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ABSTRACT   

We summarize here, and detail with numerical examples, the Quasi-Normal Mode theory which has 
been developed in a recent series of papers dealing with classical and quantum plasmonics. We present 
the semi-analytical formalism capable of handling the coupling of electromagnetic sources, such as 
point dipoles or free-propagating fields, with various kinds of dissipative and dispersive resonators. 
Due to its analyticity, the approach is very intuitive, and very versatile and can be applied to canonical 
problems of quantum optics and sensing with nanoresonators. 
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1. INTRODUCTION  

 
Plasmonic resonators made of metallic nanoparticles (NP) are very appealing devices as they permit to concentrate 

light fields at the nanometer scale. In this regime, where quantum and classical world meet1,2 , both fundamental and 
applied research have been recently developed. Let us mention, in particular, new light sources  (nano-lasers) or light 
routing devices (nano-switches). A priori, one would naturally lean on brute force numerical simulation to compute the 
key physical quantities ( e.g. cross sections,  Purcell factors), and make designs.  However, this is hard to do in practice. 
One would indeed need to repeat many independent computations, when parameters such as wavelength, polarization, … 
are  changed. Besides, much knowledge about the physical mechanisms at play remains hidden. 

To go beyond such limitation, we have developed a modal method3,4 that permits to obtain easily an accurate 
prediction,  of the fields in or around the resonator. To do this, we expand the fields on the quasi-normal modes of the 
resonator, whose eigenfrequency is a complex number. Once the modes have been computed numerically, and properly 
normalized, their excitation coefficient is known analytically, even for three-dimensional, open and dispersive problems. 
In addition to providing a simple solution of canonical systems (nanoparticle on substrate, plasmonic nano-antenna, …), 
the modal approach permits a smart and physical analysis of complex situations, especially when several modes are at 
play. In a first section, we present the formalism and discuss it on an example where three resonances are involved. In 
second section, we recall how QNM expansion can be useful to treat hybrid atom/NP systems5 . Going back to classical 
physics, we then discuss a topical application : the design of devices for plasmonic sensing6. 
 
 
 



 
 

 
 

 
 

2. OVERLOOK OF QNM THEORY 

 
The rationale behind QNM theory is the expansion of electromagnetic fields onto the modes of  the nanoresonators, and 
the analytic computation of their excitation coefficients. While electromagnetic modes of  macroscopic resonators – e.g. 
Fabry-Perot and ring cavity –  are known analytically, and have simple expression7, this is not the case for NP 
electromagnetic modes. One need to compute them numerically in the general case of a nanoresonator, made of possibly 
dispersive and dissipative material. Mathematically speaking, one searches for the solutions of the Maxwell equations 
without source, 

 mmmm
~~,~~ HrμE )(i ωω−=×∇ ,   (1a) 

 mmmm
~~,~~ ErεH )(i ωω=×∇ .   (1b). 

 
There, mmm

~;~;~ HEω are respectively the eigenfrequency of the mth QNM, its Electric and Magnetic eigenfield. For a 
metallo-dielectric nanoresonator, this generalized eigenvalue problem admits complex numbers for  the m

~ω . This is due 
to the fact the problem is dissipative  – the metal absorbs, and the system is open: energy leaks to infinity. The imaginary 
part of m

~ω  is indeed linked to the losses per unit of time in the system. More precisely, the quality factor of the mth 
mode is approximately given by ( ) ( )[ ]ωω= ~~Q Im2Re . Notice that this relationship is very interesting, as the sole 
knowledge of m

~ω  already permits to approximate Q, without making any (lengthy) computation of cross section or 
Purcell factor. 
 
If one wants to go further, however, and obtain quantitative expressions, one will seek to expand the field on the modes. 
Then, one has to face a mathematical difficulty: eqs.(1) cannot be described by an Hermitian operator, and no formalism 
as simple as the theory of auto-adjoint operators can be used to treat the problem. An assumption of total field  expansion 
has however proven to be helpful in many cases. Either the total field3 or the scattered4 field can be expanded as a sum of 
modes – note that both fields are similar close to the NP resonances. One writes  
 

( ) ( ) ( )rΨrΨ m
m

m
~, ωβ≈ω ∑ ,     (2) 

Where ( ) ( ) ( )[ ]ωω≡ω ,,,, rHrErΨ  is either the ( scattered or total ) field one wants to expand. In practice, to use 

Eq. (2), one absolutely needs to define normalized modes, that do not depend on the excitation conditions. This is one of 

the main difficulty.  Indeed, it turns out that both fields  )(~);(~
mm rr HE are always diverging exponentially, going 

away from the scatterer3,4 . Then, even if one can compute the field profile inside, or around the NP, it is impossible to 
normalize the modes in the usual sense (for example by imposing a unitary value for their total energy integrated on the 
whole space). This problem was solved by using an analytical continuation of the diverging field3, which permitted to 
define rigorously the normalized Quasi-Normal modes (hereafter referred as the QNM or quasi-normal modes), and by 
proposing a numerical method based on the use of PMLs to help computing analytical quantities such as the mode 
volume. 
 
