F (x1, . . . , xn)⩽
∑n

i=1 log(αi + β⊤
i gi(xi))” reduces to a finite number of points. For instance, these

assumptions are satisfied for finite first-order moments gi(xi) = xi together with log-convex objectives F

(such as exponentials or indicator functions 1S , with compact sets S ⊂ X n, see (Boyd and Vandenberghe

2004, Section 3.5)). An alternative convexification proof is achieved via optimal transport in Appendix A,

which also includes a formulation of the gap to the generalized problem of moments.

We have established two approaches for deriving upper bounds to the generalized problem of moments for

independent random variables (4) using a family of product-functions (6). First, we introduced a separable

approach (7) that formulates as a product of n convex optimization problems. However, constructing prod-

uct functions may not be straightforward. Then, we formulate a variational Problem (9) emerging from (7)

by optimizing with respect to product-functions. It turns out that Problem (9) benefits from a convex refor-

mulation which does not require a priori upper bounds to F (but constructs such bounds in the process).

Without further assumptions on the probability support X , the objective F or moments gi, both approaches

are intractable. We will see next how they effectively apply in the context of Hoeffding’s inequality.

2. Revisiting Hoeffding’s inequality.
Hoeffding’s inequality establishes a subgaussian tail for the sum of independent random variables taking

their values in a bounded set with finite means. This section is devoted to refining Hoeffding’s inequality,

applying the separable and variational frameworks developed in Section 1. First, let us recall Hoeffding’s

inequality as stated in Theorem 1.

THEOREM 1. (Hoeffding 1963) Let X1, ...,Xn be independent random variables taking their values in

[a1, bi] almost surely. Then, for every t⩾ 0,

P

(
1

n

n∑
i=1

(Xn −E[Xn])⩾ t

)
⩽ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
= ρHoeffding

n . (11)

Throughout this section, X1, . . . ,Xn are independent random variables with mean µ1, . . . , µn. Without loss

of generality, we assume that they all take their values in X = [0,1] (that is, bi = 1 and ai = 0) and thereby,

have finite mean E[Xi] = µi for all i. Our goal is to approximate the probability P(
∑n

i=1Xi ⩾ nt+
∑n

i=1 µi)

for t⩾ 0. In our framework, it translates to functions where for all x ∈ [0,1]n, F (x) = 1∑n
i=1 Xi−

∑n
i=1 µi−nt

and ∀i,∀xi ∈ [0,1], gi(xi) = xi.

As a reference, we first consider one random variable, that benefits from an exact analytical bound (4).

We compare it to the separable technique (7) on the moment-generating function. Then, we extend the

analysis to n random variables, comparing bounds in the separable and variational approaches to Hoeffd-

ing’s inequality. More precisely, we examine cases where random variables are i.i.d., and where random

variables are divided into two blocks with different means µ1 = µ2 = · · ·= µm and µm+1 = · · ·= µn (with

1⩽m⩽ n−1). For the case µ1 = µ2 = · · ·= µn, our results asymptotically correspond to large deviations.

Finally, we propose a methodology to reconstruct a distribution in the worst-case scenario.
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2.1. One random variable: comparison of the exact and exponential bounds

Computing optimal bounds for univariate random variables has been extensively studied in past years and

is encompassed in the multivariate analyses proposed by Isii (1962), Bertsimas et al. (2000), Vandenberghe

et al. (2007). Let us compute the exact closed-form solution (4) and the separable scenario for moment-

generating functions (7).

Exact optimization problem. Let X1 be a random variable in X = [0,1], with E[X1] = µ. Recall the

exact optimization problem (4) for every t⩾ 0,

ρ1(t) = sup
p1∈P([0,1])

∫ 1

0

1x1⩾µ+tdp1(x1) such that

∫ 1

0

x1dp1(x1) = µ,

= inf
α,β∈R

α+βµ such that ∀ x1 ∈ [0,1],1x1⩾µ+t ⩽ α+βx1.
(12)

Problem 12 defines a function ρ1(·) as a solution to a linear program for every t⩾ 0 and verifies ρ1(t) =

P (X1 ⩾ t+µ). As stated by Bertsimas and Popescu (2005, Theorem 2.2), strong duality holds for µ∈]0,1[.

It turns out that Problem (12) is a particular case of both the generalized moment problem (2) for univariate

distributions and of the generalized problem of moments for independent random variables (1). It admits a

closed-form solution, detailed in Proposition 4.

PROPOSITION 4. Let 0⩽ t⩽ 1−µ. Then, ρ1(t) as defined in (12) verifies:

ρ1(t) =
µ

µ+ t
. (13)

Proof. Functions x1 7→ −(α+ βx1) is convex on [0,1] . Thus the constraint in (12) can be reduced to two

constraints : α⩾ 0 and β(µ+ t)⩾ 1. It follows that α= 0 and β = 1
µ+t

. □

Separable approach. Now, let us compute the bound defined in (7) considering moment-generating

functions uλ(x) = eλ(x−(µ+t)). By construction, ∀x ∈ R,1x⩾µ+t ⩽ eλ(x−(µ+t)). We define the family of

upper bounds ρexp1 . For every λ∈R and for every t⩾ 0,

ρexp1 (λ, t) = inf
α,β

α+βµ, such that ∀x1 ∈ [0,1], eλ(x1−(µ+t)) ⩽ α+βx1. (14)

Problem (14) is a convex optimization problem, that is well-defined for every t⩾ 0 and λ ∈ R. For every

t⩾ 0, it admits an optimal moment-generating function analytically given in Proposition 5.

PROPOSITION 5. Let t⩾ 0, and ρexp1 (λ) be defined in (14). Then, for every t⩾ 0,

ρexp1 (t) =
(µ
ν

)ν
(
1−µ

1− ν

)1−ν

, (15)

where ν = µ+ t, and ρexp1,⋆ is the optimal value when optimizing (14) with respect to λ.
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Figure 1 Comparison of the bound in the exact (13) and separable (15) approaches to Hoeffding’s inequal-

ity (11). On the left, bounds are plot as a function of t with µ= 0.3, and on the right as a function of

µ with t= 0.3.

Proof. See Appendix B.1.1. □

Proposition 5 yields exactly the Chernoff-Bound for a Bernoulli random variable on the support {0,1}

with mean µ (Boucheron et al. 2013, Section 2.2). This result was originally stated in the seminal work of

Hoeffding (1963), but our approach ensures tightness for this family of moment-generating functions. It can

also be directly derived from Kullback’s inequality, as detailed in Appendix B.1.2.

In Figure 1, we observe that the exact bound ρ1 (12) significantly improves upon Hoeffding’s bound,

whereas the bound ρexp1 (14) in the separable approach only shows improvement for large values of t. Both

approaches benefit from a dependence in the first-order moment µ, that does not appear in Hoeffding’s

inequality (11). The next section extends beyond the univariate case.

2.2. Generalization to n independent random variables.

We consider X1, . . . ,Xn independent random variables with finite means µi. We first examine the case of

i.i.d. random variables, where µ1 = · · ·= µn. The bound obtained in the variational approach (9) asymptot-

ically matches the large deviations, and cannot therefore be much improved for a large number of variables.

Next, we consider the case of independent random variables with different means. Specifically, we for-

mulate a tractable upper bound using the separable treatment and discuss the computational limits of the

variational approach for large n due to an exponential number of constraints. In the special case of two

blocks of variables with different means, the number of constraints involved is O(n2).

2.2.1. Independent and identically distributed random variables (equal means). This sec-

tion focuses on i.i.d. random variables, that is with µ1 = µ2 = · · · = µn. Thanks to symmetry properties,

both the separable and variational approaches yield tractable solutions for any number of variables n.
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Separable approach. Let us consider the moment generating function of X1 + · · · + Xn: ∀λ ∈

R,∀x ∈ [0,1]n, uλ(x) = eλ(
∑n

i=1{xi−µ−t}) =
∏n

i=1 e
λ(xi−µ−t). This is a product-function verifying for all

x∈ [0,1]n, F (x) = 1∑n
i=1 xi⩾n(t+µ) ⩽ uλ(x). We thus define the separable Problem (7) for λ∈R and t⩾ 0:

ρexpn (λ, t) =

n∏
i=1

inf
αi∈R,βi∈R

(αi +βiµ) such that ∀xi ∈ [0,1]n, eλ(xi−µ−t) ⩽ αi +βiµ. (16)

Optimizing with respect to λ, Proposition 6 provides a closed-form as a function of t.

PROPOSITION 6. Let µ1 = · · ·= µn and let ρexpn be defined in (16). Then, it holds for all t⩾ 0:

ρexpn,⋆(t) = inf
λ∈R

ρexpn (λ, t) =
(µ
ν

)nν
(
1−µ

1− ν

)n(1−ν)

= (ρexp1,⋆ (t))
n. (17)

Proof. Since µ1 = · · · = µn, Problem (16) benefits from a symmetry property and simplifies into ∀t ⩾

0, ∀λ∈R, ρexpn (λ, t) =
∏n

i=1 infα,β∈R(α+βµ), s.t. ∀xi ∈ [0,1]n, eλ(xi−µ−t) ⩽ α+βµ, that is ρexpn (λ, t) =

(ρexp1 (λ))n. We then optimize over λ as in Proposition 5. □

The symmetry properties induced by the i.i.d. assumption allow simplifying (16) into a single univariate

convex optimization problem, which can be solved efficiently. Again, this is exactly the Chernoff bound

for n i.i.d. Bernoulli variables taking their values in {0,1} with mean n. We conclude that the separable

approach improves Hoeffding’s inequality for large deviations t (as for a unique univariate variable). Let us

now explore how the variational approach might offer further improvements.

