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Abstract. This paper presents a survey of digital musical score databases,
focusing on symbolic representation of the music content (as opposed
to audio representation) in the context of Music Information Retrieval
(MIR). We first provide a primer on Western classical music notation for
unacquainted readers. Then, the core of our study categorizes and dis-
cusses various approaches to the data management layer of digital score
libraries (DSLs), emphasizing their data models and query specifications.
Special attention is given to the differences between ASCII-based, semi-
structured, and graph-based data models, alongside high-level abstract
models. The paper concludes with a discussion comparing these models
based on several criteria, aiming to point out their respective strengths
and limitations. This work synthesizes existing knowledge in the field of
symbolic MIR and identifies promising areas for future research.
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1 Introduction

The field of Music Information Retrieval (MIR) emerged in the late 1990s, fueled
by advances in data management and the growing volume of music data. MIR, as
a multidisciplinary domain, integrates musicology, digital libraries, and computer
science, among others, and focuses on music data retrieval and analysis, model
development, and graphical user interfaces for music data interaction.

This survey zeroes in on MIR systems dealing with notated music (symbolic
representation) in Western Classical notation, differentiating them from audio-
focused MIR techniques. Symbolic MIR approaches concentrate on data manage-
ment within Digital Score Libraries (DSLs), particularly through database man-
agement systems for expressive and efficient querying and storage. The readers
with an interest in the expansive field of MIR are encouraged to explore com-
prehensive literature surveys such as those proposed in [3,24,15,2,16,21].

Advances in the MIR field have led to applications ranging from standalone
music score editors to web applications that manage large score collections, of-
fering services for querying, transforming, analyzing, and visualizing these col-
lections. Such an application relies on a structured encoding of musical content,
termed its (logical) data model, which definition constitutes a significant sci-
entific challenge. Among other requirements for DSLs, it is crucial to provide
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features that enable (i) a secure and persistent storage of potentially large music
collections, and (ii) expressive and efficient tools for querying this data. Classi-
cally, such features are ensured by implementing the data storage and querying
through a database management system (DBMS).

Client (user)

Presentation layer
Graphical user interface

Applicative logic layer
Applicative modules

Data management layer

DBMS

Logical data model

Engine (query evaluation, optimization, ...)

Database queries
(DBMS query language)

Answers

Physical storage layer
(possibly distributed)

Physical storage 1 Physical storage 2

Fig. 1. Typical architecture of a SGBD-based DSL

Figure 1 illustrates the main software layers that compose a typical DSL ap-
plication. The Presentation layer (in blue) is responsible for the user interface,
including visualization tools and interfaces for navigating and querying musical
score collections. The Applicative layer (in purple) holds the programs imple-
menting the business logic used to process user inputs. These programs retrieve
data by making requests to the Data management layer. The Data manage-
ment layer (in red) stores, manages, and retrieves musical score data.1 This
layer, which can be as simple as a file system mapping or as complex as a full-
fledged DBMS, ensures efficient data access, security, and integrity. It exposes
data through the logical data model, which details how is structured available
data. The Applicative layer expresses requests according to this data model.

In this paper, we explore the different kinds of data model that were proposed
in the literature to represent, store and query digital musical scores, according
to the kind of DBMS that can be used to handle collections of such data.

The paper is structured as follows. Section 2 introduces basic concepts of
musical scores. Section 3 explores document-oriented approaches to score man-

1 Musical score data is physically stored in the Physical storage layer (in green in
Figure 1).
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agement, differentiating between ASCII-based and semi-structured types. Sec-
tion 4 examines a graph database model and Section 5 discusses more high-level
models. Section 6 presents a comparative discussion of these models, and Section
7 concludes the paper.

2 The Content of a Musical Score

This section introduces key concepts of Western music notation, a detailed and
expressive language for representing musical compositions. At its core, music
notation translates sound properties — pitch and duration — into visual symbols
arranged on a staff, a set of five horizontal lines.

Pitches are notated using a combination of letters (A through G), octave
indicators (1 through 7), and accidentals (sharps ♯ and flats ♭) to specify the
exact frequency. The staff is anchored by a clef, which indicates the pitch range.
The vertical position of a note on the staff denotes its pitch, while the note’s
shape (including the head, stem, and flags) defines its duration. Rests, distinct
symbols on the staff, denote silences of various lengths.

