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Abstract—Cross-silo federated learning (CS-FL) is a distributed
learning setting which allows an identified set of organizations
to collaboratively train a single global model. Since CS-FL use
cases are often heterogeneous, it may be more appropriate to
dynamically provide different models to more homogeneous sub-
federations. In addition, such systems can be undermined by
contributions of poor quality, making negligent or even malicious
participants critical to consider. However, distinguishing such
participants in a heterogeneous context is especially difficult.

We present RADAR, a novel architecture for CS-FL able to
assess the quality of the participants’ contributions, regardless of
data similarity. RADAR leverages client-side evaluation to directly
collect feedbacks from the participants. The same evaluations
allow grouping participants according to their perceived similarity
and weighting the model aggregation based on their reputation.
To evaluate our approach on concrete experiments, we implement
a collaborative intrusion detection system (CIDS) scenario and
test our architecture in various data-quality settings using label-
flipping. Our results confirm that combining clustering and a
reputation system succeeds in detecting a wide range of Byzantine
behaviors, including colluding attackers, which highlights RADAR’s
versatility.

Index Terms—federated learning, intrusion detection, Byzantine,
cross-evaluation, similarity, clustering, reputation systems, trust,
heterogeneity.

I. Introduction
Collaborative machine learning (ML) enables multiple or-

ganizations to train a common model that benefits from each
other’s experience. Despite its advantages, it has received a
lukewarm welcome from user communities, mainly because of
the risks induced by data sharing. The recent advances [1] in
federated learning (FL) promise to solve such issues, allowing
participants to collaboratively train a global model without
sharing their local data [2]. Specifically, organizations involved
in collaborative ML can leverage horizontal federated learning
(HFL) (i.e. same features, but different samples), to share
their observations with other participants while keeping their

†: both authors are co-first authors, they contributed equally to this work.
This research has been jointly supported by: (1) the chair CyberCNI.fr with
support of the FEDER development fund of the Brittany region, and, (2) the
Beyond5G project, which is funded by Banque Publique d’Investissement (BPI)
as part of the France Relance investment plan.

locally collected network data private [3]. This configuration
is referred to as cross-silo federated learning (CS-FL), as the
participants act as siloed data-sources. Participants in CS-FL
are typically fewer, stateful, and long-lived, but also can own
highly heterogeneous data, depending on their local use cases
and objectives [1].

A practical use case for CS-FL is collaborative intrusion
detection systems (CIDSs) [3], as sharing network data can
expose information about the inner workings of information
systems. Moreover, different organizations might exhibit sub-
stantial differences in their information systems, such as hosted
services or used protocols. This can lead to significant variations
in model updates, as each organization trains its model on its
local network traffic. Furthermore, as collaborative systems
are especially sensitive to input quality, Byzantine failures
must be considered. Indeed, honest participants can negatively
contribute to the aggregation by training their model on data
of poor quality or by being unaware of attacks present in
their network. Malicious participants in a CIDS could even
poison their contributions to impact the convergence of the
global model, or introduce weaknesses that could be exploited
afterward. In this heterogeneous context, it is very difficult to
distinguish a faulty or malicious contribution from a legitimate
one originating from a different type of infrastructure.

Approaches that assess model quality [4] or mitigate poison-
ing [5], [6] in homogeneous distributions typically compare or
evaluate a model using a single source of truth. Building such a
single source of truth, however, is inadequate in heterogeneous
contexts due to the differences between participants. Assuming
that all contributions are therefore different, some approaches
detect colluding attackers based on their similarity [7], [8].
Nevertheless, these approaches fail to detect an isolated, yet
potent, attacker.

In this paper, we present RADAR, an architecture for CS-FL
guarantying high-quality model aggregation, regardless of the
data homogeneity. RADAR relies on three main ingredients: i) a
modified FL workflow, where each participant uses its local
dataset to evaluate the other participants’ models, between
the training and aggregation steps; ii) a clustering algorithm
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leveraging the participants’ perceived similarity to aggregate
group-specific global models; and iii) a reputation system that
weights the participants’ contributions based on their past
interactions.

We evaluate the performance of RADAR in a realistic CIDS
use case, using four network flow datasets with standardized
features, representing different environments, and model various
Byzantine behavior using label-flipping. We also compare our
approach to existing strategies [2], [7], and conclude that RADAR
can detect Byzantines contributions under most scenarios, from
noisy labels to colluding poisoning attacks.