Variational approach. In the context of Hoeffding’s inequality and given symmetry properties induced

by µ1 = · · ·= µn = µ, the bound ρvarn defined in (9) takes the form for all t⩾ 0:

ρvarn (t) = inf
α∈R,β∈R

n∏
i=1

(α+β⊤µ) such that ∀x∈ [0,1]n, 1x1+···+xn⩾n(µ+t) ⩽
n∏

i=1

(α+βxi),

∀xi ∈ [0,1], α+βxi ⩾ 0.

This problem has a convex reformulation with a finite number of constraints, as proven in Proposition 3,

logρexpn (t) = inf
α,β,t⩾0

n(α+βµ− 1) such that −
n∑

i=1

log(α+βxi)⩽ 0, x∈ extremal(X̄n), (18)

where X̄n = {(x1, . . . , xn)∈ [0,1]n, x1 + · · ·+xn ⩾ n(µ+ t)} and where the constraint “∀x ∈ [0,1], α +

βx⩾ 0” is implied by the logarithm. The set X̄n ⊂ [0,1]n is compact and symmetric in (x1, . . . , xn). At first

sight, the set extremal(X )n appears to grow exponentially with n. However, due to symmetry properties

and the structure of the constraints, it reduces to O(n) constraints (see Appendix B.2, via computation of

extremal points). Therefore, Problem (18) can be efficiently addressed using standard solvers for convex

optimization. In addition, it is possible to derive closed-form solutions for (α⋆, β⋆), by enumerating all

extremal points given µ+ t and solving the KKT condition for Problem (18). We provide an example for

n= 2 in Appendix B.3.
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(a) µ= 0.1 and n= 3.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
deviation t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nc

en
tra

tio
n 

bo
un

d 
ρ

Hoeffding’s inequality

separable

variational

(b) µ= 0.6 and n= 3.
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(c) µ= 0.6 and n= 10.
Figure 2 Comparison of bounds derived in the separable (16) and variational

approaches (18) to Hoeffding’s inequality (11), as a function of the deviation t.

Figure 2 illustrates the comparison between the separable and variational approaches to the Hoeffding’s

bound for different numbers of i.i.d. random variables. It appears that ρexpn,⋆ (16) closely tracks Hoeffding’s

bound. In contrast, ρvarn (18) provides significant numerical improvements over Hoeffding’s inequality when

a small number of random random variables are in play. Furthermore, as the number of variables increases,

the variational approach asymptotically matches the separable treatment, as expected from the large devia-

tions theory.

In probability theory, the study of the asymptotic behavior of tails of random variables is known as the

large deviations theory, introduced by Varadhan (1988). In particular, the large deviation principle provides

a guarantee on rare events, as outlined in Theorem 2 for the sum of i.i.d. random variables.

THEOREM 2 (Cramér (1938): Large Deviations). Let X1, . . . ,Xn be i.i.d. random variables with

finite moment-generating functions, and let X̄n =
1
n

∑n

i=1Xi. Then, for all x∈R,

lim
n→∞

1

n
log(P(X̄n ⩾ x)) =−Γ⋆(x),

where Γ⋆(x) = supt⩾0(tx−Γ(t)) and Γ(t) = log(E[exp(tX1)]).

The moment-generating function of a univariate random variable formulates as an optimization problem

as in (14). Corollary 1 provides the large deviations asymptotic for i.i.d. random variables.

COROLLARY 1. Let X1, . . . ,Xn be i.i.d. random variables with mean E[X1] = µ, and taking their value

in [0,1] almost surely, and let X̄n =
1
n

∑n

i=1Xi. It holds that, for all t⩾ 0,

lim
n7→∞

1

n
log(P(X̄n ⩾ µ+ t)) =−(µ+ t) log

(
µ

µ+ t

)
− (1− (µ+ t)) log

(
1−µ

1− (µ+ t)

)
.

Proof. From the separable approach, Γ(t) = supp∈P(X )

∫ 1

0
etxdp(x) such that

∫ 1

0
xdp(x) = µ. Strong dual-

ity holds and Γ(t) = infα,β∈Rα+βµ, such that ∀x∈ [0,1], etx ⩽ α+βx. Thus, Γ(t) = 1+µ(et−1). The

desired statement is obtained by computing the Fenchel conjugate. □
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Corollary 1 demonstrates that the probability of X̄n deviating from the mean µ converges exactly to the

bound in the separable approach (17): for all t ⩾ 0, P(X1 + · · ·+Xn ⩾ n(µ+ t)) ≈ (ρexp1 )n. Numerical

results presented in Figure 2 are thus consistent with these large deviation estimates for relatively large n.

As a conclusion, when random variables are i.i.d., optimization problems in the separable and variational

approaches benefit from tractable formulations. The bound in the variational treatment (18) shows signifi-

cant improvements over Hoeffding’s inequality when a small number n of random variables are in play, but

suffers an increasing number of constraints. As n increases, the separable approach (16) provides a close

estimate of the generalized problem of moments at a lower computational cost.

2.2.2. Two blocks of random variables with different means. Hoeffding’s inequality, as pre-

sented in Theorem 1, applies generally to independent random variables without specific assumptions on

their means. However, formulating the separable and variational approaches in a generic setting can be

computationally challenging for a large number of variables n. To simplify this, we focus on the scenario

where the random variables are divided into two blocks with different means.

Separable approach. Consider the optimization problem (7) with different means in the context of

Hoeffding’s inequality. After solving each subproblem in (αi, βi) as in Proposition 5, the bound takes the

form, for any t⩾ 0:

ρexpn,⋆(t) = inf
λ∈R

e−nλ(µ̄n+t)

n∏
i=1

(
1+µi(e

λ − 1)
)
. (19)

Optimizing over λ ∈ R for different means µi cannot be achieved in closed-form as in the case of i.i.d.

variables. Note that log(ρexpn,⋆) could be computed as the minimum of a convex objective in λ. We rather

explicit an analytical upper bound in Proposition 7.

PROPOSITION 7. Let µ1, . . . , µn be in ]0,1[ and µi ̸= 1
2
. Then it holds for t⩾ 0 that:

ρexpn,⋆(t)⩽ exp

(
nt2/2

1
n

∑n

i=1 log(
µi

1−µi
)

)
.

In addition, ρexpn,⋆(t)⩽ ρHoeffding
n .

Proof. Let us consider fi(λ) = log(1+µi(e
λ−1)). A quadratic upper bound for f was derived by (Jaakkola

and Jordan 2000, Section 2.2), such that ∀λ ∈ R, log(1 + µi(e
λ − 1)) ⩽ λµi +

λ2

4
2µi−1

log(
µi

1−µi
)
. In addition,

λµi +
λ2

4
2µi−1

log(
µi

1−µi
)
⩽ λµi +

λ2

8
, leading to the final assertion. □

REMARK 1. In the proof for Proposition 7, considering the naive upper function log(1+µi(e
λ − 1))⩽

λµi +
λ2

8
would have led to Hoeffding’s inequality.

Given random variables with different means, Proposition 7 shows a control of ρexpn,⋆(t) by an upper

bound depending on (µi)i=1,...,n and improving Hoeffding’s inequality. Therefore, it appears to be suited to

different means as well as to two blocks of random variables.
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Variational approach. Recall the optimization problem defining the variational approach for random

variables in [0,1] having different means µ1, . . . , µn. For t⩾ 0, we define:

log(ρvarn (t)) = inf
α∈Rn,β∈Rn

n∑
i=1

{αi +βiµi − 1}, such that −
n∑

i=1

log(αi +βixi)⩽ 0,∀x∈ extremal(X̄n),

(20)

where X̄n = {(x1, . . . , xn) ∈ [0,1]n,
∑n

i=1 xi ⩾ nt +
∑n

i=1 µi}. Without further assumptions on the µi’s,

this optimization problem may have up to O(n!) constraints. To simplify the computations, we consider a

first group of variables X1, . . .Xm with mean µ1, and a second group Xm+1, . . . ,Xn with mean µ2, with

1 ⩽ m ⩽ n. Then, the number of constraints under consideration can be reduced to O(n), as shown in

Lemma 1.

LEMMA 1. Let µ1 = · · · = µm and µm+1 = · · · = µn in (20). Then, the number of constraints in Prob-

lem (20) reduces to O(n2).

Proof. See Appendix B.4. □
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(c) n = 10, m = 2, µ1 = 0.4 and
µ2 = 0.6

Figure 3 Comparison of the variational (20) and separable (19) approaches to Hoeffding’s

inequality (11), in the context of independent random variables divided into two

blocks of size m and n−m, with mean µ1 and µ2,

In Figure 3, we observe that the variational approach (20) improves largely upon the separable sce-

nario (19), as soon as the means of the two blocks differs significantly.

