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Abstract

Single-modality medical images generally do not contain enough information to reach an
accurate and reliable diagnosis. For this reason, physicians commonly rely on multimodal
medical images for comprehensive diagnostic assessments. This study introduces a deep
evidential fusion framework designed for segmenting multimodal medical images, leverag-
ing the Dempster-Shafer theory of evidence in conjunction with deep neural networks. In
this framework, features are first extracted from each imaging modality using a deep neu-
ral network, and features are mapped to Dempster-Shafer mass functions that describe the
evidence of each modality at each voxel. The mass functions are then corrected by the con-
textual discounting operation, using learned coefficients quantifying the reliability of each
source of information relative to each class. The discounted evidence from each modality
is then combined using Dempster’s rule of combination. Experiments were carried out on
a PET-CT dataset for lymphoma segmentation and a multi-MRI dataset for brain tumor
segmentation. The results demonstrate the ability of the proposed fusion scheme to quan-
tify segmentation uncertainty and improve segmentation accuracy. Moreover, the learned
reliability coefficients provide some insight into the contribution of each modality to the
segmentation process.

Keywords: Dempster-Shafer theory, Evidence theory, Medical image processing, Deep
learning, Decision-level fusion

1. Introduction1

Recent advances in medical imaging technologies have facilitated the acquisition of mul-2

timodal data such as Positron Emission Tomography (PET)/Computed Tomography (CT)3

and multi-sequence Magnetic Resonance Imaging (MRI). Images from a single modality4

provide partial insight into cancer and other abnormalities within the human body. Multi-5

modal medical image analysis, which integrates information from diverse medical imaging6

modalities, significantly contributes to a comprehensive understanding of intricate medical7

conditions [90]. It encompasses factors such as the location, size, and extent of pathological8
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structures. Medical image segmentation based on the fusion of multimodal medical informa-9

tion allows clinicians to better delineate anatomical structures, lesions and abnormalities,10

thus enhancing the effectiveness of disease detection, diagnosis, and treatment planning.11

Multimodal medical image fusion strategies can be implemented at different levels [84].12

At the lowest pixel level, multimodality images are concatenated as a single input. Alterna-13

tively, features can be extracted from different modalities and combined for further modeling14

and reasoning (feature-level fusion). Finally, in the decision-level approach, partial decisions15

are made independently based on each modality and aggregated to obtain a final decision.16

Though recent developments in multimodal medical image analysis have yielded promising17

experimental results, conventional multimodal medical image fusion strategies still suffer18

from some limitations. It is often difficult to explain why a given strategy works in a given19

context, and to quantify decision uncertainty in a reliable way. Moreover, most approaches20

are based on optimistic assumptions about data quality and, contrary to clinical knowledge,21

they treat images from different modalities as equally reliable when segmenting tumors,22

which may lead to biased or wrong decisions.23

The success of information fusion depends on the relevance and complementarity of24

input information, the existence of prior knowledge about the information sources, and the25

expressive power of the uncertainty model employed [65, 24, 61]. Given that the quality26

of input information and prior knowledge is intricately tied to the data collection stage, a27

lot of work has been devoted to modeling uncertainties in a faithful way [39]. As a critical28

factor in the information fusion process [1, 38], accurate uncertainty quantification must be29

regarded as a primary objective to achieve precise multimodal medical image segmentation.30

Early methods for quantifying uncertainty essentially relied on probabilistic models, of-31

ten integrated with Bayesian inference or sampling techniques to estimate uncertainty across32

various parameters or variables [34, 56]. The advent of deep neural networks has sparked33

renewed interest in uncertainty estimation [1], leading to the development of methods such34

as Monte-Carlo dropout [29] and deep ensembles [45]. However, it is important to note35

that these probabilistic models rely on assumptions about the underlying data distribution,36

and improper distributions can result in inaccurate uncertainty estimations. Furthermore,37

uncertainty quantification via inference or sampling algorithms heavily relies on computa-38

tional approximations and may lack rigorous theoretical justification [6, 7]. These and other39

limitations motivate the search for alternative approaches for uncertainty quantification for40

information fusion and decision-making applications.41

Instead of making strong assumptions on actual data distribution, non-probabilistic42

methods use alternative mathematical frameworks or representations such as possibility43

theory [87, 21] and Dempster-Shafer theory (DST) [15, 69, 20] to quantify uncertainty. In44

particular, the latter formalism is an evidence-based information modeling, reasoning, and45

fusion framework that can be used with both supervised [16, 80, 79] and unsupervised learn-46

ing [48, 19], providing an effective way to handle imperfect (i.e., imprecise, uncertain, and47

conflicting) data. Compared to possibility theory, DST allows the quantification of both48

aleatory and epistemic uncertainty while providing a powerful mechanism for combining49

multiple unreliable pieces of information [61].50

In multimodal medical image segmentation, effectively combining uncertain information51
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from diverse sources presents a significant challenge. Some learning-based approaches pro-52

pose addressing conflicting decisions by introducing learnable weights [50, 4, 71]. The term53

“weight” in those approaches usually refers to the importance of information. In contrast,54

reliability pertains to the trustworthiness of the information and needs to be carefully an-55

alyzed in different medical situations. Four major approaches have been used to provide56

reliability coefficients: 1) modeling the reliability of sources using a degree of consensus [14];57

2) modeling expert opinions using probability distributions [12]; 3) using external domain58

knowledge or contextual information to model reliability coefficients [26]; 4) learning the59

reliability coefficients from training data [25, 62], which is a very general approach that does60

not require any prior domain knowledge or expert opinions. In this work, we consider an61

even more flexible approach in which the reliability of each image modality is described by62

several coefficients, one for each ground truth value. The reliability coefficient for source i63

and class k is then defined as one’s belief that the information from source i is reliable, if64

the true class is k.65

In this paper, we introduce a new approach to multimodal medical image segmentation66

combining DST with deep neural networks1. The proposed fusion scheme comprises multiple67

encoder-decoder-based feature extraction modules, DST-based evidence-mapping modules,68

and a multimodality evidence fusion module. The evidence-mapping modules transform69

the extracted features into mass functions representing the evidence from each imaging70

modality about the class of each voxel. These mass functions are then corrected by a71

contextual discounting operation, and the discounted pieces of evidence are combined by72

Dempster’s rule of combination. The whole framework is trained end-to-end by minimizing73

a loss function quantifying the errors before and after the fusion of information from each74

modality. Our main contributions are, thus, the following:75

1. We propose a new hybrid fusion architecture for multimodal medical images composed76

of feature extraction, evidence-mapping, and combination modules.77

2. Within this architecture, we integrate mechanisms for (i) quantifying segmentation un-78

certainty using Dempster-Shafer mass functions, (ii) correcting these mass functions79

to account for the relative reliability of each imaging modality using context discount-80

ing, and (iii) combining corrected mass functions from different sources to reach final81

segmentation decisions.82

3. We introduce an improved two-part loss function making it possible to optimize the83

segmentation performance of each individual source modality together with the overall84

performance of the combined decisions.85

4. Through extensive experiments with two real medical image datasets, we show that the86

proposed decision-level fusion scheme improves segmentation reliability and quality as87

compared to alternative pixel-level methods for exploiting different image modalities.88

1This paper is an extended version of the short paper presented at the 25th International Conference
on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022) [36]. This extended
version includes a much more detailed description and explanation of the fusion framework, an improved
optimization strategy with a two-part loss function, as well as extended results with a second dataset for
lymphoma segmentation and an additional transformer-based feature-extraction module.
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5. We show that the learned reliability coefficients provide some insight into the contri-89

bution of each imaging modality in the segmentation process.90

The rest of this paper is organized as follows. Background information and related work91

are first recalled in Section 2. Our approach is then introduced in Section 3, and experimental92

results are reported in Section 4. Finally, Section 5 concludes the paper and presents some93

directions for further research.94

2. Related work95

The basic concepts of DST and its application to classification are first recalled in Section96

2.1. The contextual discounting operation, which plays a central role in our approach, is97

described separately in Section 2.2. The evidential neural network model used in this paper98

is then introduced in Section 2.3, and related work on multimodal medical image fusion is99

briefly reviewed in Section 2.4.100

2.1. Dempster-Shafer theory101

Let Θ = {θ1, θ2, . . . , θK} be the finite set of possible answers to some question, called the
frame of discernment. Evidence about a variable taking values in Θ can be represented by
a mass function m : 2Θ → [0, 1], such that∑

A⊆Θ

m(A) = 1 and m(∅) = 0.