Example 1 (Running example - A simple music score). Let us take Figure 2.(a)
as a running example, an extract of the BWV 846 prelude of the well-tempered
clavier, adapted for the piano. Let us consider the first staff (with the treble
clef). Its first element is a silence, followed by an E4 note, then an A4, an E5,
etc. The shape of the note (head — black or white —, stem and flag) determines
the duration of the sounds. A ˇ “) note is four times shorter than a ˇ “ note, and
eight times shorter than a ˘ “ one. The notes are graphically synchronized over
the staves. Additional accidental alterations (sharp and flat) may be added to
the notes themselves, such as in the second measure (♯ accidentals over the F4
notes).

Musical content is organized into measures, time sections delineated by ver-
tical bars on the staff, with their length governed by the time signature. Besides
the notes and rests, a score may include additional details such as dynamics,
articulation marks, and metadata such as the composer and title.

In addition to the music score example of Figure 2.(a), we consider a simple
musical pattern of Figure 2.(b). This pattern will allow us, in the rest of the
paper, to illustrate the querying of a music score, according to the data model
chosen to encode the musical content of the score.

Example 2 (Running example - Pattern P). Let us consider a simple musical
pattern that consists in a sequence of four consecutive notes E4, A4, E5 and
then A5, used to retrieve music scores. In this pattern, only the occurrence of the
pitches is tackled2, independently of the rhythm (note duration and distribution

2 In order to keep query examples as understandable and straightforward as possible
— considering the heterogeneous query means that we refer to — we do not deal
with note duration or alterations, which would lead to intricate examples in some
cases. However, we discuss these matters in Section 6.
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(a) Simple music score

(b) Pattern P

Fig. 2. Running example: simple musical score and musical pattern

in the measures) and independently of the rendering (such as stems orientation
and beams). This pattern, called P, is depicted in Figure 2.(b).

3 Document-Oriented Models

Document-oriented approaches have historically paved the way for the digital
representation and processing of sheet music. These formats can be broadly
categorized into two distinct types: ASCII-based documents and semi-structured
documents. ASCII-based documents utilize plain text to represent musical scores
while semi-structured documents employ XML-based formats.

Most of these formats were originally developed for representation, sharing,
and interoperability among various music software applications, rather than as
data models for DBMS. Today, these formats continue to be used, underpinning
several well-established platforms in the domain of music content management.

3.1 ASCII-Based Documents

In the field of MIR, ASCII-based systems are significant for their simplicity
and readability, serving early on to facilitate musical data exchange and soft-
ware support for music representation. Early systems such as DARMS, SCORE,
and MuseData, as detailed in [22], were foundational, influencing subsequent
ASCII-based notation development. This section focuses on the ABC notation,
a widespread example of ASCII-based music notation, illustrating its standard
attributes. While also acknowledging other formats, the focus is on delineating
their distinctive features compared to ABC.

The ABC notation [1] (first release 1993 – latest release 2011), is a text-
based encoding system for music, initially developed for typesetting folk and
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1 X:1
2 T:THE WELL−TEMPERED CLAVIER, BWV 846 (simplified extract)
3 C:JS Bach
4 L:1/16
5 M:4/4
6 K:C
7 V:1 treble
8 V:2 bass
9 V:1

10 z EAe aAea z EAe aAea | z DˆFA dFAd z DFA dFAd |]
11 V:2
12 C8 C8 | C8 C8 |]

Fig. 3. Representation of the running example in ABC notation (v 2.1)

traditional tunes. It uses letters A to G to represent pitches, with uppercase for
lower and lowercase for higher octaves. For example, uppercase C is C4 (middle
C), while lowercase c is C5. Other octave shifts are indicated with commas
for lower octaves (C, for C3) and apostrophes for higher octaves (c’ for C6).
Accidentals are prefixed (^ for sharp, for flat) and affect all identical pitch
notes within the measure (following the common music notation convention).
Note durations are equal to a default value determined by the unit note length
field (see details below) unless specified otherwise using numerical suffixes. ABC
supports additional musical elements like chords and lyrics. Measures are marked
by bar symbols (|), and non-musical data is included in information fields (e.g.,
K: for key signature, T: for title) within the ABC file’s header.