Given n random variables divided into two subgroups with different means, we have formulated tractable

formulations in the variational (20) and separable (19) approaches. On the one hand, we provide an upper

bound to the separable approach in Proposition 7 using a quadratic upper bound, which still offers improve-

ments over Hoeffding’s inequality. On the other hand, the variational approach can be expressed as a man-

ageable convex optimization problem with O(n) constraints, as stated in Lemma 1. Numerical comparisons

show that both approaches behave similarly for a large number of variables n, but tend to differ for small n.

In the following, we explore the reconstruction of extremal distributions involved at the optimum.
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2.3. Reconstructing extremal distributions.

A bound is said to be tight if a distribution satisfies the bound with equality, as defined by Bertsimas and

Popescu (2005, Section 2.). Such a distribution is referred to as an extremal distribution. We first restrict

our attention to one random variable, for which the exact optimization formulation (12) and the separable

approach (14) admit analytical solutions. Building on these results, we propose a strategy to construct an

extremal distribution for n random variables in the variational (20) and separable approaches (19).

2.3.1. Dirac distributions for one univariate random variable. When it comes to one univari-

ate random variables, we derived in Section 2.1 closed form of the exact (12) and separable (14) approaches.

In the following, we construct their corresponding extremal distributions.

Exact optimization problem. Recall the exact optimization problem (12) for one variable, for all t⩾ 0:

ρ1(t) = sup
p1∈P([0,1])

∫ 1

0

1x1⩾µ+tdp1(x1) such that

∫ 1

0

x1dp1(x1) = µ. (21)

Its exact value is provided in Proposition 4, for all t ⩾ 0, ρ1(t) =
µ

µ+t
. Dualizing twice the optimization

problem (21), we propose in Proposition 8 a strategy for reconstructing an extremal distribution.

PROPOSITION 8. Let t⩾ 0. The following distribution is an optimal solution to (12):

∀x∈ [0,1], p(x) =
t

µ+ t
δx=0 +

µ

µ+ t
δx=µ+t. (22)

Proof. The result is obtained by computing directly
∫ 1

0
1x⩾µ+tdp(x) =

µ
µ+t

. We rather propose a construc-

tive approach. First, recall the dual of Problem (21): for all t⩾ 0, ρ1(t) = infα,β∈Rα+βµ, such that ∀x∈
[0,1],1x⩾µ+t ⩽ α+ βx. By convexity of x ∈ [0,1] 7→ 1x⩾µ+t ⩽ α+ βx, the problem reduces for all t⩾ 0

to ρ1(t) = infα,β α+ βµ, such that α ⩾ 0,1 ⩾ α+ β(µ+ t). At optimality, (α⋆, β⋆) = (0, 1
µ+t

) meaning

that the points x= 0 and x= µ+ t are active. We compute again the dual, which reformulates as a problem

in the probability space by strong duality: for all t⩾ 0 ρ1(t) = supλ1,λ2⩾0 λ2, such that 1 = λ1 + λ2, µ=

λ2(µ+ t). The constraint “1 = λ1 + λ2” corresponds to initial constraint
∫ 1

0
dp(x) = 1, and the second one

to the first-order moment condition
∫ 1

0
xdp(x) = µ. At optimality, (λ1,⋆, λ2,⋆) = ( t

µ+t
, µ
µ+t

). We conclude

by identification. □

REMARK 2. Other distributions achieve the optimal bound, such as p(x) = (1−µ)δ0 +µδ1.

Proposition 8 offers a strategy for reconstructing an extremal distribution, mostly by reducing the con-

straints involved at the optimum to some active points and by dualizing twice.

Separable approach. We derive the same technique described in the proof for Proposition 8 to the

separable approach. Recall the separable approach applied to moment-generating functions (14) is defined

for λ∈R and t∈⩾ 0,

ρexp1 (λ, t) = inf
α,β

α+βµ such that ∀ x1 ∈ [0,1], eλ(x1−(µ+t)) ⩽ α+βx1.

In the proof for Proposition 5, we showed that ρexp1 (λ, t) = e−λ(µ+t)
(
(1+µ(eλ − 1)

)
. We compute an

example of an extremal distribution in Proposition 9, that is independent of t and λ.
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PROPOSITION 9. Let t, λ∈R. The following distribution is an optimal solution to (14):

p(x) = (1−µ)δx=0 +µδx=1.

Proof. Following the same approach as in Proposition 8 for determining the extremal distribution of the

exact optimization problem. We prove in Appendix B.1.1 that (α⋆, β⋆) = (e−λ(µ+t), e−λ(µ+t)(eλ−1)). After

redualizing, it leads to the optimization problem supλ1,λ2⩾0 λ1e
−λ(µ+t) +λ2e

λ(1−µ−t), such that 1 = λ1 +

λ2, µ= λ2. We conclude by identification. □

When studying concentration inequalities applied to a one (univariate) random variable, we derived exam-

ples of extremal distributions. This strategy can be decomposed into two steps. First, the convexity proper-

ties of the constraints ∀x ∈ [0,1],1x⩾µ+t ⩽ α+ βx and ∀x ∈ [0,1], eλ(x−µ−t) ⩽ α+ βx allow determining

active constraints and thus identifying the Dirac delta functions involved at optimality. Second, leveraging

strong duality, we dualize the dual, leading to an optimization problem with respect to a simplified space of

distributions. We then conclude by identification. In what follows, we show that this technique extends well

to n univariate random variables.

2.3.2. Generalization to n random variables. We now turn to the problem of deriving extremal

distribution for n independent random variables. The strategy developed for one random variable extends

well to multiple random variables in the separable approach. In the variational approach however, this

process often involves computing analytically the solution in the dual before obtaining the extremal distri-

bution.

Separable approach. The separable approach (7) benefits from a decoupling into n independent opti-

mization problems on one random variables. In the context of Hoeffding’s inequality, recall its dual formu-

lation (19) below, for t⩾ 0 and λ∈R:

ρexpn (λ, t) =

n∏
i=1

inf
αi,βi

(αi +βiµi) such that ∀xi ∈ [0,1]n, eλ(xi−µi−t) ⩽ αi +βiµi.

Proposition 9 applies on each subproblem i, leading to Corollary 2.

COROLLARY 2. The following distribution is an optimal solution to (19) p(x) =
∏n

i=1 pi(xi), with ∀xi ∈

[0,1], pi(xi) = (1−µi)δxi=0 +µiδxi=1.

Variational approach. At first glance, the variational approach reintroduces coupling between variables

in the optimization problem. Let us recall its dual formulation (20) in the context of Hoeffding’s inequality,

for t⩾ 0,

ρvarn (t) = inf
α∈Rn,β∈Rn

n∏
i=1

(αi +βiµi) such that ∀ x∈ [0,1]n,1∑n
i=1 xi⩾

∑n
i=1 µi+nt ⩽

n∏
i=1

(αi +βixi),

∀ i,∀ xi ∈ [0,1],0⩽ αi +βixi.

(23)



17

The Lagrangian dual of Problem (23) cannot be formulated in closed form due to the product form in the

constraints. Let us revisit the original optimization problem from which this problem is derived:

ρvarn = inf
∀i,ui⩾0

inf
α∈Rn,β∈Rn

n∏
i=1

(αi +βiµi), such that ∀x∈ [0,1]n,1∑n
i=1 xi⩾

∑n
i=1 µi+nt ⩽

n∏
i=1

ui(xi),

∀i,∀xi ∈ [0,1], ui(xi)⩽ αi +βixi.

(24)

Using this formulation, Proposition 10 computes explicitly an extremal distribution.

PROPOSITION 10. Let (u⋆, α⋆, β⋆) be a solution to (24). Then, ∀i,∀xi ∈ [0,1], ui,⋆(xi) = αi,⋆ +βi,⋆xi.

In addition, an extremal distribution is given by:

p(x) =

n∏
i=1

((1−µi)δxi=0 +µiδxi=1) .

Proof. Let (u⋆, α⋆, β⋆) be optimal solutions in (24). Then, Proposition 2 provides the form of the optimal

product-function upper bounding F , that we recall: ∀i,∀xi ∈ [0,1], ui,⋆(xi) = αi,⋆+βi,⋆xi. Thus, consider-

ing this specific product-function, we have

ρnrelax =

n∏
i=1

sup
pi∈P(X )

∫ 1

0

u(xi)dpi(xi) such that

∫ 1

0

xidpi(xi) = µi,

=

n∏
i=1

inf
λi,νi

(λiµi + νi) such that αi,⋆ − νi +(βi,⋆ −λi)xi ⩽ 0,∀xi ∈ [0,1],

where the constraint “αi,⋆ − νi + (βi,⋆ − λi)xi ⩽ 0,∀xi ∈ [0,1]” reduces to αi,⋆ − νi ⩽ 0 for xi = 0 and

αi,⋆ − νi +βi,⋆ −λi ⩽ 0 for xi = 1. We conclude by identification that p(x) = (1−µ)δ0 +µδ1. □.

The extremal distribution derived in Proposition 10 is exactly equal to the extremal distribution in the

separable treatment approach moment-generating functions in Proposition 2. Again, it is independent of

the deviation t. In both cases, it turns out that the dependence in t is only supported in the optimal upper

function U⋆, either in the moment generating function or in the linear function parametrized by (α⋆, β⋆), as

detailed in Appendix B.3 for n= 2.