Each subset A ⊆ Θ such that m(A) > 0 is called a focal set of m. The mass m(A) represents102

a share of a unit mass of belief allocated to focal set A, which cannot be allocated to any103

strict subset of A. The mass m(Θ) can be interpreted as a degree of ignorance. Full ignorance104

is represented by the vacuous mass function m? verifying m?(Θ) = 1. If all focal sets are105

singletons, then m is said to be Bayesian; it is equivalent to a probability distribution.106

Belief and plausibility functions. The information provided by a mass function m can also
be represented by a belief function Bel or a plausibility function Pl from 2Θ to [0, 1] defined,
respectively, as:

Bel(A) =
∑
B⊆A

m(B)

and
Pl(A) =

∑
B∩A 6=∅

m(B) = 1−Bel(Ā),

for all A ⊆ Θ, where Ā denotes the complement of A. The quantity Bel(A) can be inter-
preted as a degree of support for A, while Pl(A) is a measure of lack of support against A.
The contour function pl associated to m is the function that maps each element θ of Θ to
its plausibility, i.e.,

pl(θ) = Pl({θ}), ∀θ ∈ Θ.

As shown below, this function can be easily computed when combining several pieces of107

evidence; it plays an important role in decision-making.108
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Dempster’s rule. In DST, the beliefs about a certain question are established by aggregat-109

ing independent pieces of evidence represented by belief functions over the same frame of110

discernment [69]. Given two mass functions m1 and m2 derived from two independent items111

of evidence, the mass function m1 ⊕m2 representing the pooled evidence is defined as112

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), (1a)

for all A ⊆ Θ, A 6= ∅, and (m1 ⊕ m2)(∅) = 0. The coefficient κ is the degree of conflict113

between m1 and m2,114

κ =
∑

B∩C=∅

m1(B)m2(C). (1b)

This operation is called Dempster’s rule of combination. It is commutative and associa-115

tive. The combined mass function m1⊕m2 is called the orthogonal sum of m1 and m2. Mass116

functions m1 and m2 can be combined if and only if κ < 1. Let pl1, pl2 and pl1⊕ pl2 denote117

the contour functions associated with, respectively, m1, m2 and m1 ⊕ m2. The following118

equation holds:119

∀θ ∈ Θ, (pl1 ⊕ pl2)(θ) =
pl1(θ)pl2(θ)

1− κ
. (2)

The complexity of calculating the combined contour function using (2) is linear in the120

cardinality of Θ, whereas computing the combined mass function using (1) has, in the121

worst-case, exponential complexity.122

Conditioning. Given a mass function m and a nonempty subset A of Θ such that Pl(A) > 0,123

the conditional mass function m(·|A) is defined as the orthogonal sum of m and the mass124

function mA such that m(A) = 1. Conversely, given a conditional mass function m0 given125

A (expressing one’s beliefs in a context where it is only known that the truth lies in A), its126

conditional embedding [73] is the least precise mass function m on Θ such that m(·|A) = m0;127

it is obtained by transferring each mass m0(C) to C ∪ A, for all C ⊆ A. Conditional128

embedding is a form of “deconditioning”, i.e., it performs the inverse of conditioning.129

Plausibility-probability transformation. Once a mass function representing the combined ev-130

idence has been computed, it is often used to make a decision. Decision-making methods131

in DST are reviewed in [18]. Here, we will use the simplest method [11], which consists in132

computing a probability distribution on Θ by normalizing the plausibilities of the singletons,133

∀θ ∈ Θ, p(θ) =
pl(θ)∑K
k=1 pl(θk)

. (3)

Once probabilities have been computed, a decision can be made by maximizing the expected134

utility. We note that this method fits well with Dempster’s rule, as the plausibility of the135

singletons can be easily computed from (2) without computing the whole combined mass136

function.137
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2.2. Modeling the reliability of evidence138

In the DST framework, the reliability of a source of information can be taken into139

account using the discounting operation, which transforms a mass function into a weaker,140

less informative one and thus allows us to combine information from unreliable sources [69].141

Let m be a mass function on Θ and β a real number in [0, 1] interpreted as the degree142

of belief that the source mass function m is reliable. The discounting operation [69] with143

discount rate 1− β transforms mass function m into a less informative one βm defined as a144

weighted sum of m and the vacuous mass function m?, with coefficients β and 1− β:145

βm = β m+ (1− β)m?. (4)

In the rest of this paper, we will refer to β as a reliability coefficient. When β = 1, we accept146

the mass function m provided by the source and take it as a description of our knowledge;147

when β = 0, we reject it and are left with the vacuous mass function m?.148

The discounting operation plays an important role in many applications of DST, where149

it makes it possible to take into account “meta-knowledge” about the reliability of a source150

of information. It can be justified as follows [74]. Assume that m is provided by a source151

that may be reliable (R) or not (¬R). If the source is reliable, we adopt its opinion as ours,152

i.e., we set m(·|R) = m. If it is not reliable, then it leaves us in a state of total ignorance,153

i.e., m(·|¬R) = m?. Furthermore, assume that we have the following mass function on154

R = {R,¬R}: mR({R}) = β and mR(R) = 1− β, i.e., our degree of belief that the source155

is reliable is equal to β. Then, combining the conditional embedding of m(·|R) with mR156

yields precisely βm in (4), after marginalizing on Θ.157

Contextual discounting. In [58], the authors generalize the discounting operation using the158

notion of contextual discounting, which makes it possible to account for richer metaknowl-159

edge about the reliability of a source in different contexts, i.e., conditionally on different160

hypotheses regarding the variable of interest. In the corresponding refined model, m(·|R)161

and m(·|¬R) are defined as before, but our beliefs about the reliability of the source are162

now defined by K coefficients β1, . . . , βK , one for each state in Θ. More specifically, we have163

K conditional mass functions defined by mR({R}|θk) = βk and mR(R|θk) = 1 − βk, for164

k = 1, . . . , K. In this model, βk is, thus, the degree of belief that the source of information165

is reliable, given that the true state is θk. As shown in [58], combining the conditional em-166

beddings of m(·|R) and mR(·|θk) for k = 1, . . . , K by Dempster’s rule yields the following167

discounted mass function,168

βm(A) =
∑
B⊆A

m(B)

 ∏
θk∈A\B

(1− βk)
∏
θl∈A

βl

 (5)

for all A ⊆ Θ, where β = (β1, . . . , βK) is the vector of all reliability coefficients, and a169

product of terms is equal to 1 if the index set is empty. In many applications, we actually170

do not need to compute the whole mass function (5): we can compute only the associated171
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contour function βpl, which is all we need for decision-making. As shown in [58], this contour172

function is equal to173

βpl(θk) = 1− βk + βkpl(θk), k = 1, . . . , K. (6)

It can be computed in linear time with respect to the size of Θ, instead of exponential time174

for βm. An evidential k nearest neighbor rule based on the contextual discounting operation175

was introduced in [22].176

Example 1. Consider a simplified diagnostic problem in which a patient may have one of
two diseases denoted by θ1 and θ2. Assume that θ1 is a heart disease while θ2 is a lung
disease. A cardiologist examines the patient and describes his opinion by the following mass
function on Θ = {θ1, θ2}: m({θ1}) = 0.7, m({θ2}) = 0.2, m(Θ) = 0.1, i.e., his degrees of
belief in θ1 and θ2 are, respectively, 0.7 and 0.2. Furthermore, suppose that the cardiologist
is fully reliable to diagnose heart diseases (β1 = 1), i.e., if the true state of the patient is
θ1, the physician’s opinion can be fully trusted, whereas he is only 60% reliable to diagnose
lung diseases (β2 = 0.6), i.e., if θ2 is the true disease, there only is only 60% chance that the
physician’s diagnostic is relevant. Applying formula (5) to m gives the following discounted
mass function:

βm({θ1}) = β2m({θ1}) = 0.42
βm({θ2}) = β1m({θ2}) = 0.2

βm(Θ) = 1− β2m({θ1})− β1m({θ2}) = 0.38.

The contour function of the original mass function m is

pl({θ1}) = 0.7 + 0.1 = 0.8

pl({θ2}) = 0.2 + 0.1 = 0.3.

After contextual discounting, we get

βpl({θ1}) = 0.42 + 0.38 = 0.8
βpl({θ2}) = 0.2 + 0.38 = 0.58.

We can check that βpl({θ1}) = 1− 1 + 1× 0.8 and βpl({θ2}) = 1− 0.6 + 0.6× 0.3, which is177

consistent with (6).178

2.3. Evidential neural network179

In [16], Denœux proposed a DST-based evidential neural network (ENN) classifier in180

which mass functions are computed based on distances between the input vector and pro-181

totypes. As shown in Figure 1, the ENN model comprises a prototype activation layer, a182

mass calculation layer, and a combination layer.183

7



fused mass 
function  

Feature
vector 

...

...
...

prototype 
activation

mass 
calculation

mass 
fusion

Layer 1 Layer 2 Layer 3

Figure 1: The evidential neural network model.