To find the normalized modes, Eqs. (1.a,b) can be solved with commercial Finite Element solvers. However, with 
metallic nanoparticles, whose permittivity is frequency dependent, the eigenvalue problem becomes non-linear, and a 
specific iterative method turns out to be more efficient4. Note  that this latter improvement do not necessitate to integrate 
the field inside the PMLs. Eventually, each mode is normalized independently, and the total (or scattered) field is 
expressed as a sum of modes. The expression for the excitation coefficient of the scattered field, ( )ωβm , is obtained as4: 
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And then the total field is finally 

( ) ( ) ( ) ( )rΨrΨrΨ m
~,, ωβ+ω≈ω ∑

=
m

3

1m
b ,     (4) 

where ( )ω,rΨ b is the background field ( ) ( ) ( )[ ]ωω≡ω ,,,, rHrErΨ bbb , imposed by the external condition (light 
beam, field excited by a point source, …). ( )ω∆ ,rε is the difference between the metal and surrounding environment 

permittivity. In our simulations, we use a Drude model, ( )ωγ−ωω−= i1ε 22
pAu , with ωp = 1.26×1016 s-1 and γ = 

1.41×1014 s-1, to define an analytical continuation of the gold permittivity for complex frequencies. The values of ωp and 
γ are fitted from tabulated data in8, and )( ω,rμ  is simply equal to the permeability of the vacuum. In this section, we will 
study a cylindrical nano-resonator made of gold, of length L=200 nm and diameter D=30 nm. Table 1 gathers the three 
main QNMs for wavelength between 0.5 µm and 2.5 µm. 
 
 

Mode 1 λ1=1.5-0.098i µm Symmetric along Z axis 
Mode 2 λ2=0.8-0.023i µm Anti-symmetric along Z axis 
Mode 3 λ3=0.6-0.013i µm Symmetric along Z axis 

 
     Table 1 : properties of the QNM modes used to model the cylindrical gold nanorod of length L=200 nm and diameter D=30 nm. 
 
2.1 Purcell factor 

 
Once the QNM are known, physically meaningful quantities, such as the Purcell factor of a dipole placed close to the 

nanoresonator can be evaluated easily. Figure 1 shows the spectral evolution of such Purcell factor. It is spectacular to 
observe that we need only three QNMs to obtain a very good quantitative agreement on such a large spectral window, 
both on and aside the resonances. One can notice that the strongest peak is due to the coupling of the point dipole 
(oriented along Z axis), with the field ( )∫∫∫ rrE 3

1 d~ , which is also mainly oriented in this direction (mode 1 is the Z-

dipolar mode of the nanoparticle). For the second peak (around λ=0.8 µm), ( ) 0d 3
2 =•∫∫∫ rurE Z

~ as the second QNM is 

antisymmetric (see the inset in Figure 1). There, coupling occurs with the X and Y components of the QNM, and gives a 
much less intense peak.  
 

2.2 Scattering, Absorption, Extinction cross sections 

 
Another set of important physical quantities is the absorption, extinction, and scattering cross section. Let us show here 
how one can obtain the absorption cross section from quasi-normal mode expansion Eq.(2). We have used the relation: 

( )( ) ( ) ( ) rdrErEr 32

0

,,,Im
2
1

∫∫∫ +−=
V bSA S

ωωωωεσ  ,   (5) 

that permits to express the absorption cross section as a function of a volume integral on the NP 4 . Figure 2 shows the 
spectral evolution, dominated by only two out of the three quasi-normal modes. This feature is due to the fact that mode 
number 2 is antisymmetric, and the excitation is now made by a plane wave, so that ( ) ( ) 0d3

22 ≈•ωβ ∫∫∫ rurE Z
~

 . 

Then, this mode do not contribute to the  absorbed field (when it is excited by such plane wave). This is why Purcell 



 
 

 
 

 
 

factor and Absorption cross section do not show the same number of resonances.  Of course, things would be different if 
the incidence angle of the plane wave changes. 
 