In this section, we have thus refined Hoeffding’s inequality through two different approaches. When

the random variables are i.i.d., the separable approach applied to moment-generating functions aligns with

the large deviation principle and slightly improves the traditional Hoeffding’s inequality. In contrast, the

variational approach yields significantly smaller bounds for a small number of variables but requires O(n)

constraints. The case of distinct means µ1, . . . , µn is more advanced and we only explicitly attacked the

scenario of two blocks with distinct means. Finally, we proposed a strategy for reconstructing an extremal

distribution. As a natural extension, these strategies could potentially be applied to Bennett or Bernstein’s

inequalities, which assume first and second-order conditions. However, extending to higher-order assump-

tions reveals challenges where both the separable and variational approaches fail to provide computable

solutions. In what follows, we propose a new family of upper bounds adapted to such scenarios.



18

3. A polynomial approach based on sum-of-square decomposition.
The separable and variational approaches are constructed from the family of product-functions (6) that upper

bound F on X . They turn out to be effective for finite first-order moments, but remain computationally out of

reach when assuming fixed higher-order moments. Even a simple second-order assumption in Hoeffding’s

inequality (or an assumption on the variance) results in challenging constraints in the separable approach:

ρexpn (λ) =

n∏
i=1

inf
αi,βi

(αi +β
(1)
i xi +β

(2)
i ) s.t. ∀xi ∈ [0,1]n, eλ(xi−µi−t) ⩽ αi +β

(1)
i xi +β

(2)
i x2

i ,

where µ
(1)
i (resp. µ(2)

i ) represents the first (resp.second) order moment condition. The constraint “∀xi ∈

[0,1]n, eλ(xi−µi−t) − (αi + β
(1)
i xi + β

(2)
i x2

i ) admits no closed-form solution. This issue also prevents

from computing the large deviations for i.i.d. random variables, which involves computing Γ(t) =

log(E[exp(tX1)]) as presented in Theorem 2. Similarly, the variational approach involves polynomial con-

straints with a product structure, making the optimization problem more complex to solve:

ρvarn = inf
α∈Rn,β∈Rn×m

n∏
i=1

(αi +β
(1)
i µ(1) +β

(2)
i µ(2)) such that ∀xi ∈X ,∀i,αi +β

(1)
i xi +β

(2)
i x2

i ⩾ 0,

∀x∈X n, F (x1, . . . , xn)⩽
n∏

i=1

(αi +β
(1)
i xi +β

(2)
i x2

i ).

In this section, we explore polynomial families of upper bounds adapted to such scenarios. First, we propose

to analyze Problem (5) using the family of linear upper bounds, for which we derive closed-form upper

bounds. This linear approach offers already an improvement to Hoeffding’s inequality in comparison with

the variational approach for small values of t. We then extend this approach to a polynomial family of upper

bounds, whose degree equals the number of variables. This results in an optimization problem with an infi-

nite number of polynomial constraints. This so-called polynomial approach is closely related to the work

of Bertsimas and Popescu (2005), who introduced a series of SDPs to approximate the generalized prob-

lem of moments for multivariate random variables. This approach numerically improves Bernstein’s and

partially Bennett’s inequality. Finally, we introduce a feature-based approach generalizing the polynomial

approach to a broader family of upper bounds. This allows in particular analyzing Hoeffding’s inequality

using second-order polynomials.

3.1. A simple linear upper bound for Hoeffding’s concentration.

Before studying polynomial upper bounds, we start by exploring the simpler family of linear upper bounds

and applying it in the context of Hoeffding’s inequality. This scenario outlines the key concepts that inspire

the polynomial approach and results in an optimization problem that can be solved in closed-form.

Let X1, . . . ,Xn be i.i.d. random variables with mean E[Xi] = µ and taking their values in [0,1] and let us

introduce the family of linear functions L= {a⊤x+ b, a∈Rn, b∈R}.
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REMARK 3. For n⩾ 2, notice that linear functions cannot be formulated as product-functions. Indeed,

for two i.i.d. random variables, product-functions takes the form U(x) = (α + βx1)(α + βx2) = α2 +

αβ(x1 +x2)+β2x1x2.

The associated optimization problem in the linear approach takes the form, for t⩾ 0:

ρlinn (t) = inf
a∈Rn,b∈R

sup
∀i,pi∈Pµi (X )

∫
Xn

(
n∑

i=1

aixi + b

)
dp1(x1) · · ·dpn(xn),

such that ∀x∈X n, F (x)⩽
n∑

i=1

aixi + b.

(25)

By construction, ρn ⩽ ρlinn . We solve Problem (25) analytically in Proposition 11.

PROPOSITION 11. Let X1, . . . ,Xn be i.i.d. random variables taking their values in [0,1] and with finite

mean E[Xi] = µ. Then, it holds for all t∈ [0,1−µ] that:

ρlinn (t) =
µ

µ+ t
.

Proof. Under the assumptions of Hoeffding’s inequality and by symmetry,it holds for t⩾ 0:

ρlinn (t) = inf
a∈R,b∈R

anµ+ b such that ∀x∈ [0,1]n,1x1+···+xn⩾n(µ+t) ⩽ a

n∑
i=1

xi + b.

It follows that b = 0 by considering x = 0 and minimizing with respect to b. By construction,
∑n

i=1 xi ⩾

n(µ+ t) implies 1⩽ a
∑n

i=1 xi ⩽ an(µ+ t). We conclude that a= 1
n(µ+t)

and the desired result. □

In Proposition 11, we show that ρlinn is exactly equal to the exact bound for one univariate random variable

as defined in (12), that is ρlinn = ρ1. In addition, ρlinn shows a dependence on the mean µ, but no dependence

on the number of variables under consideration.
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Figure 4 Comparison of the bound obtained in the linear approach (25) to the variational (18) and separa-

ble (16) (in dashed lines) approaches, for µ= 0.6 and several values for n.

Surprisingly in Figure 4, it happens to improve the variational (18) and separable (16) approach for small

values of the deviation t, even for a large number of variables n. However, for larger values of the deviation,
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the variational and separable approaches significantly outperform the linear approach. In the following, we

introduce a family of polynomials encompassing linear functions, that comes at the cost of computationally

more expensive approximations.

3.2. A polynomial upper bound: a SoS approximation for polynomial moment
assumptions.

This section studies an alternate approach to (1) using a family of polynomial upper bounds. Under some

assumptions on the degree of these polynomials, tt turns out that this family contains the linear and vari-

ational approaches, as feasible points. Its associated Problem (5) is therefore guaranteed to provide better

approximations to the generalized problem of moments.

We assume X1, . . . ,Xn to be independent random variables with monomials moments of degree at

most a ∈N⋆, that is ∀i,E[gi(Xi)] = (E[Xk
i ])k=1,...,a = (µ

(k)
i )k=1,...,a. Denote Jd = {(k1, . . . kn) ∈Nn, ki ∈

N, k1 + . . .+ kn ⩽ d} and ∀κ ∈ Jd, x̄κ =
∏n

i=1 x
ki
i monomials of degree d. The family of (multivariate)

polynomials under consideration is

Qn
d =

{
Q(x) =

∑
κ∈Jd

qκx̄
κ, qκ ∈R|Jd|

}
, (26)

with a certain degree d ∈N+. In particular, linear functions belongs to this set L⊂Qn
d along with product

functions for d⩾ n. Finally, recall that F (x) = 1x∈S , where S has a structure specified in Assumption 1.

ASSUMPTION 1. Let S = {x ∈ Rn, h1(x) ⩾ 0, . . . , hm(x) ⩾ 0} and assume that there exists s(x) a

polynomial such that s(x) = s0(x) +
∑m

j=1 sj(x)hj(x), with {x ∈Rn, h(x)⩾ 0} a compact set and where

hi(x) are polynomial that admits a sum-of-square decomposition.

In particular, any compact polyhedron verifies Assumption 1 (Bertsimas and Popescu 2005, Theorem 4.1).

Then, Problem (5) associated with polynomials in Qn
d takes the form,

ρpolynomial,d
n = inf

Q∈Qn
d

sup
∀i,pi∈P(X )

∫
X
· · ·
∫
X
Q(x1, . . . , xn)p1(x1) · · ·dpn(xn),

such that ∀i,∀k ∈ 1, . . . , a,

∫
X
xk
i dpi(xi) = µ

(k)
i , and ∀x∈X n,1x∈S ⩽Q(x).

(27)

By construction, ρn ⩽ ρpolynomial,a
n .

PROPOSITION 12. Let d⩽ a, and let the covariance matrix take the form σκ =
∏n

i=1 µ
(ki)
i for κ ∈ Jd.