The prototype activation layer comprises I units, whose weight vectors are prototypes184

p1, . . . ,pI in input space. The activation of unit i in the prototype layer is185

si = αi exp(−γi ‖x− pi‖
2), (7)

where γi > 0 and αi ∈ [0, 1] are two parameters. Each quantity si can be interpreted as a186

degree of similarity between input vector x and prototype pi.187

The second hidden layer computes mass functions mi representing the evidence of each
prototype pi, using the following equations:

mi({θk}) = uiksi, k = 1, . . . , K, (8a)

mi(Θ) = 1− si, (8b)

where uik is the membership degree of prototype i to class θk, and
∑K

k=1 uik = 1. The mass188

function mi can thus be seen as a discounted Bayesian mass function, with a discount rate189

1−si; its focal sets are singletons and Θ. The mass assigned to Θ increases with the distance190

between x and pi. Finally, the third layer combines the I mass functions m1, . . . ,mI using191

Dempster’s rule (1). The output mass function m =
⊕I

i=1 mi is a discounted Bayesian mass192

function that summarizes the evidence of the I prototypes.193

The idea of applying the above model to features extracted by a convolutional neural194

network (CNN) was first proposed by Tong et al. in [79]. In this approach, the ENN module195

becomes an “evidential layer”, which is plugged into the output of a CNN instead of the usual196

softmax layer. The feature extraction and evidential modules are trained simultaneously.197

Huang et al. applied the ENN model to medical image segmentation within a deep evidential198

segmentation network [37].199

Remark 1. The approach described in this section should not be confused with the “eviden-200

tial deep learning” approach introduced in [68] and applied to brain tumor segmentation in201
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[93]. The latter approach is based on learning the parameters of a Dirichlet distribution that202

represents second-order uncertainty on the class probabilities. Although the parameters of203

the Dirichlet distribution can be formally identified to a mass function whose focal sets are204

the singletons {θk} and the whole frame Θ, this is actually a Bayesian approach that learns205

a probability distribution over the class probabilities through a suitable loss function.206

2.4. Multimodal medical image fusion207

Multimodal medical image fusion can be performed at the pixel, feature or decision208

level. Pixel-level fusion is the traditional approach; it can be conducted directly in the209

spatial domain or indirectly through the application of transformations and representations.210

The fusion of high-level features is typically performed by a neural network learning a shared211

representation or a joint embedding space derived from multimodal features. Decision fusion212

consists in pooling decisions made independently from different image modalities; it can be213

performed with traditional or deep-learning approaches. In the following, we review previous214

work on multimodal medical image fusion, emphasizing the distinction between traditional215

and deep-learning approaches.216

2.4.1. Traditional approaches217

Traditional fusion methods aim at combining relevant information (either pixels them-218

selves or low-level image features) from multiple images to produce a single fused image with219

enhanced features for further analysis. Four main approaches have been proposed: multi-220

scale transformation, sparse representation extraction, edge-preserving filters, and meta-221

heuristic optimization. The first three approaches focus on effective image representation,222

while the last one aims at combining the represented features efficiently.223

The multi-scale transform approach decomposes images into different scales or frequency224

components using techniques such as wavelet transform [72], contourlet transforms [86],225

pyramid transforms [23] or curvelet transform [3], allowing relevant features from each source226

image to be combined. Sparse representation extraction assumes that multimodal images can227

be represented as a sparse linear combination of basis functions; search techniques such as228

dictionary learning [43] or sparse coding with dictionary learning [81] are used to obtain the229

sparse image representation and to merge images focusing on the most important features.230

Edge-preserving filters ensure the preservation of edges while smoothing images to ensure231

the fusion of critical features without blurring [75]. Commonly used filters include bilateral232

filters [47], guided filters [59], anisotropic diffusion [82], and total variation minimization233

[91]. The three above approaches can be used independently or in combination, which often234

yields better results. For example, in [35], Hu et al. propose a multimodal medical image235

fusion method based on separable dictionary learning and Gabor filtering; in [83], Wang et al.236

describe a multimodal medical image fusion method using Laplacian pyramid and adaptive237

sparse representations; in [51], Liu et al. introduce a general image fusion framework based238

on multi-scale transform and sparse representation.239

In addition to studying effective image representations, a complementary research direc-240

tion has been to design meta-heuristic optimization algorithms allowing one to find the best241

fusion parameters for combining features obtained by different transform, sparse or fitting242
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algorithms. Many approaches use meta-heuristic optimization techniques such as genetic243

algorithms [3], particle swarm optimisation [77] or ant colony optimisation [70].244

2.4.2. Deep learning approaches245

Recent advances in deep learning have allowed breakthroughs in medical image fusion246

by making it to learn a joint embedding or a shared representation space from multiple247

features. Recent techniques include adversarial learning [67], co-training [89], multi-kernel248

learning [57], multi-task learning [52], etc. These methods exploit the ability of neural249

networks to extract meaningful representations and perform fusion in high-level feature250

spaces with learnable feature fusion rules. These approaches enable more sophisticated and251

robust image fusion, capable of handling complex relationships and producing high-quality252

fused image features. Here, we summarize three important models commonly used for multi-253

model medical image fusion.254

Convolutional Neural Networks. Convolutional neural networks (CNNs) are widely used in255

image processing due to their strong feature representation capability. Within CNNs, various256

fusion operations can be used to effectively integrate information from different imaging257

modalities. Such operations include but are not limited to, concatenation, element-wise258

addition and multiplication, weighted sum, max pooling, etc. Fusion can occur at different259

stages of the network, i.e., early, middle, or late stages.260

Early fusion stacks different modalities along a channel dimension and feeds into a single261

CNN [49]. This is the simplest operation but it requires high image registration quality. In262

the case of middle fusion, separate CNN branches are employed to extract features from each263

modality, which are subsequently concatenated at the feature level or fused in a particular264

common representation space. More recently, transformer-based CNN architectures, such265

as the Vision Transformer (ViT) [33], have also demonstrated considerable versatility in266

handling diverse types of data with the introduction of an attention mechanism [46]. CNNs267

can also be integrated with some traditional fusion ideas to obtain more robust fusion results268

using, e.g., the multiscale transformer [76] or multiscale residual pyramid attention network269

[28].270

In contrast to the emphasis on image pixels or features in earlier fusion techniques, later271

fusion places greater importance on the aggregation of high-level decisions. It integrates in-272

formation derived from preliminary classifications with the application of appropriate fusion273

rules. Approaches can be classified into two main categories: 1) hard fusion methods, which274

merge logical information membership values, such as model ensembling with majority or275

average voting [42]; and 2) soft fusion methods, where classifiers assign numerical values to276

reflect their confidence in decisions, as exemplified by fuzzy voting [32, 27].277

Encoder-Decoder Networks. Encoder-decoder networks are another type of convolutional278

neural network commonly used for image segmentation and reconstruction. Within the279

encoder-decoder network, multiple encoders are used to extract deep features from each280

modality. These features are subsequently integrated either through a straightforward con-281

catenation process or through a latent layer or learnt joint embedding space. The fused282

features are then passed to the decoder to produce the final image. Compared with CNNs,283
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the Encoder-decoder architecture offers a more structured and effective fusion framework284

with enhanced feature representation, precise spatial alignment, and flexible and effective fu-285

sion strategies. Multimodal Transformer (MMT) [85] is one of the most sophisticated forms286

of multimodal encoder-decoder networks that employ self-attention mechanisms to integrate287

and process multimodal data in an effective manner; nnFormer [92] has been identified as288

the most advanced model for multimodal MRI brain tumor segmentation.289

Generative Adversarial Networks. Generative Adversarial Networks (GANs), composed of290

a generator and a discriminator, are capable of learning complex relationships between dis-291

parate modalities through the generation of highly realistic images via unsupervised adver-292

sarial training [30]. In the context of multimodal medical image fusion, the generator learns293

to generate a fused image that combines the semantic features of the inputs from different294

modalities. The discriminator guides the generator to produce high-quality fused images295

by distinguishing between the fused and the real images. GAN-based fusion methods are296

particularly useful for advanced medical image fusion tasks where the quality and realism297

of the fused image are of paramount importance, such as the combination of structural and298

functional imaging modalities. For example, in [88], the authors propose a conditional gen-299

erative adversarial network with a transformer for multimodal image fusion by introducing300

a wavelet fusion module to maintain long-distance dependencies across domains; in [67], the301

authors introduce an unsupervised medical fusion generative adversarial network to generate302

an image with CT bone structure and MRI soft tissue contrast by fusing CT and MRI image303

sequences.304

Although a lot of research has been devoted to the study of multimodal medical image305

segmentation and promising experimental results have been obtained, modeling the relia-306

bility of each modality in a given context and quantifying the uncertainty on the outcome307

of the fusion process remain challenging research questions. In this paper, we address these308

questions using a deep evidential fusion framework combining deep learning with DST, and309

taking into account the reliability of each of the modalities being combined. The proposed310

decision-fusion framework is described in detail in the following section.311

3. Proposed framework312

The main idea of this paper is to hybridize a deep evidential fusion framework with un-313

certainty quantification and reliability learning for multimodal medical image segmentation314

under the framework of DST. The architecture of the system is described in Section 3.1, and315

the loss function used to train the whole framework end-to-end is presented in Section 3.2.316

3.1. Architecture317

The proposed framework is depicted in Figure 2. Features are first extracted from differ-318

ent modalities using independent encoder-decoder feature-extraction (FE) modules. The fea-319

tures from each modality are then transformed into mass functions using evidence mapping320

(EM) modules. Finally, mass functions are discounted and combined in a multi-modality321

evidence fusion (MMEF) module. These modules are described in greater detail below.322
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Figure 2: The proposed deep evidential fusion framework. It is composed of encoder-decoder feature ex-
traction (FE) modules that represent images using deep features, evidence mapping (EM) modules that
map deep features into mass functions, and a multimodal evidence fusion (MMEF) module that combines
evidence from different modalities.