To summarize, our contributions are threefold:
(1) we present RADAR, an architectural framework to protect

FL strategies using clustering and reputation-aware aggre-
gation; validated by extensive evaluation against relevant
baselines;

(2) we show that evaluation metrics (such as accuracy, F1-
score, or loss) can be used to effectively assess similarity
between FL participants, and as an input to clustering and
reputation algorithms;

(3) we validate that combining reputation and clustering
successfully addresses the problem of contribution quality
assessment in heterogeneous settings.

The rest of this paper is organized as follows. Section II
defines the addressed problem and introduces our threat model.
In Section III we present related works and their remaining
limitations. Section IV presents RADAR’s design and core
components, before discussing implementation and evaluation
methodology in Section V. We provide an extensive evaluation
of this approach in Section VI. We discuss our findings in
Section VII before concluding and laying out future works in
Section VIII.

II. Preliminaries and Problem Statement

A. CIDS using Federated Learning
We consider a typical FL scenario where a central server 𝑆 is

tasked with aggregating the model updates 𝑤𝑟
𝑖

of 𝑛 participants
𝑝𝑖 , 𝑖 ∈ ⟦1, 𝑛⟧ at each round 𝑟. Participants are entities that
oversee an organization’s network, which makes them highly
available and interested. This is analogous to CS-FL settings [1],
where there are also few participants with consequent quantities
of data, and significant computing capabilities.

Additionally, we set the proportion of selected clients
to 1.0 to use FL as a collaborative framework, where all
clients contribute to the global model and get updates at each
round. We denote respectively by 𝑃 and 𝑊𝑟 the sets of all
participants and all local parameters. Model architecture and
hyperparameters are the same among participants, but each
owns a local dataset 𝑑𝑖 that is not shared with the others.

To work on a realistic application, we implement a network-
based intrusion detection system (NIDS) use case, where 𝑑𝑖 is
composed of labeled network flows, categorized in two classes:
benign and malicious. Because organizations in CIDS may
have different network configurations [9], the distribution of
each local dataset 𝑑𝑖 can vary considerably, independently of

the associated labels. This is typically the case in CS-FL and
is referred to as not independent or identically distributed
(non-IID) settings. However, the CIDS use case implies that
similarities can exist between participants, for instance between
organizations operating in the same sector or having similar
network infrastructure. This particular setting can be described
as practical non-IID, as opposed to the pathological non-IID
settings, where all participants have unique and highly different
data-distributions [10].

At each round 𝑟, and using their local dataset 𝑑𝑖 , each
participant trains a parametric model—e.g., deep neural network
(DNN)—on a binary classification task, i.e. predicting each
sample’s labels. This amounts to minimizing a loss function
L(𝑤𝑟

𝑖
, ®𝑥 𝑗 , ®𝑦 𝑗 ), 𝑗 ∈ ⟦1, |𝑑𝑖 |⟧, where ®𝑥 𝑗 and ®𝑦 𝑗 refer to the

sample and its label, respectively. To that end, they use a
stochastic gradient descent (SGD)-based optimizer to compute
the gradients ∇L(𝑤𝑟

𝑖
, ®𝑥 𝑗 , ®𝑦 𝑗 ) and update their new model as

𝑤𝑟+1
𝑖 ← 𝑤𝑟

𝑖 − 𝜂∇L(𝑤𝑟
𝑖 , ®𝑥 𝑗 , ®𝑦 𝑗 ), (1)

where the 𝜂 is the learning rate. The server then computes
the new global model 𝑤𝑟 as a function of the local models
{𝑤𝑟

𝑖
| 𝑖 ∈ ⟦1, 𝑛⟧}, akin to FedAvg [2].

B. Low-quality Contributions
In FL, the quality of the global model is directly impacted

by the quality of the participants’ contributions. In a intrusion
detection system (IDS) context, the poor quality of a ML
model can be induced by some choices in terms of architecture,
hyperparameters, or optimizer—all fixed by the server, but
also by the quality of the training data. Multiple factors can
affect the quality of local training data [11], such as: (1) Label
noise—samples associated with the wrong labels; (2) Class
imbalance—differences in terms of class representation in the
dataset; or (3) Data heterogeneity—the variations between
samples of the same class.