Then Problem (27) reformulates as:

ρpolynomial,d
n = inf

qκ∈R|Jd|

∑
κ∈Jd

qκσκ such that ∀x∈X n,1x∈S ⩽
∑
κ∈Jd

x̄κqκ. (28)

Proof. By definition Q ∈ Qn
d , ∀x ∈ X d,Q(x) =

∑
κ∈Jd

qκx̄
κ. Since d ⩽ a and ∀i,∀k ∈

1, . . . , a,
∫
X xk

i dpi(xi) = µ
(k)
i , the objective function

∫
x∈Xn Q(x)dp1(x1) · · ·dpn(xn) for Q ∈ Qn

d can be

decomposed as the weighted sum of moment µk
i . □
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By construction, Proposition 12 reveals a condition on the degree d, so that E[Q] for Q∈Qd formulates as

a product combination of moments (µ(k)
i )i,k. In addition, Problem (28) happens to be exactly the Lagrangian

dual of the generalized problem of moments applied to multivariate random variable in Rn (Bertsimas

and Popescu 2005, Equation 2.2). The major difference lies in the structure of the matrix ∀κ ∈ Jd, σκ =

E[
∏n

i=1X
ki
i ] =

∏n

i=1E[Xki
i ] due to independence.

Problem (28) suffers from an infinite number of constraints “∀x ∈ X n,1x∈S ⩽
∑

κ∈Jd
x̄κqκ”. Connec-

tions between such nonnegative polynomial and sum-of-square decomposition have been hightlighted by

several authors (Lasserre 2002, 2008, de Klerk and Laurent 2019). They were later formulated as SDPs

by Parrilo (2003) and Lasserre (2001). In their study of optimal bounds for the generalized problem of

moments, Bertsimas and Popescu (2005) constructed a sequence of SDPs approximating ρpolynomial,d
n , that

is recalled below.

THEOREM 3. (Bertsimas and Popescu 2005, Theorem 4.3) Let S = {hj(x)⩾ 0, j = 1, . . . ,m} and X =

{ωj(x) ⩾ 0, j = 1, . . . , l} verify Assumption 1. For every ϵ > 0, there exists a nonnegative integer r ∈ N

such that |ρpolynomial,d
n − ρ̃polynomial,d

n (r)|⩽ ϵ, where ρ̃polynomial,d
n (r) is the value of the following SDP:

ρ̃polynomial,d
n (r) = inf

qκ,S≽0,P≽0

∑
κ∈Jd

qκσκ,

such that qκ − δκ=0 = s0κ +

m∑
i=1

∑
η,θ∈Jr,η+θ=κ

siηh
i
θ, ∀κ∈ Jd,

0 =

m∑
i=1

∑
η,θ∈Jr,η+θ=κ

siηh
i
θ, ∀κ∈ Jr\Jd,

qκ = p0κ +

l∑
i=1

∑
η,θ∈Jr,η+θ=κ

piηω
i
θ, ∀κ∈ Jd,

0 = p0κ +

l∑
i=1

∑
η,θ∈Jd,η+θ=κ

piηω
i
θ, ∀κ∈ Jr\Jd,

siκ =
∑

η,θ∈Jr,η+θ=κ

siη,θ, S
i = [sη,θ]η,θ∈Jr ≽ 0, ∀κ∈ Jr, i= 1, . . . ,m,

piκ =
∑

η,θ∈Jr,η+θ=κ

piη,θ, P
i = [pη,θ]η,θ∈Jr ≽ 0, ∀κ∈ Jr, i= 1, . . . , l.

(29)

Theorem 3 provides a sequence of SDPs approximation Problem (28), but does not specify at which

degree r a certain precision level ϵ is attained. By construction, it is clear that their degree r must be larger

than the degree d of the polynomials under consideration. Bertsimas and Popescu (2005) highlighted a

hierarchy between these SDP approximations, which is explicited in Corollary 3.

COROLLARY 3. (Bertsimas and Popescu 2005, Corollary 4.4) Let ρpolynomial,d
n be defined as in (28) and

ρ̃polynomial,d
n (r) as in (29). Then, it follows that:

ρn ⩽ ρpolynomial,d
n ⩽ ρ̃polynomial,d

n (r)⩽ · · ·⩽ ρ̃polynomial,d
n (1). (30)
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From a numerical perspective, the size of SDPs in (29) grows exponentially with degrees r and d, limiting

both the precision of the approximation problem (28). In the next section however, we apply these approx-

imations to two basic concentration inequalities and improve the existing bounds for a small number of

variables n and a small degree r.

3.3. Applications to Bernstein’s and Bennett’s inequalities

The variational and separable approaches failed to provide tractable optimization problem for second-order

conditions, that appear for example in Bennett’s and Bernstein’s inequalities. For two random variables, we

compute refined bounds using the polynomial approach, and more precisely the SDP aproximations defined

in (29).

Bernstein’s inequality. Bernstein’s inequality controls the deviation of the sum of independent random

variables to their mean, given an appropriate control of moments. There exists different versions for Bern-

stein’s inequality, and we consider a convenient version requiring finite second-order moments, as provided

for example in (Boucheron et al. 2013, Corollary 2.11).

COROLLARY 1. Let X1, . . . ,Xn be independent random variables in [−c, c] with means E[Xi] = µi,

and variance v=
∑n

i=1E[X2
i ]. Then, for all t > 0,

P

(
n∑

i=1

Xi ⩾ nt+

n∑
i=1

µi

)
⩽ exp

(
−

n2 t2

2

v+ cnt
3

)
. (31)

Let X1,X2 be two i.i.d. random variables taking their values almost surely in [−1,1] with E[X1] =E[X2] =

µ(1), and E[X2
1 ] = E[X2

2 ] = µ(2). We consider the polynomial family Q2 = {x ∈ R2 7→ x⊤
(2)Qx(2),Q ∈

R(6×6)} where x(2) = (1, x1, x2, x1x2, x
2
1, x

2
2). Then, Problem (28) takes the form:

∀t∈⩾ 0, ρpolynomial,2
2 (t) = inf

Q∈R(6×6)
Tr(QΣ) such that ∀x∈X 2, 1⩽ x⊤

(2)Qx(2),

∀x∈ [−1,1]2,0⩽ x⊤
(2)Qx(2),

(32)

where X̄2 = {(x1, x2) ∈ [−1,1], x1 + x2 ⩾ 2(µ(1) + t)}, Σ= σσ⊤ and σ = (1, µ(1), µ(1), (µ(1))2, µ(2), µ(2)).

It results from Theorem 3 that Problem (32) can be approximated by a hierarchy of sum-of-square (29).

Figure 5 shows that the SDP approximation of the polynomial approach (32) improves upon Bernstein’s

inequality (31) for a small degree in the SoS hierarchy (here r = 2). This improvement is not straight-

forward, since proofs for Bernstein’s inequality often require a specific control of moments E[Xk
i ] for all

k ∈ N (see, e.g.,(Boucheron et al. 2013, proof for Theorem 2.9)). Therefore, considering higher-degree d in

the polynomial approximations would probably produce a lower value for ρpolynomial,d
2 . However, increasing

d requires to increase the degree r ∈R of the sum-of-square approximations (29) and thereby, leads to very

large SDPs that cannot be handled by our solvers.

Bennett’s inequality. Bennett’s inequality is similar with Bernstein’s inequality, but applies to upper

bounded random variables, as recalled in Theorem 4.
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Figure 5 Comparison of Bernstein’s inequality (31) to an SDP approximation (29) to the

polynomial approach (32), as a function of t, for n= 2, d= 2 and r= 2.

THEOREM 4. Bennett (1968) Let X1, · · · ,Xn be i.i.d. random variables such that Xi ⩽ a almost surely

and σ2 =
∑n

i=1E[(Xi −EXi)
2], then for any t⩾ 0,

P

(
n∑

i=1

{Xi −E[Xi]}⩾ nt

)
⩽ exp

(
−σ2

a2
h(

atn

σ2
)

)
, (33)

where h(t) = (1+ t) log (1+ t)− t. It implies that P(
∑n

i=1{Xi −E[Xi]}⩾ nt)⩽ exp
(
− t2n2

2(σ2+atn/3)

)
.

Let X1,X2 be two i.i.d. random variables taking their values almost surely in Z = [−∞,1] with E[X1] =

E[X2] = µ(1), and E[X2
1 ] =E[X2

2 ] = µ(2). Then, Problem (28) takes the form:

ρpolynomial,2
2 (t) = inf

Q∈R6×6
Tr(QΣ) such that ∀x∈ Z̄2, 1⩽ x⊤

(2)Qx(2),

∀x∈ [−∞,1]2,0⩽ x⊤
(2)Qx(2),

(34)

where Z̄2 = {(x1, x2)∈ [−∞,1], x1+x2 ⩾ 2(µ(1)+ t)}, Σ= σσ⊤ and σ= (1, µ(1), µ(1), (µ(1))2, µ(2), µ(2)).
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Figure 6 Comparison of Bennett’s inequality (33) to an SDP approximation (29) to the poly-

nomial approach (34), as a function of t for n= 2, d= 2 and r= 2.

Figure 6 reveals the limit of the polynomial approach, which fails to improve Bennett’s inequality for

all values of t⩾ 0. The proof relies indeed on additional arguments, such as Jensen’s inequality, or Taylor

approximations such as u 7→ log(1+u)⩽ u, which are not exploited in this approach.
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To conclude, the polynomial approach (28) effectively refines Bernstein and Bennett’s inequalities for

some range of values t⩾ 0. However it is hindered by the necessity of large SDP approximations: handling

higher-order polynomials and a large number of random variables increases the size of the SDPs under

consideration, making them difficult to solve. A review of the complexity of semidefinite optimization and

interior point methods can be found in Wolkowicz et al. (2000), Vandenberghe and Boyd (1996).