 
     Figure 1 : Purcell factor of a dipole placed in the vicinity of a gold cylinder of 200nm length and 30 nm diameter. The dipole is 
located at 10 nm of the cylinder, on its axis, and oriented along the axis (see the inset). Three modes have been considered and 
assumed to be orthogonal (blue line), the symbols display the exact FEM calculation. In particular, an antisymmetric mode is excited. 
Its normalized QNM profile – real part of Ez field, along the rod axis – is shown in the inset. 

 

 
     Figure 2 : Absorption cross section of a gold cylinder of 200nm length and 30 nm diameter excited by a plane wave polarized along 
the rod axis, and propagating perpendicular to it (see inset). Three modes have been considered and assumed to be orthogonal (blue 
line), the symbols display the exact FEM calculation. Apart from the antisymmetric mode of Figure 1 (not excited here), two other 
symmetric modes have been represented. The insets show the real part of Ez. 

 



 
 

 
 

 
 

3. QNM THEORY APPLIED TO QUANTUM PLASMONICS 
 

We have seen in the previous section that two key physical quantities, the Purcell factor and the cross sections, can be 
modeled quite precisely by a QNM expansion. At first sight, these quantities belong to classical physics, but they can be 
very useful for describing nanostructured quantum systems. Indeed, the seminal quantum works9 has been derived in free 
space. In order to transpose those theories to quantum resonators lying in the vicinity of nanoparticles, it is essential to 
know how the density of state is modified by the presence of a NP, and how the far field emission is affected by 
absorption or scattering of the NP. 

Using a simple semi-classical theory, we can describe9,10 an hybrid system made of an atom or quantum dot (modeled by 
an induced dipole) and coupled to a NP. Upon some hypotheses (weak coupling, small enough driving intensity), the 
spectral response of the system is linear, and can be described in very simple and generic terms5. 

 

3.1 QNM formalism for quantum nano-optics 

 

 
     Figure 3 : Overview of the semi-analytical modal formalism. The response of the hybrid system (left) to the laser driving field 
results from two contributions, the field radiated by the two level system (TLS) with modal expansion coefficients denoted αm and the 
field due to the driving excitation with modal expansion coefficients denoted βm. 

 
( )( )rE TLS
b  and 

( )( )rE L
b  are respectively the background field associated to the TLS response and the external driving field 

excitation, in the absence of the nanoresonator.  

 

The atom is modeled by an electric dipole moment,  which reads, neglecting Rabi broadening,  

iδ2
eg

−

Ω−
>=<

L
~

*~μ
d ,      (6) 

There,  γ describes the rate of spontaneous emission is directly related to the Purcell factor. Lδ~   is the detuning between 

atom resonance frequency and injected field frequency, normalized to the Purcell broadened linewidth γ. The Rabi 

frequency (normalized by γ), Ω~ , is proportional to the injected field in the presence of  NP and absence of atom. At the 
difference with Section 2., the dipole has now its own lineshape, and is not a monochromatic emitter. Eventually, we 
demonstrated that the interplay of a fine atomic and the broad plasmonic resonance creates a Fano spectral profile, whose 
shape can be well approximated by the analytical expression ,  
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1~2~F f ,      (7) 

where fm is a modal Fano coefficient, that is computed simply and directly from the QNM properties5. Depending on fm, 

one can obtain many types of Fano lineshapes ( )Lm δ~F  going from a Lorentzian to more complex responses, and link 

them to some physical situation (small / strong Purcell, e.g.) 5. The quantity ( )Lm δ~F  is proportional to the scattering or 
extinction cross section, and permits to have rapidly a clear idea of how the device would behave when such and such 
parameters are varied (typically the detuning between atom resonance and injected frequency, the atom location). Figure 
4, panel (a) shows such profile (both exact and QNM expansion), where a hole is burn in the broad local plasmonic 
resonance. The advantage of QNM to handle this problem is that the result can be applied virtually to any shape of the 
NP,  and is general, even if the resonator supports several QNMs 5.  
 
3.2 Fano response of an hybrid system and associated radiation diagram 

 

Since the field scattered by the system is expanded as a sum of QNMs, one can also compute all the far field properties 
of the hybrid system very rapidly, for any detuning Lδ~ . Figures 4 (b) and  (c) show the far field radiation diagram for 

different detunings ( Lδ~ ). It appears that the nanoresonator permits to control the direction and polarization of emitted 
plane wave with the wavelength of injected plane wave.  