3.1.1. Feature-extraction (FE) module323

Deep neural network architectures have been shown to be very powerful for extracting324

relevant information from high-dimensional data. Our approach is compatible with any325

deep FE architecture. The baseline model considered in this paper is UNet [41], a founda-326

tional medical image segmentation model. As illustrated in Figure 3, a UNet-based feature327

extraction module incorporates residual connections within each layer, following the same328

architecture as in [37]. Each layer of the module comprises encoding and decoding paths,329

connected by skip connections. In the encoding path (represented by blue blocks), the data330

undergoes downsampling through stride convolutions, while the decoding path (represented331

by green blocks) employs stride transpose convolutions for upsampling. The bottom layer,332

represented by the gray block, serves as the base connection without performing any down333

or up-sampling of the data. In Section 4.3, in addition to UNet, we will also consider the334

more recent nnUNet [40] and nnFormer [92] models as alternative FE modules. The settings335

of these modules will be described in Section 4.1.336

3.1.2. Evidence mapping (EM) module337

The EM module is based on the ENN architecture recalled in Section 2.3. It is identical338

to that described in [37]. As illustrated in Figure 2, we have one such module for each339

modality. The input to each module is a tensor containing the H features extracted for each340

voxel. The prototypes are, thus, vectors in the H-dimensional space of features extracted341

from modality t images by the FE module. As explained in Section 2.3, a prototype layer first342

computes the similarities between feature vectors and prototypes using (7). The next layer343
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Figure 3: Schematic description of a UNet-based FE module. The network consists of a contracting path
(down-sampling layers) and an expansive path (up-sampling layers), which gives it the u-shaped architecture.
Reproduced based on [41].

computes mass functions for each prototype using (8) (see Figure 1). Finally, the prototype-344

based mass functions are combined by Dempster’s rule (1) in a third layer. Denoting by345

Θ = {θ1, . . . , θK} the set of classes, the EM module thus computes, for each voxel n and346

modality t, a mass function2 mt
n with focal sets {θk}, k = 1, . . . , K and Θ. The mass mt

n(Θ)347

is a measure of the segmentation uncertainty for classifying voxel n in the image of modality348

t.349

3.1.3. Multi-modality evidence fusion (MMEF) module350

This module first transforms the contour functions from the EM modules using the
contextual discounting operation recalled in Section 2.2. The contour function for voxel n
and modality t is obtained from mass function mt

n as

pltn(θk) = mt
n({θk}) +mt

n(Θ), k = 1, . . . , K.

Using (6), the discounted contour function is given by351

βt

pltn(θk) = 1− βtk + βtkpl
t
n(θk), k = 1, . . . , K, (9)

2Throughout this paper, we use an upper index t to denote modalities, and lower indices n and k to
denote, respectively, voxels and classes.
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where βt = (βt1, . . . , β
t
K) is the vector of discounting (reliability) coefficients for modality t.352

We recall that βtk represents our degree of belief that the modality t is reliable when it is353

known that the actual class of voxel n is θk. From (2), the combined contour function at354

voxel n can then be computed up to a multiplicative constant by multiplying the contour355

functions for the T modalities as356

βpln(θk) ∝
T∏
t=1

βt

pltn(θk), k = 1, . . . , K,

where β = (β1, . . .βT ) is the vector of KT reliability coefficients for the the K classes and357

T modalities. Finally, the predicted probability distribution Pn for voxel n after combining358

evidence from the T modalities is obtained from (3) as359

βpn(θk) =
βpln(θk)∑K
l=1

βpln(θl)
=

∏T
t=1 (1− βtk + βtkpl

t
n(θk))∑K

l=1

∏T
t=1 (1− βtl + βtlpl

t
n(θl))

, k = 1, . . . , K. (10)

The learnable parameters in this module are the KT reliability coefficients in vector β.360

3.2. Loss function361

The whole framework is optimized by minimizing the following loss function,

loss = losss + lossf ,

where362

• The term losss is the Dice loss quantifying the segmentation performance of each source363

modality independently, with364

losss =
T∑
t=1

[
1− 2

∑N
n=1

∑K
k=1m

t
n({θk})×Gkn∑N

n=1

∑K
k=1(mt

n({θk}) +Gkn)

]
, (11)

where N is the number of voxels, and Gkn = 1 if voxel n belongs to class θk, and365

Gkn = 0 otherwise;366

• The term lossf quantifies the segmentation performance after combination:367

lossf = 1− 2
∑N

n=1

∑K
k=1

βpn(θk)×Gkn∑N
n=1

∑K
k=1

βpn(θk) +Gkn

, (12)

where βpn is the predicted probability distribution for voxel n given by (10).368

The learnable parameters are the weights of the FE module, the prototypes and associ-369

ated parameters αi, γi and uik of the EM module, and the reliability coefficients βtk in the370

MMEF module. Learning the reliability coefficients is an original feature of our approach.371

As shown in Sections 4.2 and 4.3, these coefficients can allow us to gain some insight into372

the multi-modality segmentation process.373
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4. Experiments and results374

In this section, the proposed framework described in Section 3 is applied to two real375

multimodal medical image datasets. The experimental settings are first described in Section376

4.1. The results on the two datasets are then reported in Sections 4.2 and 4.3.377

4.1. Experimental settings378

Datasets. The proposed framework was tested on two multimodal medical image datasets.379

The PET-CT lymphoma dataset contains 3D images from 173 patients who were diag-380

nosed with large B-cell lymphomas and underwent PET-CT examination3. For lymphoma381

segmentation, PET imaging helps identify active tumor sites by highlighting areas of in-382

creased metabolic activity. In contrast, CT imaging provides anatomical information about383

the size, shape, location, and surrounding structures of lymphoma tumors. While PET384

image makes it possible to obtain functional information about the tumor and surrounding385

tissues, CT images provide complementary anatomical details allowing for more accurate386

segmentation. The lymphomas in mask images were delineated manually by experts and387

considered as ground truth. Figure 4 shows an example of PET and CT images of a patient388

with lymphomas. The PET and CT images and the corresponding mask images have differ-389

ent sizes and spatial resolutions due to the use of different imaging machines and operations.390

For CT images, the size varies from 267× 512× 512 to 478× 512× 512. For PET images,391

the size varies from 276× 144× 144 to 407× 256× 256.392

The multi-MRI brain tumor dataset was made available for the BraTS2021 challenge393

[5]. The original BraTS2021 dataset comprises training, validation, and test sets with,394

respectively, 1251, 219, and 570 cases. There are four modalities: FLAIR, T1Gd, T1, and395

T2 with 240 × 240 × 155 voxels. Figure 5 shows examples of four-modality MRI slices for396

one patient. The appearance of brain tumors varies in different modalities [5]. T1Gd MRI397

images are obtained following the administration of a gadolinium-based contrast agent that398

enhances areas with disrupted blood-brain barrier such as tumor regions, making tumors399

appear hyperintense (bright) and improving the visibility of tumor margins. FLAIR MRI400

images suppress the signal from cerebrospinal fluid (CSF), highlighting pathological changes401

while suppressing the CSF signal. T2 MRI images are sensitive to tissue water content402

and provide good contrast between soft tissues. Tumors with increased water content often403

appear hyperintense (bright) on T2 images. T1 MRI images are crucial for identifying tumor404

location and structural details by their excellent anatomical detail. Annotations of scans405

comprise gadolinium (GD)-enhancing tumor (ET), necrotic and non-enhancing tumor core406