Example 3 (Running example - Data modelling in ABC notation). The example
provided in Figure 3 is an ABC encoding of the running example of Figure 2.(a).
It illustrates ABC notation’s information field usage. It details the encoding
for a piece, identifying the title (T:THE WELL-TEMPERED CLAVIER...), composer
(C:JS Bach), time signature (M:4/4), key signature (K:C major), and the unit
note length (here, L:1/16, a sixteenth note). Two voices, V:1 treble and V:2

bass, represent the piano’s keyboard part. For instance, the first measure of
V:1 combines a rest (z) and subsequent notes (E (i.e. E4), A (i.e. A4), e (i.e.
E5), etc.), all with the default duration of a sixteenth note. In V:2, the notation
C8 signifies a C4 note (C8) extended to 8 times (C8) the unit note length, so
a half note. Accidentals are applied according to standard practice, implicitly
influencing all similar subsequent pitches within the measure.

When querying ABC files, many approaches use general-purpose text process-
ing tools. Specifically, Unix-based regular expressions within piped commands
are commonly employed to perform simple pattern matching and statistical anal-
yses on the data (see the example below).

Example 4 (Running example – Unix command-line querying of an ABC file).
Listing 1.1 outlines a Unix command line approach allowing to extract the pat-
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tern of Figure 2 from an ABC file, using a series of piped commands that trans-
form and filter the data. In this example, the first sed command removes spaces
to focus on the sequence of notes regardless of their visual spacing. Another sed
command eliminates the | characters, abstracting the notes from their measure
divisions. The first grep command filters out lines with information fields, and
the final grep identifies the specific note sequence (E4, A4, E5, A5) without
considering alterations or note durations.

sed ”s/ //g” runningExampleABC.txt | sed ”s/|//g” | grep −v ”:” | grep −E ”([ˆ(\ˆ| )
]|ˆ)E([0−9])∗A([0−9])∗e([0−9])∗a([0−9])∗” −−color

Listing 1.1. Unix command-line querying implementing P

Defining regex expressions for pattern searching in music scores is notably
complex, requiring in-depth knowledge of Unix commands and a precise under-
standing of their syntax and options. The difficulty is compounded when con-
sidering the nuances of ABC notation, such as the handling of chords, which are
not accounted for in simpler queries and could lead to inaccuracies if chords are
interpreted as sequential notes instead of simultaneous ones. Moreover, the in-
herent challenge of dealing with implicit accidentals in ABC notation — where
alterations may not be explicitly attached to each note but instead governed
by key signatures or measure-specific alterations — adds another layer of com-
plexity, making an exhaustive and accurate query significantly more intricate to
construct.

Besides the ABC notation, other significant ASCII-based music encoding
methods include Humdrum [12] and GUIDO [11]. Humdrum uses its **kern
notation to organize musical staves in columns, reflecting the timing and simul-
taneity of notes. GUIDO, like ABC, encodes scores in plain ASCII but uniquely
employs probabilistic matching and first-order Markov chains to establish a sim-
ilarity metric between music scores.

3.2 Semi-Structured Documents

Driven by the need of interoperability between systems and tools dedicated
to music notation, semi-structured models have recently gained popularity for
encoding (Western) digital sheet music. The most widespread ones are Mu-
sicXML [8,9] and MEI [20,14]. They both encode the complete and detailed
content of sheet scores (including meta-data, and detailed graphical specifica-
tions that dictate how the notation content has to be visually rendered).

MusicXML (first release 2004 – latest release 2021) is an XML dialect format
developed for the interchange and distribution of digital sheet music (Western
musical notation). MusicXML documents start with some metadata specified in
headers, such as title, composer and instruments, followed by the content of the
music score itself, encoded measure by measure, where each note element can
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encapsulate detailed information including its pitch — defined by step, octave,
and accidental —, its duration and an accidental where applicable.