 
 

 
     Figure 4 : Optical properties of an hybrid system made of a silver nanosphere of 20nm radius coupled to a quantum dot, modeled as 
an induced dipole, whose lineshape is given by Eq.(4). The dipole is oriented radially, placed at 20 nm above the sphere, and the 
hybrid system is excited by a plane wave propagating in a direction perpendicular to the dipole, and polarized along the dipole 
direction. Panel (a) shows the extinction cross section of the hybrid system, as a function of the detuning between quantum dot 
resonance and plane wave frequency. Detuning is normalized to the Purcell broadened linewidth  γ. Panel (c) shows the far field 
radiation diagram of the structure, in a plane perpendicular to the dipole axis, for 3 values of the detuning.  Panel (b) shows how the 
direction of maximal emission varies with the normalized detuning. 



 
 

 
 

 
 

In a similar way, the formalism can be extended to handle hybrid systems composed of a discrete ensemble of TLSs and 
a single resonator, and to study the reinforcement of cooperative electromagnetic effects between the oscillators due to 
the interaction with the nanoresonator11 . We have recently shown that the implementation of the QNM formalism is of 
crucial importance for the description of the electromagnetic response of such hybrid systems with arbitrarily shaped 
nanoresonators and that the semi-analyticity of the approach leads to a substantial reduction of the computational time. 

 
 

4. QNM THEORY APPLIED TO BIO-SENSING 

 
4.1 Perturbation of a resonance 

 
Because metallic nanoparticles support spatially highly confined resonances that is usually accompanied with strong near 
field, they can effectively convert the changes of refractive index (more generally, permittivity and/or permeability) in 
their vicinity into frequency shifts of the resonance. Significant development in sensing technologies has been achieved 
in the recent years based on localized surface plasmon resonance of metallic nanoparticles12.  Note that both the 
frequency shift Re( ω∆~ ) and the resonance broadening −2Im( ω∆~ ) are two fundamental quantities relevant for sensing 
applications.  However, usually these two quantities can only be predicted by repeated fully-vectorial electromagnetic 
calculations. A simple and analytical (or semi-analytical) formula accurate for photonic or plasmonic nanoresonators of 
arbitrary size and shape, potentially composed of lossy and dispersive materials, is essentially important, but has not 
been already established. 
 
In this section, based on rigorous treatment of quasi-normal mode (QNM) normalization introduced in Section 2, we 
derive a close-form expression that can accurately predict the complex-valued shift ω∆~  of the eigenfrequency ω~   of a 
resonance due to the presence of a perturbation, which is a local variation of refractive index (or permittivity or 
permeability) in the vicinity of the resonator (see Fig. 5a). Then the accuracy of the semi-analytical formula is shown 
with a canonical example in plasmonic sensing. More details and examples can be found in a recent publication6. 
Considering two slightly different system as shown in Fig. 5a, 
 
4.2 Derivation of the master equation 

 
Here we outline the major steps to derive a closed-form expression of ω∆~ , for the case with a permittivity perturbation. 
The formula can be extended to general cases with both permittivity and permeability perturbations. Two eigenvalue 
problems are associated to the refractive-index sensing configuration (see Fig. 5a): the first corresponds to an eigenmode 
of the bare metallic nanoresonator and the second corresponds to the eigenmodes of the same nanoresonator dressed by a 
perturbation. Let us denote the eigensolutions to the Maxwell’s equations for these two problems as 
( )EεHHμE ~ ~~ ,~~~ ωω ii =×∇−=×∇  and ( )'~ ''~'~ ,'~''~'~ EεHHμE ωω ii =×∇−=×∇  , respectively. The two solutions have slightly 

different eigenfrequencies, ω~  and '~ω . Applying the divergence theorem to the vector HEHE ′×−×′ ~~~~ , we obtain  

( ) ( ) ( ) ( )( )[ ] ( ) ( )[ ]{ }∫∫∫∫∫ Ω∑
′ω′′ω′−ωω•−′∆+ω′−ωω•−=•′×−×′ rHμμHEεεεESHEHE 3 ~ ~~~~~~ '~'~~~~~ ~~~~ did ωω , (8) 