3.4. Higher-order polynomial approximations : a variational reformulation.

The variational, separable and linear approaches allowed refining Hoeffding’s inequality. In the polynomial

approach developed above, Proposition 12 entails that the degree of the polynomials under consideration

is controlled by the highest-order moment. In the context of Hoeffding’s inequality, where the first-order

moment is finite, it implies that the best polynomial representation is actually linear (d⩽ 1).

In the following, we introduce a numerical procedure to incorporate higher-order polynomials for study-

ing Hoeffding’s inequality. We then lay the foundation for a feature-based approach that generalizes the

polynomial approach to broader families of upper functions. Finally, we derive a SDP relaxation for the

case of two independent random variables.

3.4.1. Studying Hoeffding’s inequality with second-order polynomials. Hoeffding’s

inequality requires finite first-order moments, together with almost surely bounded variables. In what fol-

lows, we show how it affects second-order moments. Based on this, we integrate second-order moment

conditions into a polynomial approach for studying Hoeffding’s inequality.

Let X1, . . . ,Xn be independent random variables taking their values in [0,1] almost surely with E[Xi] =

µ
(1)
i for all i= 1, . . . , n. Lemma (C) ensures the existence and a control on the second-order moment (see

proof in Appendix C).

LEMMA 2. Let X be a random variable almost surely on [0,1] with mean E[X] = µ(1). Then X admits

a finite second-order moment, denoted E[X2] = µ(2). In addition, it holds that (µ(1))2 ⩽ µ(2) ⩽ µ(1).

Lemma 2 provides a control of the second-order moment by the first-order moment for bounded random

variables. From that, we define an optimization problem based on the polynomial approach (28):

ρ̃polynomial,2
n = inf

µ(2)∈[(µ(1))2,µ(1)]

inf
Q∈Qn

2

sup
p1,...,pn∈P(X )

∫
X
. . .

∫
X
Q(x1, . . . , xn)dp1(x1) · · ·dpn(xn),

such that ∀i,
∫
X
xidpi(xi) = µ

(1)
i ,

∀i,
∫
X
x2
idpi(xi) = µ

(2)
i ,

∀x∈X n,1x∈S ⩽Q(x),

ρ̃polynomial,2
n = inf

µ(2)∈[(µ(1))2,µ(1)]

ρpolynomial,2
n (µ(2)).

(35)
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Given a value of µ(2) ∈ [(µ(1))2, µ(1)], the inner optimization problem defining ρpolynomial,2
n can be

approached with a hierarchy of sum-of-square defining ρpolynomial,2
n (r,µ(2)), as stated in Proposition 12 and

Theorem 3. In Figure 7, we use a gridsearch procedure on µ(2) for approximating ρpolynomial,2
n (µ(2)). It turns

out that optimizing ρpolynomial,2
n (µ(2)) with respect to µ(2) aligns exactly with the minimum bound achieved

by the linear (25) and variational (18) approaches.
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(c) Optimized version for µ1 =
0.3.

Figure 7 Comparison of the bound in polynomial approach (28) (with an SDP approxima-

tion of degree r = 3), to the variational (18) and linear (25) approaches, and to

Hoeffding’s inequality (11), as a function of the deviation parameter t for n= 2.

In conclusion, linear functions and product-functions appear to be the minimal polynomial families suit-

able for studying Hoeffding’s inequality. Although the polynomial approach (35) incurs high computational

costs, the linear approach offers a closed-form solution and the variational approach provides tractable

reformulations for i.i.d. random variables and structured independent variables.

3.4.2. Generalization to tighter bounds for F : a variational feature-based formulation We

have previously explored the family of product-functions, linear functions as well as polynomials. These

approaches were limited by the power of representation allowed by moments (see Proposition 12). In the

context of Hoeffding’s inequality, we addressed higher-order polynomials using finite lower-order moments

through a numerical procedure. We now extend this approach by laying the foundations for a feature-based

approach.

Let us start by recalling the variational formulation (5):

inf
H∈H

sup
∀i,pi∈Pµi (X )

∫
Xn

H(x)dp1(x1) · · ·dpn(xn) such that ∀x∈X n, F (x)⩽H(x),

where H is a family of upper bounds. We introduce a feature vector ϕ : X 7→Rl, l ∈N such that functions

have the following representation:

F (x) =

〈
F̄ ,

n⊗
i=1

ϕ(xi)

〉
=

l∑
i1,...,in=1

F̄i1,...,in

n∏
k=1

ϕ(xk)ik .
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In the polynomial (resp. variational) approach for examples, features ϕ were monomials (resp. linear func-

tions). Let us consider a family of functions H decomposing with respect to these features:

sup
∀i,pi∈Pµi (X )

∫
Xn

H(x)dp1(x1) · · ·dpn(xn) = sup
∀i,pi∈Pµi (X )

〈
H̄,

n⊗
i=1

∫
X
ϕ(xi)dpi(xi)

〉
= sup

∀i,σi∈K(µi)

〈
H̄,

n⊗
i=1

σi

〉
,

where K(µi) is the set of achievable moments Epi∈Pµi (X )[ϕ(Xi)] =
∫
X ϕ(xi)dpi(xi) such that pi ∈Pµi

(X ).

In the context of Hoeffding’s inequality, the set of achievable moments K(µi) corresponds to the intuitive

idea that there is no assumption on second-order moments, but that they are related to lower-order moments.

Then, the overall optimization problem takes the form:

inf
H∈H

sup
∀i,σi∈K(µi)

〈
H̄,

n⊗
i=1

σi

〉
such that ∀x∈X n,

〈
F̄ − H̄,

n⊗
i=1

ϕ(xi)

〉
⩽ 0. (36)

Compared to the polynomial approach developed above (28), Problem (36) provides a more generic for-

mulation for any family of features. The family of features must satisfy two key components : a (tighter)

relaxation of the constraint ∀x∈X n, ⟨F̄−H̄,
⊗n

i=1 ϕ(xi)⟩⩽ 0, which can be managed using sum-of-square

for polynomial features, and a relaxation for sup∀i,σi∈K(µi)
⟨H̄,

⊗n

i=1 σi⟩. In the following proposition, we

analyze a simple relaxation of sup∀i,σi∈K(µi)
⟨H̄,

⊗n

i=1 σi⟩ for two i.i.d. random variables in the context of

Hoeffding’s inequality (i.e., n= 2). For this case, the tensor formulation simplifies into matrices and admits

an SDP relaxation.

PROPOSITION 13. Let X1,X2 be i.i.d. random variables taking their values almost surely in [0,1] with

finite mean µ(1) and let ϕ(x) = (1, x, x2) be the feature vector. Then,

sup
σ∈K(µ(1))

Tr
(
H̃σσ⊤

)
⩽ sup

M≽0

Tr
(
H̃M

)
such that 0⩽Tr(ME1,1)⩽Tr(ME0,2)⩽Tr(ME0,1)⩽ 1,

Tr(ME0,0) = 1.

Proof. Let H̃ ∈ R3×3 be a symmetric matrix representation of vector H̄ ∈ R6, such that

supσ∈K(µ(1))Tr(H̃σσ⊤) = supM≽0Tr(H̃M) such that M ∈ hull{σσ⊤, σ ∈ K(µ)}. By definition, σ =

(1, µ(1), µ(2)) holds for the first and second-order moments. We relax this problem by optimizing over M ≽

0 and incorporating additional constraints on M to ensure it accurately incorporates relationships between

the first and second-order moments (Lemma 2, namely (µ(1))2 ⩽ µ(2) ⩽ µ(1) and
∫ 1

0
dp(x) = 1.). □.

Proposition 13 provides an SDP relaxation for approximating Hoeffding’s inequality for two random

variables and given a quadratic features. Despite the simple relaxation, solving this problem requires to

solve efficiently a saddle-point problem and to quantify how far such a relaxation is from the generalized

problem of moments (1), which are left to future work.
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4. Conclusion and future works.
Conclusion. In this work, we introduced two families of upper bounds for approximating the generalized

problem of moments for independent random variables. First, we studied a separable approach, leveraging

specific upper functions adapted to finite first-order moments. This approach is complemented by a convex

variational method, optimizing over the entire family of product-functions. When studying Hoeffding’s

inequality, these formulations are particularly effective for both i.i.d. random variables and cases where

variables are divided into groups with different means, facilitating the reconstruction of associated extremal

distributions. Due to the computational limitations of the product-functions based approaches, we broadened

our scope by introducing a polynomial family of upper bounds. Here, carefully selected polynomials are

employed, resulting in non-negative polynomials that can be approximated using sum-of-square techniques,

at a higher computational cost. This framework enables exploration of concentration properties concerning

Bennett’s and Bernstein’s inequalities, although it does not universally improve theoretical bounds. We

finally extended the polynomial approach into a feature-based approach, using polynomials independently

of the order of moment assumptions. While not focused on computational efficiency, this method offers a

more flexible and comprehensive way to study concentration inequalities. In summary, our methodologies

each address different complexities inherent in the problem of moments and independence.