As in other XML-based file formats, MusicXML data is organised in an n-ary
ordered tree of attributed elements, where the elements model the components
of the score (metadata or musical content). This tree structure is modelled by
nesting the elements. For instance, the note element is delimited by an opening
tag (<note>) and a closing one (</note>), and may embark attributes attached
to the opening tag, and sub-elements between the opening and the closing tag.

Example 5 (Running example - Data modelling in MusicXML). Figure 4 (page 7)
illustrates the encoding of a segment of the running example of Figure 2.(a). This
segment begins with the declaration of the second measure at line 253. Subse-
quent lines detail the measure’s components, including a rest (spanning lines
254 to 260) and the sixteenth notes D4 (across lines 261 to 271) followed by F4♯
(from lines 272 to 284). Notably, this excerpt includes rendering details such as
the orientation of note stems (indicated by the stem tag).

253 <measure number=”2”>
254 <note>
255 <rest/>
256 <duration>1</duration>
257 <voice>1</voice>
258 <type>16th</type>
259 <staff>1</staff>
260 </note>
261 <note>
262 <pitch>
263 <step>D</step>
264 <octave>4</octave>
265 </pitch>
266 <duration>1</duration>
267 <voice>1</voice>
268 <type>16th</type>
269 <stem>up</stem>
270 <staff>1</staff>
271 </note>

272 <note>
273 <pitch>
274 <step>F</step>
275 <alter>1</alter>
276 <octave>4</octave>
277 </pitch>
278 <duration>1</duration>
279 <voice>1</voice>
280 <type>16th</type>
281 <accidental>sharp</accidental>
282 <stem>up</stem>
283 <staff>1</staff>
284 </note>

....

455 </measure>

Fig. 4. Representation of the running example in MusicXML (beginning of the second
measure of the first voice)

MusicXML provides two distinct methods for encoding multi-voice scores.
The partwise representation arranges the score “horizontally”, focusing on indi-
vidual instrumental or vocal lines one after the other, mirroring how each part
appears in isolation within the overall score. In contrast, the timewise represen-
tation takes a “vertical” perspective, grouping together the declaration of the
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measures from different voices or instruments that sound at the same time.

We now consider the querying of such data. The approach presented in [7]
proposed to use the XQuery language to express queries over MusicXML doc-
uments. Let us first succinctly introduce XQuery. XQuery is a query language
designed to query and process XML documents efficiently, leveraging XPath ex-
pressions for navigating XML trees and selecting nodes. The core of XQuery’s
functionality lies in its FLWOR (For, Let, Where, Order by, Return) construct
(cf. the query example below). The For clause specifies a sequence of items, the
Let clause assigns values to variables, the Where clause filters results based on
conditions, the Order by clause sorts the results, and the Return clause constructs
the output.

Example 6 (Running example - XQuery querying of a MusicXML file). List-
ing 1.2 shows a query, expressed in the XQuery language, that implements the
musical pattern P. The query browses the score staff by staff (in order to accom-
modate the timewise organization of data3). It then scrutinizes sequences of four
notes for matches to the specified musical pattern. The information returned as
answers in this query (return clause) is an XML construct that indicates, for
each occurrence of the pattern, the staff where the pattern has been found, the
measure where the pattern occurs in, and the index of the note in the staff.

In [7], queries are classified into several distinct categories, tailored to ad-
dress various aspects of musical score content and metadata within MusicXML
databases. These categories range from general database content and metadata-
related queries to statistical analyses and direct inquiries into music content.

The Music Encoding Initiative (MEI) semi-structured data model [20] (first
release 2010 - latest release 2023), is an alternative XML-based data format
for sheet music. While MusicXML was primary designed to be an interchange
format between notation editors, MEI provides greater affordances for encoding
semantically and structurally rich metadata and music annotation [14]. MEI also
contains identifiers associated with the elements present in the score, enabling
seamless linking of retrieved information to its location in the data. It is notewor-
thy that the systematic encoding of identifiers for elements in the MEI format
facilitates the annotation of the score content, the cross-checking of data and the
rendering result in the context of data interrogation. While no academic work
has proposed to query MEI documents with an XML-based query language, it
is in theory possible to query MEI documents with XQuery, in a way similar to
what is proposed in [7] for MusicXML documents.