(NRC/NET), and peritumoral edema (ED). The task of the BraTS2021 challenge was to407

segment the images into three overlapping regions: ET, tumor core (TC, the union of ET408

and NRC/NET), and whole tumor (WT, the union of ET, NRC/NET, and ED). In this409

work, we evaluated the segmentation performances with respect to these three overlapping410

regions to allow a fair comparison with other state-of-the-art methods. Additionally, we also411

3The study was approved as a retrospective study by the Henri Becquerel Center Institutional Review
Board.
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CT

PET

Axial Sagittal Coronal

Figure 4: Example of a patient with lymphomas. The first and second rows showcase, respectively, CT and
PET slices, depicting axial, sagittal, and coronal views. The lymphomas correspond to the bright regions
in PET slices.
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Flair T1Gd T1 T2

Figure 5: Examples of a patient with brain tumors in four MRI modalities: FLAIR, T1Gd, T1, and T2.
The first and second rows show, respectively, the original images and the images with tumor masks for the
three classes: peritumoral edema (ED, green), enhancing tumor (ET, yellow), and necrotic tumor core or
non-enhancing tumor (NCR/NET, red).

compared the results with respect to the three original non-overlapping tumor regions to412

highlight the impact of contextual discounting on subregion segmentation.413

Pre-processing. For the PET-CT dataset, we first normalized the PET, CT and mask images:414

(1) for PET images, we applied a random intensity shift and scale to each channel with a shift415

value of 0 and scale value of 0.1; (2) for CT images, the shift and scale values were set to 1000416

and 1/2000; (3) for mask images, the intensity value was normalized into the [0, 1] interval by417

replacing the outside value by 1. We then resized the PET and CT images to 256×256×128418

by linear interpolation and mask images to 256×256×128 by nearest neighbor interpolation.419

Lastly, CT and PET images were registered using B-spline interpolation. Following [37], we420

randomly divided the 173 scans into subsets of size 138, 17, and 18 for, respectively, training,421

validation, and test. The training process was then repeated five times to test the stability422

of our framework, with different data used exactly once as the validation and test data.423

For the BraTS2021 dataset, we used the same pre-processing operation as in [60]. We424

first performed a min-max scaling operation and clipped intensity values to standardize425

all volumes; we then cropped/padded the volumes to a fixed size of 128 × 128 × 128 by426

removing the unnecessary background (the cropping/padding operation was only applied427

to training data). No data augmentation technique was applied, and no additional data428

was used in this study. Since the ground truth labels are unavailable for the validation429

and test sets, we trained and tested our framework with the training set. Following [60],430

we randomly divided the 1251 training scans into subsets of 834, 208, and 209 cases for431
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training, validation, and testing, respectively. The process was repeated five times to test432

the stability of our framework. All the preprocessing methods mentioned in this paper can433

be found in the SimpleITK [53] toolkit.434

All the compared methods used the same dataset composition and pre-processing opera-435

tions. They were implemented in Python with the PyTorch-based medical image framework436

MONAI4.437

Parameter initialization and learning. At the FE stage, the number of filters in UNet was438

set to (8, 16, 32, 64, 128) with kernel size equal to five and convolutional strides equal to439

(2, 2, 2, 2) for layers from left to right. For nnUNet used in Section 4.3, the kernel size440

was set to (3, (1, 1, 3), 3, 3) and the upsample kernel size was set to (2, 2, 1) with strides441

((1, 1, 1), 2, 2, 1). For nnFormer used in Section 4.3, the crop size was set to (128, 128, 128)442

with embedding dimension set to 96 and the number of heads was set to (3, 6, 12, 24). The443

number of extracted features was H = 2 for the PET-CT lymphoma dataset and H = 4 for444

the multi-MRI BraTS2021 dataset.445

To train our fusion framework, we proceeded in three steps. First, FE modules (i.e.,446

UNet, nnUNet, or nnFormer) were pre-trained independently for each modality during 50447

epochs. Then, the weights of the FE modules were fixed, and the parameters of the EM448

and MMEF modules were optimized. Finally, the whole framework was fine-tuned for a449

few epochs. The initial values of parameters αi and γi in the EM modules were set to 0.5450

and 0.01, and the membership degrees uik were initialized randomly by drawing uniform451

random numbers, and normalizing. We used, I = 10 prototypes for the PET-CT lymphoma452

dataset, and I = 20 prototypes for the more complex multi-MRI BraTS2021 dataset. These453

prototypes were randomly initialized from a normal distribution with zero mean and an454

identity covariance matrix. Details about the initialization of the EM module can be found455

in [37]. The reliability coefficients βtk in the MMEF module were initialized at 0.5.456

For both datasets, we used the Adam optimization algorithm with an early stopping457

strategy: training was stopped when there was no improvement in performance on the458

validation set during ten epochs. The initial learning rate was set to 0.01. The batch size459

was set to 4. For all the compared methods, the model with the best performance on the460

validation set was saved as the final model for testing5.461

Evaluation criteria. Although many authors have shown that segmentation performance can462

be improved by merging multimodal medical images into deep neural networks [63, 2], the463

reliability of information sources and the quality of uncertainty quantification have rarely464

been investigated. Here, the former issue will be addressed by analyzing the reliability465

coefficients βtk defined in Section 3.1.3. To assess the quality of uncertainty quantification,466

we will use three metrics: the Brier score [9], the negative log-likelihood (NLL), and Expected467

Calibration Error (ECE) [31]. These metrics provide a robust evaluation framework for the468

4More details about how to use those models can be found in MONAI core tutorials https://monai.

io/started.html##monaicore.
5The code is available at https://github.com/iWeisskohl/Deep-evidential-fusion.
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uncertainty of the segmentation results, with smaller values indicating better performance.469

Their definitions are recalled below.470

The Brier Score and NLL are defined, respectively, as

BS =
1

N

N∑
n=1

(Pn −Gn)2,

and

NLL = −
N∑
n=1

Gn logPn + (1−Gn) log(1− Pn),

where Gn is the ground truth of voxel n, Pn is the predicted probability of voxel n, and N471

is the number of voxels.472

The ECE measures the correspondence between predicted probabilities and ground truth.
The output normalized plausibilities of the model are first discretized into equally spaced
bins Eb, b ∈ [1, B] (B = 10 in this paper). The accuracy of bin Eb is defined as

acc(Eb) =
1

| Eb |
∑
n∈Eb

1(Sn = Gn),

where Sn is the predicted class label for voxel n and 1(·) is the indicator function. The
average confidence of bin Eb is defined as

conf(Eb) =
1

| Eb |
∑
n∈Eb

Pn.

The ECE is the weighted average of the difference in accuracy and confidence of the bins:

ECE =
B∑
b=1

| Eb |
N
| acc(Eb)− conf(Eb) | .

A model is perfectly calibrated when acc(Eb) = conf(Eb) for all b ∈ {1, ..., B}, in which case473

ECE = 0.474

Since our dataset has imbalanced foreground and background proportions, we only con-475

sidered voxels belonging to the foreground or tumor region to calculate the above three476

indices. For the PET-CT lymphoma dataset, focusing only on the tumor region is not easy477

since the lymphomas are scattered throughout the whole body. Thus, we focused on the478

foreground region for this dataset. For the BraTS2021 dataset, we followed the suggestion479

from [66] to focus on the tumor region for the reliability evaluation. For each patient in the480

test set, we defined a bounding box covering the foreground or tumor region and calculated481

the corresponding values in this bounding box. For all segmentation performance criteria,482

the reported results were obtained by calculating the criteria for each test 3D scan and then483

averaging over the patients.484
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In addition to evaluating segmentation reliability, we also measured segmentation accu-
racy using the Dice score. In a segmentation task, the Dice score measures the volume of
the overlapping region of the predicted object and the ground truth object as

Dice =
2TP

FP + 2TP + FN
,

where TP , FP , and FN denote, respectively, the numbers of true positive, false positive,485

and false negative voxels.486

4.2. Segmentation results on the PET-CT lymphoma dataset487

Segmentation uncertainty. The results concerning uncertainty estimation are reported in488

Table 1. Our model (MMEF-UNet) was compared to489

1. UNet with a softmax decision layer (the baseline);490

2. UNet with Monte-Carlo (MC) dropout [29] and deep ensemble [45], two popular tech-491

niques for improving the uncertainty quantification capabilities of probabilistic deep492

neural networks;493

3. ENN-UNet, composed of UNnet as the FE module and the EM module in place of the494

softmax layer; this is the architecture studied in [37];495

4. RBF-UNet, an alternative model composed of UNnet and a radial-basis function496

(RBF) module in place of the softmax layer; as shown in [37], this model makes it497

possible to compute output belief functions that are similar to those computed by498

ENN-UNet.499

We can remark that approaches 1 to 4 above implement pixel-level fusion, whereas our500

approach is based on decision-level fusion. As for uncertainty quantification, UNet, UNet-501