Future works. Throughout this work, we have highlighted several limitations related to these

approaches. The separable approach could benefit from exploring and constructing new product-functions

that lead to closed-form solutions, going beyond moment-generating functions. Meanwhile, the polynomial

approach, when approximated by SDPs of increasing sizes, converges slowly even for a reasonable number

of variables and low-degree polynomials. Studying the connection between the family of polynomials, the

linear functions and product-functions would simplify the underlying optimization problems. In addition,

numerical experiments have shown the limitations of the polynomial approach, which does not account for

some analytical arguments, such as convexity or inequalities derived from Taylor expansion. Introducing

key components of these analyses would probably help improve (or match) known bounds. Furthermore,

the feature-based approach could still benefit from exploring efficient relaxations to improve known bounds.

Finally, the generalized problem of moments requires few assumptions on the distribution under consid-

eration, such as bounded moments or random variables lying in bounded sets (e.g., intervals). Other paths

to improvements of concentration bounds without independence were explored, by exploiting additional

structural properties of the distributions. For instance, Popescu (2005) extended the generalized problem of

moments to convex classes of distributions, such as unimodal or bimodal distributions. Given unimodal dis-

tributions, Van Parys et al. (2015) reconstructed non-discrete extremal distributions, which are thereby more

representative of the effective behaviors of random variables. Extending their work to the case of indepen-

dent variables would probably help refine inequalities that can be adapted to different problem structures.

In particular, introducing subgaussian assumptions, which appear in many probability proofs in machine

learning, would be of interest, thus improving probabilistic bounds for such problems.
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A. Exact formulation of generalized problem of moments for independent
random variables using optimal transport:

This proof is an alternative to the convexification of the variational approach from Proposition 3. Using opti-

mal transport, we compute an exact formulation for the generalized problem of moments (1), and recover

the convex reformulation for the variational approach as result of weak duality.

Let us introduce for x ∈ X n, G(x) = log(F (x1, ..., xn)). Then, the exact formulation takes the form for

the KL divergence D(q

∣∣∣∣∣∣∣∣p) = ∫X log
(

p(x)

q(x)

)
dq(x):

log(ρn) = sup
∀i,pi∈Pµi (X )

log

(∫
Xn

eG(x)dp1(x1) · · ·dpn(xn)

)
,

= sup
q∈P(Xn)

sup
∀i,pi∈Pµi (X )

∫
Xn

G(x)dq(x)−D

(
q

∣∣∣∣∣∣∣∣ n∏
i=1

pi

)
,

By Donsker-Varadhan’s inequality. By Pythagorean theorem for the KL divergence and mutual information,

we have:

log(ρn) = sup
q∈P(Xn)

sup
∀i,piıPµi (X )

∫
Xn

G(x)dq(x)−D

(
q

∣∣∣∣∣∣∣∣ n∏
i=1

qi

)
−

n∑
i=1

D(pi

∣∣∣∣∣∣∣∣qi).
The variational relaxation corresponds in fact to using the fact that D(q

∣∣∣∣∣∣∣∣∏n

i=1 qi) ⩾ 0. In addition, we

recover the convex formulation from the Lagrangian relaxation of:

log(ρn) = sup
q∈P(Xn)

inf
∀i,αi∈R,βi∈Rm

∫
Xn

G(x)dq(x)−D

(
q

∣∣∣∣∣∣∣∣ n∏
i=1

qi

)
+

n∑
i=1

{αi +β⊤
i µi − 1}

+ sup
x∈Xn

{G(x)−
n∑

i=1

log(αi +β⊤
i g(xi))},

⩽ inf
∀i,αi∈R,βi∈Rm

n∑
i=1

{αi +β⊤
i µi − 1}+ sup

x∈Xn
{G(x)−

n∑
i=1

log(αi +β⊤
i g(xi))}

+ sup
q∈P(Xn)

∫
Xn

G(x)dq(x)−D

(
q

∣∣∣∣∣∣∣∣ n∏
i=1

qi

)
,

by weak duality. Ignoring the term, D
(
q

∣∣∣∣∣∣∣∣∏n

i=1 qi

)
, the maximum of supXn G(x)dq(x) =maxx∈Xn G(x)

with respect to q ∈P(X n) is attained at a Dirac, at which D

(
q

∣∣∣∣∣∣∣∣∏n

i=1 qi

)
= 0. Thus, the fact that ρn ⩽ ρvarn

holds by weak duality.

B. Proofs for Hoeffding’s inequality
B.1. Separable approach for univariate distributions

B.1.1. Proof for Proposition 5 Let us introduce a family of functions uλ(x) = eλ(x−(µ+t)). Then,

for every t⩾ 0, λ∈R,

ρexp1 (λ, t) = inf
α∈R,β∈R

α+βµ such that ∀x∈X,eλ(x−(µ+t)) ⩽ α+βx.
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The function x 7→ eλ(x−(µ+t)) − (α+βx) is convex on [0,1]. Applying Proposition 1, we have:

ρexp1 (λ, t) = inf
α∈R,β∈R

α+βµ such that e−λ(µ+t) ⩽ α and es(1−(µ+t)) ⩽ α+β.

The solution is given by α = e−λ(µ+t) and β = e−λ(µ+t)(eλ − 1), and thus we have ρexp1 (λ, t) =

e−λ(µ+t)
(
1+µ(eλ − 1)

)
. By optimizing over λ, we have λ⋆ = log

(
(µ+t)(1−µ)

µ(1−(µ+t))

)
and it holds for all t ∈

[0,1− (µ)] with ν = µ+ t:

ρexp1,⋆ (t) =
(µ
ν

)ν
(
1−µ

1− ν

)1−ν

.

B.1.2. Alternative proof for Proposition 5 Let X be a random variable taking its value almost

surely in [0,1], with mean E[X] = µ and associated with the distribution p∈P([0,1]). Then, for KL(p, q) =∫
X
log(p(x)

q(x)
)dp(x) and kl(µ,ν) = log(µ

ν
)µ, the Kullback-Leibler divergence, it holds that

logP(X ⩾ t)⩽ inf
s
−st+ log(E[esX ]) by Markov′s exponential inequality,

⩽ inf
s
−st+sup

q
sEq[X]−KL(q, p), by Donsker−Varadhan′s variational formula,

= inf
s
−st+sup

ν
sν− kl(ν,µ),

=−kl(t, µ).

B.2. Variational approach with equal means: computing the extremal points for X̄n

Recall the optimization problem in the variational approach:

ρexpn = inf
α,β,t⩾0

n(α+βµ− 1) such that −
n∑

i=1

log(α+βxj
i )⩽ 0, xj ∈ extremal(X̄n),

α+βx⩾ 0, x∈ [0,1],

where X̄n = {(x1, . . . , xn)∈ [0,1]n, x1 + · · ·+xn ⩾ n(µ+ t)}. Constraints −−
∑n

i=1 log(α+βxj
i )⩽ 0 and

x1 + · · ·+ xn ⩾ n(µ+ t) are symmetric in the coordinates, meaning that they have the same value when

permuting xj
1, . . . , x

j
n. Therefore, the optimization problem requires to formulate only O(n) extremal points,

depending on the value for n(µ+ t)∈ [0,1]:

• If n⩽ n(µ+ t)>n− 1: Extremal(X n) = {(1, . . . ,1); (n(µ+ t)− (n− 1),1, . . . ,1)},

• If n − 2 < n(µ + t) ⩽ n − 1: Extremal(X n) = {(1, . . . ,1); (0,1, . . . ,1); (0, n(µ + t) − (n −

2),1, . . . ,1)},

• If n− 3 < n(µ+ t) ⩽ n− 2: Extremal(X n) = {(1, . . . ,1); (0,1, . . . ,1); (0,0,1, . . . ,1); (0,0, n(µ+

t)− (n− 3),1, . . . ,1)},

• . . .,

• If n(µ+ t)⩽ 1: Extremal(X n) = {(1, . . . ,1); (0,1, . . . ,1); . . . ; (0, . . . ,0,1); (0, . . . ,0, n(µ+ t))}.

Thus, there are at most ⌊n(µ+ t)⌋+1 extremal points to consider.
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B.3. Closed-form solution to the variational reformulation for n= 2

Recall the optimization problem under consideration for n= 2, for two i.i.d. random variables taking their

values in [0,1] with mean µ∈R,

logρexpn (t) = inf
α,β,t⩾0

2(α+βµ− 1) such that − log(α+βxj
1)− log(α+βxj

2)⩽ 0, xj ∈ extremal(X̄2),

(37)

where X̄2 = {(x1, x2)∈ [0,1]2, x1 +x2 ⩾ 2(µ+ t)}. Extremal points of X̄2 depends on the value of µ+ t:

• If 1/2⩽ µ+ t⩽ 1, extremal(X̄2) = {(1,1), (1,2(µ+ t)1)};

• If 0⩽ µ+ t⩽ 1/2, extremal(X̄2) = {(1,1), (0,1), (0,2(µ+ t)}.