3 In a timewise organization of data, the next declared note in the XML declaration
may belong to another instrument.
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(: For each staff :)
let $staff−list := //staff/text()
let $unique−staff−list := distinct−values($staff−list)
for $staff−number in $unique−staff−list
(: Extract the notes of the staff :)
let $notes := //note[child::staff/text()=$staff−number]
[not(exists(child::chord))][not(exists(following−sibling::chord))] (: not in a chord :)
(: For each sequence of 4 notes :)
for $i in (0 to count($notes))
let $s := subsequence($notes , $i , 4)
(: Check the occurrence of the musical pattern :)
where $s[1]/pitch/step/text()=’E’ and $s[1]/pitch/octave/text()=’4’

and not(exists($s[1]/pitch/alter))
and $s[2]/pitch/step/text()=’A’ and $s[2]/pitch/octave/text()=’4’
and not(exists($s[2]/pitch/alter))
and $s[3]/pitch/step/text()=’E’ and $s[3]/pitch/octave/text()=’5’
and not(exists($s[3]/pitch/alter))
and $s[4]/pitch/step/text()=’A’ and $s[4]/pitch/octave/text()=’5’
and not(exists($s[4]/pitch/alter))

return
<result>
<staff>{$staff−number}</staff>
<measure>{$s[1]/ancestor−or−self::measure[1]/@number/string()}</measure>
<index−first−note>{$i}</index−first−note>

</result>

Listing 1.2. A XQuery query implementing P

4 Graph-Oriented Models

Another type of approach from the literature proposes to model symbolic music
content data by means of a graph-based model. In a graph-based data model,
data is modelled by nodes (entities) and edges between nodes (relations between
entities).

In [19], the authors consider a graph data model for representing the (mu-
sical) content of a collection of music score, its storing and its querying. The
proposed graph-based data model, based on the property graph data one, is
calledMuster. It combines the hierarchical rhythmic decomposition point of view
(that of the semi-structured-based model) and the time series point of view (that
makes it possible to navigate in data through the sequence of events of a voice).
Figure 5 illustrates the modelling of the running example in the graph-based
Muster model.

Then, graph-pattern queries may be used to query data. The authors have
implemented this framework in the Neo4J database management system where
they stored a collections of Bach Chorals, and used the Cypher language in order
to query such music data.
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Fig. 5. Graph-based modelling of the running example

Example 7 (Running example – Graph pattern-based querying of a score). Fig-
ure 6.(a) is the graphical representation of the graph pattern implementing the
musical pattern P. It is composed of four musical events. Each musical event is
composed of a fact node that embeds the information related to the note associ-
ated with the musical event. According to P, the first fact is an E4 (a fact node
having the properties class:’e’ and octave:4), the second is a A5, etc.

Figure 6.(b) is a Cypher query that implements the pattern of Figure 6.(a).
The match clause defines the shape of the graph-pattern, the where clause allows
associating additional constraints to the pattern, and the return clause defines
the information returned by the query as an answer (here, the identifiers of the
elements, based on their original MEI encoding, are returned).

Another graph-based data model is used in [13], where the authors propose
to convert MusicXML musical scores into RDF [27]. Encoding the music score
data in RDF allows querying such data via the SPARQL query language [17,26].
The authors also propose an OWL [25] ontology, called MusicOWL, dedicated
to the modelling of knowledge over a musical score.4 Then, the querying process
is extended by a reasoning based on MusicOWL knowledge. It is worth noticing
that the ontology integrates the time series point of view that connects an event
to its following one, in order to facilitate the browsing of data through the
sequence of events of a voice.