MC and UNet-Ensemble are probabilistic methods. UNet only computes point estimates of502

class probabilities without taking into account second-order uncertainty. UNet-MC applies503

dropout during both training and inference, sampling multiple forward passes to estimate504

uncertainty by averaging the predictions. UNet-Ensemble quantifies uncertainty by aver-505

aging the predictions obtained from multiple independently-trained models. In contrast,506

ENN-UNet and RBF-UNet are evidential methods: they both calculate belief functions to507

represent segmentation evidence and uncertainty under the DST framework. For UNet-MC,508

the dropout rate was set to 0.2 and the number of samples was set to five; we averaged the509

five output probabilities at each voxel as the final output of the model. For UNet-ensembles,510

the number of samples was set to five; the five output probabilities were then averaged at511

each voxel as the final output of the model. The settings of ENN-UNet and RBF-ENN are512

the same as those reported in [37].513

From Table 1, we can see that Monte-Carlo dropout and deep ensembles do not signif-514

icantly improve the segmentation reliability as compared to the baseline UNet model, as515

shown, e.g., by the higher NLL values. In contrast, the addition of the EM module to the516

FE module, as implemented in ENN-UNet, brings a significant improvement, particularly517

according to NLL; the RBF-UNet model yields similar results. The decision-fusion frame-518

work MMEF-UNet brings an additional improvement according to all three criteria (ECE,519
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Table 1: Means and standard errors of segmentation quality and reliability measures for MMEF-UNet and
the referenced uncertainty quantification methods on the lymphoma dataset. The best results are in bold
and the second best are underlined.

Model ECE↓ Brier score ↓ NLL↓ Dice score ↑
UNet 0.056±3.6×10−3 0.065±3.9×10−3 0.310±8.8×10−2 0.770±3.2×10−2

UNet-MC 0.053±4.6×10−3 0.062±4.9×10−3 0.400±8.7×10−2 0.801±1.1×10−2

UNet-Ensemble 0.063±7.6×10−2 0.064±4.0×10−3 0.343±7.2×10−2 0.802±6.7×10−3

ENN-UNet 0.050±3.5×10−3 0.062±3.9×10−3 0.191±1.4×10−2 0.805±7.1×10−3

RBF-UNet 0.051±3.3×10−3 0.061±0.9×10−3 0.193±1.3×10−2 0.802±6.9×10−3

MMEF-UNet (ours) 0.045±1.3×10−3 0.056±2.7×10−3 0.180±1.3×10−2 0.811±3.4× 10−2

Brier score, NLL) and outperforms the other models: specifically, we observe decreases of520

1.1%, 0.9%, and 13% in ECE, Brier score, and NLL, respectively, as compared to UNet.521

We can conclude that, compared to the baseline model, both the EM and MMEF modules522

contribute to a higher segmentation reliability.523

These findings are, to some extent, confirmed by Figure 6, which shows the calibra-524

tion plots (also known as reliability diagrams) for the compared methods on the lymphoma525

dataset. Calibration plots are graphical representations showing how well the probabilistic526

predictions of a segmentation model are calibrated, i.e., how well confidence matches accu-527

racy. In the left graph of Figure 6, we can see that the curve corresponding to UNet-Ensemble528

is closer to the diagonal than those of UNet and UNet-MC, which indicates better calibra-529

tion. Looking at the right graph in Figure 6, we can see that the three DST-based models,530

ENN-UNet, RBF-UNet, and MMEF-UNet, have better calibration performance than the531

probabilistic ones, as shown by their calibration curves closer to the diagonal. Among them,532

MMEF-UNet shows the best calibration performance as ENN-UNet is slightly overconfident,533

while RBF-UNet is slightly underconfident.534

Segmentation accuracy. The segmentation accuracy was measured by the Dice score, as535

shown in Table 1. Compared with the baseline model UNet, our proposal MMEF-UNet536

significantly increases segmentation performance, as shown by a 4.1% increase in the Dice537

score. Compared with the two DST-based deep evidential segmentation methods, MMEF-538

UNet has a higher Dice score (although the difference with ENN-UNet is not statistically539

significant). Figure 7 shows an example of visualized segmentation results obtained by UNet,540

ENN-UNet, RBF-UNet, and MMEF-UNet. We can see that UNet and RBF-UNet are more541

conservative (they correctly detect only a subset of the tumor voxels), while ENN-UNet is542

more radical (some of the voxels that do not belong to tumors are predicted as tumors).543

In contrast, the tumor regions predicted by MMEF-UNet better overlap the ground-truth544

tumor region, especially for the isolated lymphomas, which is also reflected by the promising545

Dice score value. These conclusions are consistent with the calibration trends displayed in546

Figure 6.547
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Figure 6: Calibration plots for probabilistic (left) and evidential (right) deep segmentation models.

Ground Truth UNet ENN-UNet RBF-UNet MMEF-UNet

Figure 7: Examples of visualized segmentation results: from left to right, ground truth, and segmentation
results obtained by UNet, ENN-UNet, RBF-UNet, and MMEF-UNet. The white and red regions represent,
respectively, the ground truth and the segmentation result. Red and yellow boxes highlight the main
differences in segmenting large and small isolated tumors.

Table 2: Estimated reliability coefficient βt
k (means and standard errors) after training for the background

and lymphoma classes and the two modalities. Higher values correspond to greater contribution to the
segmentation.

βtk background lymphomas
PET 0.999±8.9×10−3 0.996±4.5×10−3

CT 0.863±1.8×10−2 0.975±8.9×10−3
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Table 3: Segmentation quality and reliability of UNet and ENN-UNet applied to the lymphoma dataset
with a single modality (CT or PET).

Model ECE↓ Brier score ↓ NLL↓ Dice score ↑
UNet (CT) 0.133±4.9×10−3 0.157±9.8×10−3 0.571±3.6×10−2 0.544±2.8×10−2

UNet (PET) 0.060±4.0×10−3 0.068±4.0×10−3 0.348±8.2×10−2 0.764±2.9×10−2

ENN-UNet (CT) 0.131±8.5×10−3 0.156±1.0×10−2 0.521±3.2×10−2 0.543±2.7×10−2

ENN-UNet (PET) 0.050±4.9×10−3 0.064±5.4×10−3 0.195±2.2×10−2 0.781±3.5×10−2

Analysis of reliability coefficients. Table 2 reports the learned reliability coefficients. We can548

see that they are higher for the PET modality. This is consistent with domain knowledge, as549

mentioned in Section 4.1: PET images provide functional information about tumor activity550

and make it possible to identify active tumor sites, whereas CT images essentially provide551

detailed anatomical information (e.g., size, shape, and location) about lymph nodes and552

surrounding tissues and are used as a complement to PET images. This is also confirmed553

by the results presented in Table 3, showing that the performance of UNet and ENN-UNet554

with either CT alone or PET alone, the latter configuration yielding better results.555

4.3. Segmentation results on the multi-MRI BraTS2021 dataset556

Segmentation uncertainty. For the BraTS2021 dataset, we tested the segmentation perfor-557

mance of our fusion framework with UNet as well as two alternative FE modules: nnUNet558

and nnFormer. The nnUNet model was reported to have the best performance in the559

BraTS2021 challenge [54] and nnFormer is now one of the state-of-the-art brain tumor560

segmentation models. The complete frameworks with nnUNet and nnFormer as a feature ex-561

tractor are referred to, respectively, as MMEF-nnUNet and MMEF-nnFormer. We compared562

our results with three baseline models: UNet, nnUNet, and nnFormer, and three Monte563

Carlo-based uncertainty segmentation models: UNet-MC, nnUNet-MC, and nnFormer-MC.564

Since the results obtained in Section 4.2, as well as those reported in [37] have shown that565

ENN-UNet and RBF-UNet yield similar results, here we only compared the performance of566

the ENN-based models, i.e., ENN-UNet, ENN-nnUNet and ENN-nnFormer. Moreover, we567

did not test the performance of deep ensemble models because applying them to larger-scale568

datasets exceeds our computation resources.569

As with the lymphoma dataset, we used the ECE, Brier score, and NLL metrics to570

assess segmentation uncertainty. The results with UNet, nnUNet and nnFormer in the571

FE module are presented, respectively, in Tables 4, 5 and 6. We can see that our fusion572

model consistently outperforms the baseline models with all three FE models and across all573

uncertainty evaluation metrics, although the differences are more significant when UNet is574

used as a feature extractor. Indeed, the fusion mechanism can be expected to have a smaller575

impact when information sources are more informative. Overall, MMEF-nnUNet achieves576

the highest segmentation reliability with the lowest ECE, Brier score, and NLL values, and577

MMEF-nnFormer yields the second-best results.578

23



Table 4: Reliability measures (means and standard errors) for MMEF-UNet and the reference methods
based on UNet on the BraTS2021 dataset. The best results are in bold and the second bests are underlined.