where ( )'~ωε∆ denotes the permittivity change induced by the perturbation, i.e., ( ) ( ) ( )ω−ω=ω∆ bp εεε  with pε  and bε  
denoting the permittivities of perturbation and background medium. In Eq. (1), ∑ is a closed surface defining a volume 
Ω. The volume integral in Eq. (1) can be evaluated over the whole space Ω, consisting of two sub-domains Ω1 and Ω2. 
Ω1 denotes a finite-volume real space that contains the metallic nanoparticle, and Ω2 denotes PMLs (relevant detailed 
discussions can be found in Section 2 and Ref. [3]). Because of the exponential damping of field inside PMLs, the left-
side of Eq. (2) becomes null, and assuming that ωω ~~~ −′=ω∆  is small enough that we may adopt a 1st order expansion of 
the permittivity and permeability for ω≈ω ~ , Eq. (1) becomes,  
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Furthermore, we assume that the perturbation modifies the QNM field solely locally in a volume approximately equal to 
Vp, and that the error induced by replacing HE ′′ ~,~  by HE ~,~  into the denominator of Eq. (2) is negligible (the accuracy of 
this approximation has been tested in Ref. [6] with various examples).  Then substituting the normalization introduced in 

in Ref. [3],
[ ] [ ] 1~~~~ 3 =









ω∂
ω∂

⋅−
ω∂
ω∂

⋅∫∫∫
Ω

rHμHEεE d , into Eq. (3) we obtain 

                                                                      
( ) ( ) ( )∫∫∫ ⋅′ω∆ω−=ω∆

p
d

 V
3~~~,~~ rrErErε . (10) 

To calculate the frequency shift ω∆~  using the sole knowledge of the unperturbed mode E~ , we may adopt a practical 
approximation,

 
( ) ( ) ( )[ ]ω∆αε≈′ ~,~~ rεrErE pb V , with α  denoting the polarizability of the perturbing nano-object. 

 
4.3 Numerical tests and discussion 

 

For the sake of brevity, here we only show one test of the accuracy of the semi-analytical formula Eq. (3) for a canonical 
example: a cylindrical gold nanorod (radius R = 10 nm and length L = 80 nm) perturbed by individual nanospheres of 
varying sphere radius, as shown in Fig. 1(b). The excellent agreement between the model prediction and fully-vectorial 
calculations evidences the accuracy of the close-form expression, and more examples can be found in Ref. [6]. 

 
     Figure 5. Resonance shifts of a gold nanorod due to the attachment of protein nanospheres (n = 1.5) in aqueous environment 
(n = 1.33). (a) Illustration of a bare metallic resonator (left) and a perturbed metallic resonator (right) due to the presence of a 

perturbing object (green). (b) Re( λ∆~
) and 2·Im( λ∆~

) as a function of the nanosphere diameter D for a fixed sphere-rod distance 
S = 0.5nm. Triangle or square marks are obtained with fully-vectorial calculation and curves are predicted with Eq. (3). 

 
We notice that there had been much effort to derive simple formulas, similar to Eq. (3), based on perturbation theory 

to predict frequency shifts of lossy and leaky resonators (including plasmonic resonators) due to perturbations13-15. The 
main difference resides in both the integrand used inside the formula, a EE ~~ ⋅  product instead of a *~~ EE ⋅  product and, of 
course, in the mode normalization. Replacing *~~ EE ⋅  by EE ~~ ⋅  is not just a small modification but has significant 
implications. Briefly, the use of EE ~~ ⋅  product and the mode normalization adopted here is mathematically rigorous for 
lossy and leaky resonances, and EE ~~ ⋅  product preserves the phase of the complex modal field, which is critical for 
predicting the spectral broadening ( )ω∆~Im  due to perturbation. Additionally, based on large amount of simulations, we 



 
 

 
 

 
 

find our proposed approach has much higher precision than the ones based on  *~~ EE ⋅  products. Related discussion can be 
found in Ref. [6].  

Finally, we would like to emphasize that the proposed approach is not restricted by the size or shape of the 
nanoresonators or perturbations. Also, it would be fascinating to extend the present work to multimode nanoresonators, 
such as complex systems supporting Fano-like resonances, which has been extensively studied for the bio-sensing 
applications. 

5. CONCLUSION 

 
We have presented, using a simple example, the QNM formalism recently developed,  that is able to handle analytically 
the coupling between optical resonances and various kinds of sources, such as Dirac electrical dipoles or free-
propagating fields. This formalism encompasses radiation leakage and Ohmic losses, and permits an accurate and fast 
description of major physical parameters such as Purcell factor and Cross sections. Application to hybrid systems made 
of quantum and classical resonator has been shown, which paves the way for a rigourous and simple treatment of 
nanolasers and other quantum nanodevices. Perturbative theory of QNM has also been developed with application to 
sensing. We believe the versatility of such description will make it a precious tool in nano-optics modeling. 
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