The main differences between the two data models (property graph vs. RDF)
in the approaches presented above concern the modelling of metadata and the

4 There are other ontologies that have been proposed to model knowledge about musi-
cal scores. We consider that ontologies fall beyond the scope of this article. However,
MusicOWL is mentioned because [13] focuses on the querying of music score data
via the SPARQL query language.
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e1 e2 e3 e4

E4 A4 E5 A5

(a) Graph pattern modelling P

match // Searching for the sequences of four events E4 A4 E5 A5
(e1:Event)−[]−>(e2:Event)−[]−>(e3:Event)−[]−>(e4:Event),
(e1)−−(f1{class:’e’,octave:4}), // e1 is a E4
(e2)−−(f2{class:’a’,octave:4}), // e2 is a A4
(e3)−−(f3{class:’e’,octave:5}), // e2 is a E5
(e4)−−(f4{class:’a’,octave:5}) // e2 is a A5
where // no alteration on F&, f2, f3 and f4

not exists(f1.accid) and not exists(f1.accid ges)
and not exists(f2.accid) and not exists(f2.accid ges)
and not exists(f3.accid) and not exists(f3.accid ges)
and not exists(f4.accid) and not exists(f4.accid ges)

return e1.id, e2.id, e3.id, e4.id // Information returned in the answer

(b) A Cypher implementation of P

Fig. 6. Graph pattern P and its implementation in the Cypher query language

extensiveness of the data model: the RDF modelling includes metadata, and the
RDF model is extensive as RDF allows to enrich data by adding links to external
sources. Concerning the querying, the graph pattern matching languages Cypher
and SPARQL rely on the same principles in the design of a query over musical
score data. Using SPARQL may offer reasoning facilities provided by a possibly
semantic reasoning based on the content of an ontology. Concerning the querying
of the musical content itself, expressing queries and more especially complex
ones still remains a non trivial task. Complex SPARQL topological queries over
a musical score, e.g. polyphonic queries, are not mentioned in the literature.

5 Time-Series-Oriented Models

The literature also proposed some other abstract, high-level models for mod-
elling the musical content of a score, and extracting information from such mod-
elled data. A first approach is an abstract algebra based on the modelling of
the musical content as time series (functions), presented in Subsection 5.1. An-
other approach relies on the modelling of the notes as weighted points in a
two-dimensional Euclidean space, presented in Subsection 5.2.

5.1 Time-Series Algebra

The authors of [4,18,5] introduce an abstract algebra, called ScoreAlg, designed
for retrieving and processing music content information. ScoreAlg is based on
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the modelling of the musical content as synchronized time series, setting aside
rendering and performance considerations. Conceptually, ScoreAlg is analogous
to the relational algebra used for querying relational databases: it is a closed
language that serves as a basis for defining the manipulations that can be done
over music scores.

ScoreAlg treats the music content as functions which domain is the time
and co-domain is the set of musical events. These functions allow the modelling
of music scores with time-series data, segmented into discrete intervals, with
musical events linked to these intervals. The events are defined as domain values,
which can encompass a range of musical elements such as pitches, lyrics, or any
other relevant information. In Figure 7, the running example of Figure2.(a) is
represented in the formalism of the ScoreAlg algebra. The musical content is
composed of two voices, whose musical content (cleared from information related
to representation purposes or metadata) is modelled by a function.

v1(t) =



∅, t ∈ [0, 1[

E4, t ∈ [1, 2[

A4, t ∈ [2, 3[

E5, t ∈ [3, 4[

A5, t ∈ [4, 5[

A4, t ∈ [5, 6[

E5, t ∈ [6, 7[

A5, t ∈ [7, 8[

∅, t ∈ [8, 9[

...

D5, t ∈ [31, 32[

v2(t) =


C4, t ∈ [0, 8[

C4, t ∈ [8, 16[

C4, t ∈ [16, 24[

C4, t ∈ [24, 32[

Fig. 7. Abstract representation in the algebra

The algebra comprises five structural operators, which use the aforemen-
tioned functions. A synchronization operator takes two separate voices and con-
catenates them, resulting in a combined score where the voices remain distinct.
A projection operator allows to extract one or several voices from a score. A se-
lection operator is used to select parts of the score satisfying certain conditions
that can be based on domain values or specific time intervals. A merge operator
merges two voices into a single voice. A map operator extends the algebra by
allowing the application of any ad hoc function that takes one or more voices as
input and returns a transformed voice. Two categories of functions are defined
natively, allowing temporal and domain transformations respectively.

The algebra itself is a theoretical scientific contribution. In [6], a concrete
implementation using XQuery is proposed. This implementation includes an
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extraction layer that can process input from music encoding formats such as
MusicXML or MEI.