Model ECE↓ Brier score ↓ NLL↓
UNet 0.071±1.8×10−3 0.141±1.8×10−3 2.475±2.2×10−3

UNet-MC 0.067±1.3×10−3 0.135±4.5×10−3 2.264±7.3×10−2

ENN-UNet 0.065±1.3×10−3 0.130±4.5×10−3 2.250±3.6×10−2

MMEF-UNet (ours) 0.060±1.3×10−3 0.115±2.2×10−3 2.189±4.1×10−2

Table 5: Reliability measures (means and standard errors) for MMEF-nnUNet and the reference methods
based on nnUNet on the BraTS2021 dataset. The best results are in bold. The best results are in bold, and
the second-best results are underlined.

Model ECE↓ Brier score ↓ NLL↓
nnUNet 0.053±2.2×10−3 0.109±4.5×10−3 1.823±7.3×10−2

nnUNet-MC 0.051±1.8×10−3 0.107±4.5×10−3 1.810±5.8×10−2

ENN-nnUNet 0.053±1.8×10−3 0.109±4.9×10−3 1.804±8.2×10−2

MMEF-nnUNet (ours) 0.051±1.3×10−3 0.102±2.7×10−3 1.748±5.9×10−2

Table 6: Reliability measures (means and standard errors) for MMEF-nnFormer and the reference methods
based on nnUNet on the BraTS2021 dataset. The best results are in bold and the second-best are underlined.

Model ECE↓ Brier score ↓ NLL↓
nnFormer 0.055±1.6×10−3 0.111±3.2×10−3 1.917±5.5×10−2

nnFormer-MC 0.053±1.8×10−3 0.107±3.6×10−3 1.756±6.1×10−2

ENN-nnFormer 0.055±1.4×10−3 0.110±3.6×10−3 1.907±7.0×10−2

MMEF-nnFormer (ours) 0.052±0.6×10−3 0.103±1.2×10−3 1.787±2.2×10−2
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Table 7: Dice score (means and standard errors) for MMEF-UNet and the reference methods based on UNet
on the BraTS2021 dataset. The best results are in bold and the second bests are underlined.

Model ET TC WT Mean
UNet 0.807±9.4×10−3 0.825±8.5×10−3 0.881±6.7×10−3 0.837±7.2×10−3

UNet-MC 0.812±1.3×10−2 0.832±1.1×10−2 0.886±6.3×10−3 0.843±8.9×10−3

ENN-UNet 0.810±1.3×10−2 0.842±1.1×10−2 0.896±5.4×10−3 0.849±9.4×10−3

MMEF-UNet (ours) 0.833±1.2×10−2 0.854±7.2×10−3 0.907±4.9×10−3 0.864±5.8×10−3

Table 8: Dice score (means and standard errors) for MMEF-nnUNet and the reference methods based on
nnUNet on the BraTS2021 dataset. The best results are in bold and the second bests are underlined.

Model ET TC WT Mean
nnUNet 0.791±4.9×10−3 0.850±5.8×10−3 0.912±3.5×10−3 0.851±4.4×10−3

nnUNet-MC 0.802±4.4×10−3 0.860±4.9×10−3 0.916±4.4×10−3 0.859±4.9×10−3

ENN-nnUNet 0.807±9.8×10−3 0.869±1.9×10−2 0.915±5.4×10−3 0.863±9.8×10−3

MMEF-nnUNet (ours) 0.832±9.8×10−3 0.873±2.6×10−3 0.918±1.3×10−3 0.875±4.4×10−3

Segmentation accuracy. Segmentation accuracy was evaluated by the Dice score for the three579

overlapping regions, ET, TC, and WT, as well as by the mean Dice score. The results with580

UNet, nnUNet and nnFormer as feature extractors are reported, respectively, in Tables 7,581

8 and 9. Again, we can see that our fusion strategy improves segmentation accuracy for582

all three FE models. Overall, the highest segmentation accuracy was achieved by MMEF-583

nnFormer, with an increase of 1.5 % in the mean Dice score compared with the second-best584

method, ENN-nnFormer.585

We also report the Dice score for the segmentation of the three original tumor regions:586

ED, ET, and NRC/NET in Table 10. As we can see, the baseline nnFormer shows good587

performance for segmenting ED and ET, while it does not perform as well for segmenting588

NRC/NET. Indeed, the lack of clear contrast, the similar signal intensities to normal brain589

tissue, the infiltrative growth patterns, and the need for multi-modal data make the seg-590

mentation of NRC/NET inherently more challenging compared to ED and ET. When the591

MMEF-nnFormer approach was applied, the Dice scores for the ED, ET, and NRC/NET im-592

proved by 0.6%, 1.6%, and 6.5%, respectively. The substantial improvement in NRC/NET593

segmentation is particularly encouraging, as it demonstrates the effectiveness of the proposed594

fusion method for delineating fuzzy tumor boundaries and solving challenging segmentation595

tasks.596

Figures 8 and 9 show two segmentation cases when using nnFormer as the feature extrac-597

tor. Figure 8 shows an easy segmentation case where only one tumor type is present. Both598

the Flair and T1Gd images exhibit good segmentation performance with only a few misla-599

beled voxels. It is surprising to see that concatenating multimodal medical images as the600

input for nnFormer resulted in worse outcomes, with the most mislabeled voxels. This might601

25



Table 9: Dice score (means and standard errors) for MMEF-nnFormer and the reference methods based on
nnFormer on the BraTS2021 dataset. The best results are in bold and the second bests are underlined.

Model ET TC WT Mean
nnFormer 0.839±3.8×10−3 0.878±2.9×10−3 0.915±2.4×10−3 0.877±1.7×10−3

nnFormer-MC 0.837±3.7×10−3 0.877±4.5×10−3 0.914±2.9×10−3 0.876±2.3×10−3

ENN-nnFormer 0.836±9.8×10−3 0.882±5.6×10−2 0.914±5.2×10−3 0.878±3.2×10−3

MMEF-nnFormer (ours) 0.854±7.5×10−3 0.911±5.4×10−3 0.914±2.3×10−3 0.893±4.8×10−3

Table 10: Dice score (means and standard errors) for MMEF-nnFormer and nnFormer on the BraTS2021
dataset in segmenting detailed tumor class.

Model ED ET NRC/NET Mean
nnFormer 0.817±5.0×10−3 0.839±3.8×10−3 0.740±7.2×10−3 0.799±2.5×10−3

MMEF-nnFormer (ours) 0.823±3.3×10−3 0.855±7.5×10−3 0.805±7.3×10−3 0.828±4.7×10−3

be due to the hard fusion strategy of nnFormer, i.e., image concatenation, which cannot mit-602

igate the impact of noisy information. Consequently, the fused results are sometimes not603

as good as those from single-modality inputs. The proposed MMEF-nnFormer approach604

achieves the best performance, with fewer mislabeled voxels compared to other methods.605

Figure 9 illustrates a challenging segmentation scenario involving a tumor with ED, ET,606

and NRC/NET components. We can remark that the FLAIR image alone provides suffi-607

cient information to accurately segment ED, which is consistent with domain knowledge.608

Overall, the MMEF-nnFormer model yields the best results in this case. This example609

illustrates the ability of our method to improve segmentation accuracy by appropriately610

weighting and combining information from different modalities.611

Analysis of reliability coefficients. We first recall some clinical domain knowledge of MRI612

images in segmenting brain tumors:613

1. T1Gd images are particularly useful for delineating tumor boundaries by making tumor614

regions hyperintense (bright);615

2. FLAIR images help delineate tumor boundaries, assess tumor infiltration into sur-616

rounding brain tissue, and are particularly sensitive to peritumoral edema, which ap-617

pears hyperintense (bright) on FLAIR sequences;618

3. T2 images help delineate tumor extent, identify peritumoral edema, and assess the619

relationship between the tumor and surrounding brain structures;620

4. Tumors typically appear hypointense (dark) on T1 images, while the contrast between621

the tumor and surrounding normal brain tissue may not always be sufficient for accu-622

rate segmentation.623

Figure 10 shows the learned reliability coefficients βtk estimated by MMEF-nnFormer,624

for the four modalities and the three tumor classes. It can be seen that the evidence from625
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Multi/nnFormer Multi/MMEF-nnFormer

Figure 8: Examples of an easy tumor segmentation case. The first and second rows display the input
modalities and the tumor ground truth, respectively. The third and last rows present the segmentation
output and the mis-segmented voxels (highlighted in yellow). The left red block shows results from single-
modality input using nnFormer, while the right red block compares results from multimodal input using
nnFormer (left column) and MMEF-nnFormer (right column).
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Multi/nnFormer Multi/MMEF-nnFormer