We derive an optimal solution to problem (37) together with optimal values (α⋆, β⋆) in Proposition

PROPOSITION 14. Let µ∈ [0,1], and t∈ [0,1−µ]. Then, optimal solutions (α⋆, β⋆) to (37) verify:

α⋆ =


√

µ
µ+t

if 0⩽ t⩽ 1
2
−µ,√

1−2t−µ
1−µ

− t(2(µ+t)−1)√
(1−µ)(1−2t−µ)(1−(µ+t))

if 1
2
−µ⩽ t⩽ (1−µ)2

2−µ
,

0 if t⩾ (1−µ)2

2−µ
,

β⋆ =


t

(µ+t)
√

µ(µ+2t)
if 0⩽ t⩽ 1

2
−µ,

t

(1−(µ+t))
√

(1−µ)(1−µ−2t)
if 1

2
−µ⩽ t⩽ (1−µ)2

2−µ
,

µ√
2(µ+t)−1

if t⩾ (1−µ)2

2−µ
.

Proof. The proof is divided into two parts, depending on the value for µ+ t.

1. Let us first assume that µ+ t∈]1/2,1]. Then, the optimization problem (37) takes the form:

inf
α,β

2(α+βµ− 1), such that α⩾ 0, (×λ1)

− 2 log(α+β)⩽ 0, (×λ2)

− log(α+β)− log(α+(2(µ+ t)− 1)β)⩽ 0 (×λ3),

where λ1, λ2, λ3 ⩾ 0 are dual variables. Reformulating the second constraint into “α+β ⩾ 1”, it still holds

that this problem is a convex. We compute the KKT conditions:

2 = λ1 +λ2 +λ3

(
1

α+β
+

1

α+(2(µ+ t)− 1)β

)
,

2µ= λ2 +λ3

(
1

α+β
+

(2(µ+ t)− 1)

α+(2(µ+ t)− 1)β

)
,

0 = λ1α,

0 = λ2(1− (α+β)),

0 = λ3(− log(α+β)− log(α+(2(µ+ t)− 1)β)),

0⩽ λ1, λ2, λ3.

We proceed by a distinction of cases:
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• Assume first that λ1 ̸= 0, then α= 0. If λ2 ̸= 0, then β = 1 and λ3 = 0, λ2 = 2= 2µ, which is false. We

conclude that λ2 = 0, and that λ3 ̸= 0. This fixes the value for β, by solving log(β)+log(β(2(µ+ t)−1)) =

0 and injecting this relationship into the two first KKT conditions above.

• Assume now that α ̸= 0. Then, λ1 = 0. At least λ2 or λ3 must be nonzero, and both cannot be nonzero

if t+ µ ̸= 1/2. Assuming log(α+ β) + log(α+ (2(µ+ t)− 1)β) ̸= 0 entails λ3 = 0 and λ2 ̸= 0, that is

α+ β = 1. Then, log(α+ (2(µ+ t)− 1)β) < 0 which is false. We conclude that log(α+ β) + log(α+

(2(µ+ t)− 1)β) = 0, and thus, that λ3 ̸= 0 and λ2 = 0. This leads to the solutions :

α⋆ =

√
1− 2t−µ

1−µ
− t(2(µ+ t)− 1)√

(1−µ)(1− 2t−µ)(1− (µ+ t))
,

β⋆ =
t

(1− (µ+ t))
√

(1−µ)(1−µ− 2t)
,

for which α⋆ > 0 for t⩽ (1−µ)2

2−µ
.

2. We now consider the case where µ+ t∈ [0,1/2]. The optimization problem under consideration takes

the form:

inf
α,β

2(α+βµ− 1), such that α⩾ 0, (×λ1)

α+β ⩾ 1, (×λ2)

− log(α)− log(α+β)⩽ 0 (×λ3),

− log(α)− log(α+2(µ+ t)β)⩽ 0 (×λ4).

We compute the KKT conditions, leading to

2 = λ1 +λ2 +λ3

(
1

α
+

1

α+β

)
+λ4

(
1

α
+

1

α+β2(µ+ t)

)
,

2µ= λ2 +λ3

1

α+β
+λ4

2(µ+ t)

α+β2(µ+ t)
,

0 = λ1α,

0 = λ2(1− (α+β)),

0 = λ3(− log(α)− log(α+β)),

0 = λ4(− log(α)− log(α+β2(µ+ t))),

0⩽ λ1, λ2, λ3, λ4.

First, note that α > 0, and thus, λ1 = 0. In addition, λ2 = 0, otherwise, it implies that λ3 = λ4 = 0 and

µ= 1, which is impossible. In addition, if λ3 ̸= 0, then α(α+β) = 1. Yet, since α> 0, β ⩾ 0. The function

t 7→ α(α+ tβ) is nondecreasing, and thus α(α+ 2(µ+ t)β) > 1, which is impossible. We conclude that

λ3 = 0. By construction, λ4 ̸= 0, which implies that α(α+2(µ+ t)β) = 1, and thus,

2 = λ4(
1

α
+α),

2µ= λ4α2(µ+ t),
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from which we conclude the solutions α=
√

µ
µ+t

and β = t

(µ+t)
√

µ(µ+2t)
. □

B.4. Proof for Lemma 1.

Problem (20) simplifies into

inf
α∈R2,β∈R2

m(α1 +β1µ1)+ (n−m)(α2 +β2µn),

such that ∀x∈ extremal(X̄n), −
m∑
i=1

log(α1 +β1xi)−
n∑

i=m+1

log(α2 +β2xi)⩽ 0,

where X̄n = {(x1, . . . , xn)∈ [0,1]n, x1 + . . .+xn ⩾ nt+mµ1 +(n−m)µn}. We define µ̄n = 1
n

∑n

i=1 µi

and denote q= n(µ̄n + t)−⌊n(µ̄n + t)⌋. We denote the points with the notation (x1, . . . xm|xm+1, . . . , xn).

Let n(µ̄n + t)∈ [n− k+1, n− k[. The following assertions are true:

• (1, . . . ,1)∈ extremal(X̄n)

• If (1, . . . ,1|0,1, . . . ,1) ∈ extremal(X̄n), all its permutations are in extremal(X̄n). By symmetry, it is

sufficient to notice that the point (1, . . . ,1,0|1, . . . ,1) is in extremal(X̄n).

• If (1, . . . ,1|0,0,1, . . . ,1) ∈ extremal(X̄n), all its permutations are in extremal(X̄n). By symmetry, it

is sufficient to notice that the point (1, . . . ,1,0|0,1, . . . ,1) and (1, . . . ,1,0,0|1, . . . ,1) are in extremal(X̄n).

• If (1, . . . ,1|0, . . .0,1, . . . ,1)∈ extremal(X̄n), all its permutations are in extremal(X̄n). By symmetry,

it is sufficient to notice that the point (1, . . . ,1,0|0, . . . ,0,1, . . . ,1), . . . , (1, . . . ,1,0, . . . ,0|1, . . . ,1) are in

extremal(X̄n) (as long as k⩾m). That is about O(|k−m|) points.

• If (1, . . . ,1|0, . . . ,0, q,1, . . . ,1) ∈ extremal(X̄n), all its permutations are in extremal(X̄n). By sym-

metry, it is sufficient to notice that points (1, . . . ,1, q|0, . . . ,0,1, . . . ,1), (1, . . . ,1, q,0|0, . . . ,0,1, . . . ,1), . . .,

(1, . . . ,1, q,0, . . . ,0|1, . . . ,1) are in extremal(X̄n). That is, about O(2|k−m|) points.

If they are k zeros elements, there are O(
∑k−m

i=1 i) =O(k2)⩽O(n2) points.

C. Connecting the second-order to the first-order moment: proof for
Lemma 2

Let X be a random variable almost surely in [0,1] with mean µ(1). First, its second-order moment exists. In

addition, we have,

µ(2) ⩽ sup
p∈P([0,1])

∫ 1

0

x2dp(x), such that

∫ 1

0

xdp(x) = µ(1),

= inf
α,β

α+βµ(1) such that ∀x∈ [0,1], x2 ⩽ α+βx,

= inf
α,β

α+βµ(1) such that α⩾ 0,1⩽ α+β (by convexity),

= µ(1),

with α= 0, β = 1. In addition, by Cauchy-Schwarz,
∫ 1

0
xdp(x)⩽

√(∫ 1

0
x2dp(x)

)
that is µ(1) ⩽

√
µ(2).



33

Acknowledgments
This work was funded by MTE and the Agence Nationale de la Recherche as part of the “Investissements d’avenir”

program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute). We also acknowledge support from the European

Research Council (grant SEQUOIA 724063).

References
ApS, MOSEK. 2022. The MOSEK optimization toolbox for MATLAB manual. Version 10.0.. URL http://docs.

mosek.com/9.0/toolbox/index.html.

Bach, Francis. 2024. Learning Theory from First Principles. MIT Press (to appear).

Bennett, George. 1968. A one-sided probability inequality for the sum of independent, bounded random variables.

Biometrika 55(3) 565–569.

Bertsimas, Dimitris, Ioana Popescu. 2005. Optimal inequalities in probability theory: A convex optimization approach.

SIAM Journal on Optimization 15(3) 780–804.

Bertsimas, Dimitris, Ioana Popescu, Jay Sethuraman. 2000. Moment problems and semidefinite optimization. Hand-

book of Semidefinite Programming 311–339.
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