5.2 Representation in an Euclidean space

In [23], an approach to music score similarity detection is explored, where mu-
sical notes are represented as weighted points in a two-dimensional Euclidean
space. The coordinates of these points represent their onset time and their pitch,
while the weight of each point corresponds to the note’s duration. This weighting
system assigns greater importance to longer notes, reflecting the comparatively
large proportion of time they occupy compared to shorter notes. Here, the over-
arching goal is to establish a dissimilarity metric between music scores, and so
a query takes the form of a music score (or an incipit) and a query result is an
ordered list of music scores, ordered by how similar they are to the query.

Pitch in this model is encoded using Walter Hewlett’s Base-40 system [10],
which represents various notations of the same pitch differently (this refers to
accidentals, allowing some notes to have multiple ways of being written depend-
ing on the scale used). The Base-40 system was developed to facilitate inter-
val computation, recognizing that the same musical interval can have varying
nomenclatures in music theory, despite representing the same number of semi-
tones, depending on the specific pitches involved. Durations are quantified as
divisions of a quarter note; for instance, in a system where 96 divisions represent
a quarter note, a sixteenth note would be represented by 24 divisions, and a half
note by 192.

Example 8 (Running example – Euclidean space representation). In Figure 8,
the Euclidean space representation of the running example (see Figure 2.(a))
is depicted, showcasing both voices. Notably, the two voices are represented
together. The small and big dot sizes represent the weight of each note, and
correspond respectively to the duration of an eighth note and a half note. For
instance, the bottom left dot represents the first half note of the second voice,
with its larger size accurately reflecting its longer duration. In this representa-
tion, a quarter note duration has been standardized as one division, given that
no musical events in this example are shorter than a quarter note.

Time

Pitch

0 10 20 30

120

200

Fig. 8. Representation of the running example in Rainer’s work [23]
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To assess similarities between music scores or between a music score and a
given query (also encoded as a score), the approach employs a normalized version
of the Earth Mover’s Distance (EMD). The EMD metaphorically views a set of
weighted points as a quantity of earth or mass (where the points themselves
describe its silhouette), measuring the minimum work required to transform one
distribution of mass into another. This work is quantified as the product of the
weight units and the distance over which they are moved. The assignment of
points as source or target only alters the sign of the resulting distance.

This method demonstrates potential for original use cases, such as identifying
composers of anonymous pieces and detecting similarities in music scores even
when variations like additional grace notes or rhythm changes are present.

6 Discussion

In this section, we compare the approaches based on a set of heterogeneous
characteristics of interest that we devised from our study of the field. These
criteria are not intended to rank the approaches but rather to distinguish them
by highlighting their unique features and capabilities in various contexts. We
then present a comparative table (Table 1) that encapsulates the positioning of
the previously discussed approaches w.r.t. these criteria.

Rendering information and metadata. Data models like ABC, MusicXML, and
MEI incorporate rendering details due to their initial nature as exchange format
for software score rendering, which adds complexity to content data access [6].
Similarly, metadata such as titles, genres, and composer names, while peripheral
to the querying of musical content in its stricter form, are often pertinent for DSL
users alongside the content itself. Information such as title or composer name
can also be used as score identifiers in query results. Table 1 acknowledges these
aspects by outlining how each data model incorporates rendering information
and metadata.

Locally encoded information. Some data models, particularly ASCII-based ones,
adopt a sheet music-mirroring approach to encoding, where alterations (acci-
dentals) are noted only if they are explicitly marked on the score. This method
maintains the implicit nature of alterations as influenced by the key signature
or previous accidentals within the same measure, aligning with how music is
traditionally written and read. This approach supports specific use cases, like
analyses focused on rendering or tonality, where the context of the time signature
and visual presentation are crucial.

Conversely, formats like MusicXML explicitly include comprehensive pitch
information within each note’s encoding, including chromatic alterations. This
is more suitable for melodic pattern matching and comparisons between scores
where pitches values (chromatic scale) themselves are concerned (e.g. finding the
occurrences of a melody).
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Richness and extensiveness of data models. Some formalisms are inherently ex-
tensive, offering the capability to incorporate supplementary information directly
into the musical score. This includes the ability to add metadata, external links
or annotations. This is the case for MEI, which provides extensive support for
encoding semantically and structurally rich metadata alongside musical nota-
tion. Additionally, it enables the integration of links, external relationships, and
annotations associated with the musical content.