Figure 9: Examples of a challenging tumor segmentation case. The first and second rows display the input
modalities and the tumor ground truth, respectively. The third and last rows present the segmentation
output and the mis-segmented voxels (highlighted in yellow). The left red block shows results from single-
modality input using nnFormer, while the right red block compares results from multimodal input using
nnFormer (left column) and MMEF-nnFormer (right column).
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Figure 10: Estimated reliability coefficients βk (means and standard errors) after training of MMEF-
nnFormer for classes ED, ET, and NRC/NET in the four modalities. Higher values correspond to greater
contribution to the segmentation.

the T1Gd modality is reliable when the true class is ED, ET, or NRC/NET, with all the626

reliability values greater than 0.9. In contrast, the evidence from the FLAIR modality is627

more reliable for the ED class with a high-reliability coefficient of 0.879 against, respectively,628

0.26 and 0.39 for ET and NRC/NET. The evidence from the T2 modality shows similar629

reliability in segmenting the three classes with a reliability coefficient of around 0.5. The630

evidence from the T1 modality is the least reliable one, compared with the other three MRI631

modalities. These results are consistent with domain knowledge about these modalities as632

reported in [5] and recalled at the beginning of this section, i.e., T1Gd images are useful633

for delineating tumor boundaries, FLAIR images are sensitive to ED, and T1 images are634

not sufficient for accurate tumor segmentation. This transparency and explainability of the635

decision-making process can be expected to enhance end-users’ trust and can be seen as636

significant advantages of the proposed multimodal evidence fusion approach, as opposed to637

the “black box” nature of conventional deep learning segmentation models.638

4.4. Discussion639

In the following, we provide some discussion about the generalizability, computational640

complexity, and limitations of our approach.641

Generalizability. The main advantage of our framework is its ability to model and learn the642

reliability of each image modality, which can be crucial when dealing with diverse, potentially643
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noisy, or low-quality data. While multimodal medical image segmentation tasks are the focus644

of this paper, the proposed deep evidential fusion framework can be applied to a broader645

range of challenging medical tasks involving heterogeneous data sources. For instance, in646

medical tasks such as diagnosing dementia or Alzheimer’s disease, various heterogeneous647

medical data are available [10]. These data can include lower-quality brain MRI images due648

to brain degeneration, textual data on disease history and progression, time-series data on649

blood-brain-barrier integrity, cerebrovascular information, and other relevant physiological650

measures. Traditional models struggle to effectively address this heterogeneous data within651

a single neural network [13], and recent work also proposed to address data heterogeneity652

with model ensembles and hard decision fusion [78]. Our deep evidential fusion framework653

could be well-suited to analyze such heterogeneous medical tasks. By learning the reliability654

coefficients for each of the modalities, our model can effectively combine the evidence from655

heterogeneous sources to reach a more informed and explainable diagnostic decision.656

Beyond medical image processing, our approach could be applied to multimodal data657

fusion in other domains, such as reviewed in [44] and [8]. As examples of potential appli-658

cation domains where heterogeneous data need to be processed to make decisions, we can659

mention remote sensing and earth observations, in which light detection and ranging (Li-660

DAR), synthetic aperture radar (SAR), and hyperspectral images need to be combined for,661

e.g., improved classification of objects. As noted in [44], SAR and LiDAR use different elec-662

tromagnetic frequencies and thus interact differently with materials and surfaces. It would663

thus be beneficial to apply different discounting (reliability) coefficients to these sensor data664

depending on the nature of the objects of interest. This conjecture needs, of course, to be665

validated experimentally, which goes beyond the scope of this paper.666

Computational complexity. Although the operations of DST have, in the worst case, expo-667

nential complexity, the mass functions computed in the EM module have only K focal sets,668

where K is the number of classes, and the contextual discounting operation computed in669

the MMEF is applied to the contour function, as explained in Section 3.1.3. Consequently,670

the number of operations performed in the EM and MMEF modules is only linear in the671

number of classes. More precisely, as shown in [16], each forward and backward propagation672

for one voxel and one modality in the EM module has complexity O(I(H +K)), where I is673

the number of prototypes, H is the number of features extracted by the FE module, and K674

is the number of classes. In the MMEF module, the discounting of the T mass functions for675

each voxel using (9) and their combination using (10) can be performed in O(KT ) opera-676

tions, and the backward pass (gradient calculation) requires the same computational effort.677

Overall, the complexity of our model is, thus, similar to that performed in standard neural678

network architectures based on weighted sums. In terms of computing times, pre-training679

each of the FE modules with the nnFormer architecture took approximately one hour on680

our machine6 for the BraTS2021 dataset, and training the whole system end-to-end took 2.3681

hours. The total training time (6.4 hours) is slightly less than that of nnFormer with the682

four modalities (7.8 hours). As far as state-of-the-art uncertainty quantification techniques683

6All models were trained on an NVIDIA A100-SXM4 graphics card with 40 GB GPU memory.
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are concerned, Monte Carlo dropout does not significantly impact training time, while the684

deep ensemble method is notoriously time-consuming because it implies training several685

models. Overall, our framework based on DST and decision fusion is at least as efficient as686

alternative uncertainty quantification approaches.687

Limitations. Our approach is based on combining high-level information extracted from688

each modality by the FE and EM modules in the form of mass functions. It, thus, has689

all the advantages and limitations of decision-level fusion approaches. On the plus side, it690

is highly modular and can still provide sensible results when only some of the modalities691

are available. This advantage is not crucial in multimodal image segmentation applications692

because all modalities are usually available, but it can matter in other potential applications693

such as remote sensing, as mentioned above. Another advantage of decision fusion is that694

the fusion process is simple and transparent, as already discussed in Sections 4.2 and 4.3.695

On the minus side, decision-level fusion is, at least in principle, suboptimal because it does696

not consider all input data globally: we can always construct a classification task in which697

a single classifier trained with a set of features will perform better than a combination698

of classifiers trained with each of the features. The good performances of our approach699

reported in Sections 4.2 and 4.3 show that this potential suboptimality is not an issue in the700

considered medical image segmentation applications, but it could be in other applications.701

Another limitation of our approach is that, to keep computations simple, we do not combine702

the whole discounted mass functions in the MMEF module, but only the contour functions.703

As a result, the output at each voxel is not a full mass function (with 2K − 1 focal sets),704

which prevents us from harnessing the full power of DST, such as some of the decision rules705

reviewed in [18]. This and other limitations will be addressed in future work.706

5. Conclusion707

We have proposed a deep decision-level fusion architecture for multi-modality medical708

image segmentation. In this approach, features are first extracted from each modality using709

a deep neural network such as UNet. An evidence-mapping module based on prototypes in710

feature space then computes a Dempster-Shafer mass function at each voxel. To account711

for the varying reliability of different information sources in different contexts, the mass712

functions are transformed using the contextual discounting operation before being combined713

by Dempster’s rule. The whole framework is trained end-to-end by minimizing a loss function714

that quantifies prediction error both at the modality level and after fusion.715

This model has been evaluated using two real-world datasets for lymphoma segmentation716

in PET-CT images and brain tumor segmentation in multi-MRI images. In both cases, our717

approach has been shown to allow for better uncertainty quantification and image segmenta-718

tion as compared to various alternative schemes based on pixel-level fusion. In particular, as719

compared to UNet, nnUNet or nnFormer alone with a softmax layer, the introduction of the720

evidential mapping module (computing the mass functions) improves the results, and the721

decision-level fusion scheme with contextual discounting brings an additional improvement.722

Furthermore, the values found for the reliability coefficients are consistent with domain723
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knowledge, which suggests that these coefficients can provide useful insight into the fusion724

process.725

This work can be extended in many directions. First, as discussed in Section 4.4, our726

DST-based fusion approach can be applied to a variety of learning tasks in which several727

sources of information must be combined. In the biomedical domain, it could be applied728

to fuse heterogeneous data such as signals, personal information, biomarkers, gene infor-729

mation, etc. In remote sensing, a potential application could be, e.g., the fusion of Lidar,730

SAR and hyperspectral data. References [44] and [8] mention many other applications in731

which multimodal data fusion plays an important role, including human-machine interac-732

tion, meteorological monitoring using weather radar and satellite data, or concrete structural733

monitoring through fusing ultrasonic, impact echo, capacitance, and radar. From a theo-734

retical point of view, our approach could be extended in several directions. As mentioned735

in Section 4.4, we could combine not only the contour functions from the EM module but736

the whole mass functions, which would allow us to compute richer outputs that could be737

exploited within more sophisticated decision strategies such as partial classification [55], or738

further combined with other data. We could also consider other mass-function correction739

methods making it possible to account for more diverse meta-knowledge about information740

sources such as proposed, e.g. in [62], and/or other combination rules such as the cautions741

rule [17] or variants with learnable parameters as used in [64].742
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