Querying languages and polyphonic queries. When the data model relies on
a standard encoding format, it enables the utilization of off-the-shelf generic
querying languages and tools for extracting information. For instance, the semi-
structured modelling of data has led the authors of [7] to use the XQuery lan-
guage for musical information extraction, and the graph-based modelling has
led the authors of [19] to use the Cypher language. On the one hand, using a
generic query language enables the use of the available off-the-shelf tools associ-
ated with the language (e.g., optimized query engines in DBMSs, dedicated API
software layers, etc.). On the other hand, expressing sophisticated extraction
queries over highly specific data may be difficult. In the context of symbolic mu-
sical data extraction, polyphonic queries (i.e. queries that concern information
aligned in multiple voices) are such a kind of sophisticated extraction queries. For
instance, as discussed in Subsection 3.2, MusicXML has two ways of representing
polyphony, which impacts the way an XQuery query has to be written, especially
if such a query is polyphonic. It is in theory possible to write a polyphonic query
using XQuery, but this would be rather cumbersome [6]. Likewise, such a query
expressed with a Unix-like regular expression, in the context of an ABC library,
would be very hard to write. The approaches presented in Sections 4 and 5 are
more appropriate for queries spanning multiple staves: the algebra enables the
merging of multiple voices, which in turn allows querying the merged result; the
Euclidean space representation approach works regardless of how many staves
there are in the scores; the graph approach allows pattern searches on multiple
staves using graph patterns.

7 Conclusion and perspectives

We have provided an overview of data models that support symbolic, content-
based MIR systems. We set aside the goal of exhaustiveness in favor of delineat-
ing families of approaches, choosing to delve deeper into selected works within
each family. Our contribution lies in the synthesis of existing approaches, or-
ganizing them into families and comparing their characteristics, particularly in
the discussion section. We have observed that while ABC notation continues to
be utilized often as a textual format for musical data manipulation due to its
simplicity and readability, semi-structured formats have seen a rapid increase
in popularity. These formats have become somewhat of a standard for data in-
terchange among music notation software. This trend underscores the evolving
landscape of music information retrieval, where the demand for more sophisti-
cated data handling capabilities continues to grow.
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ASCII based Document based Graph Time-series

ABC Humdrum GUIDO MusicXML MEI RDF Muster ScoreAlg Euclidian
space

Rendering information

Excluded ✓ ✓ ✓ ✓

Included ✓ ✓ ✓ ✓ ✓

Metadata

Excluded ✓ ✓ ✓

Included ✓ ✓ ✓ ✓ ✓ ✓

Richness and extensiveness ✓ ✓

Handling of accidentals

Implicit propagation ✓1 ✓2

Explicit propagation ✓ ✓ ✓ ✓ ✓ ✓ ✓

Querying languages

Standard query language XQuery SPARQL Cypher

Non-standard query language N/M Algebraic
operators

Other means of querying Unix-like
commands

**kern
commands

probabilistic
similarities

OWL on-
tol. reas.

similarity
measures

Polyphonic querying

Challenging ✓ ✓ ✓ ✓ ✓

Suitable and illustrated ✓ ✓ ✓ ✓

–
1 can be specified using the %%propagate-accidentals option
2 cautionary accidentals can be specified

N/M: Not mentioned in the literature

Table 1. Comparative table

Looking forward, MIR systems still grapple with the challenge of developing
similarity tools that are adaptable and flexible enough to meet a wide array of
use cases, such as data verification, musicological analysis, and pattern-based
score retrieval. Additionally, while there exists various works aimed at express-
ing musical queries — including methods such as Query by Humming, musical
contour, rhythm search, and note sequences — there remains a need for truly
intuitive methods for formulating complex and comprehensive queries that fully
encompass all aspects of sheet music, including polyphony. In this regard, the
graph model approach we have presented appears particularly promising.
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