Similar to existing works on data-quality [12], [13], we focus
on label noise, which can have significant consequences on the
global model’s performance, depending on the proportion of
mislabeled samples. In a CIDS, label noise can unknowingly be
introduced by the participants, either due to misconfigurations
or to the presence of compromised devices. We consider two
types of label noise: missed intrusions and misclassification.

a) Missed intrusions occur when a malicious sample is mis-
labeled as benign, leading to a false negative. Participants
in CIDSs label the attacks they are aware of, but some
might have been unnoticed.

b) A misclassification is the random mislabeling of a sample.
This can be due to a lack of knowledge or to a miscon-
figuration.

Such participants are referred to as honest-but-neglectful.
Because these errors are assumed to be unintentional, the
proportion of misclassified samples is expected to be low.
However, the concept of missed intrusions implies that the
participants are not aware of an entire attack, which can
represent a significant proportion of their dataset.
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C. Data Poisoning Attacks

In addition to accidental low-quality contributions, some
participants might deliberately upload model updates that would
negatively impact the performance of the global model.

We refer to them as malicious participants. Malicious
behavior can be modeled by poisoning attacks, in which an
attacker would alter his contribution to impact the performance
of the global model. The literature distinguishes two classes of
poisoning attacks: data poisoning and model poisoning. In the
former, an attacker can tamper with the training data set, but
otherwise faithfully executes its process [7], [8]. In the latter,
the attacker directly modifies the model updates sent to the
server [14]–[16].

In this paper, we focus on data poisoning attacks, as they
are fairly accessible to any type of attacker. Specifically, we
study label-flipping attacks, as it can effectively model both
legitimate participants whose training data has been altered, and
malicious participants who deliberately modify their training
data. These attacks can further be separated into two categories.
With targeted poisoning, an attacker modifies the behavior of
the global model when it is subjected to a specific class [7],
whereas with untargeted poisoning, the attacker tries to impact
the model performance uniformly [6]. We exclude backdoor
attacks [17] for this study, as they imply an attacker is purposely
crafting poisoned samples.

Attackers’ Knowledge: We consider gray-box adversaries,
meaning they have the same knowledge as legitimate clients.
Such information includes the last global models, the used
hyperparameters, loss function, and model architecture.

Attackers’ Objective: An attacker can choose the appropri-
ate attack depending on his objective. With targeted poisoning,
attackers aim at making a specific type of attack invisible to
the NIDS. With untargeted attacks, on the other hand, they
aim at maximizing the misclassification rate to jeopardize the
NIDS performance.

Attackers’ Capabilities: We consider multiple noisiness
scenarios, i.e. the proportion of the attackers’ training set that is
poisoned at each round. The noisiness of an attacker over time
(i.e. rounds) represents its behavior. While we consider the
clients to remain the same in a collaborative NIDS environment,
an attack can be triggered at anytime with any noisiness.
Additionally, malicious actors can act alone or be involved
in coordinated attacks. FoolsGold [7] focuses on Sybil attacks,
a specific case of colluding attackers controlled by a single
entity. We prefer the more generic term of colluding attackers,
sharing common goal and means. Their number and proportion
among benign clients can vary from a single lone attacker to
them being a majority in the system.

D. Problem Formalization

Based on the previous assumptions, we consider that par-
ticipants might upload model updates that would negatively
impact the performance of the global model, deliberately or
not. Multiple forms of such actors can exist: external actors
altering legitimate clients’ data (i.e. compromised), clients

whose local training sets are of poor quality (i.e. honest-but-
neglectful), or clients modifying their own local data on purpose
(i.e. malicious). We refer to them as Byzantine participants or
simply Byzantines in the remaining of this paper.

We further consider that the server can be trusted to
perform the aggregation faithfully, and that FL guaranties the
confidentiality of the local datasets. Attacking the server is
out of the scope of this contribution. Consequently, we aim at
weighting or discarding the participants’ contributions based
on their quality to guaranty the performance of the aggregated
model.

Problem (Quality Assessment in Heterogeneous Settings).
For 𝑛 participants 𝑝𝑖 and their local datasets 𝑑𝑖 of unknown
similarity, each participant uploads a model update 𝑤𝑟

𝑖

at each round 𝑟. Given 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} and 𝑊𝑟 =

{𝑤𝑟
1, 𝑤

𝑟
2, . . . , 𝑤

𝑟
𝑛}, how can one assess the quality of each

participant’s contribution 𝑤𝑟
𝑖

without making assumptions on
the data distribution across the datasets 𝑑𝑖?

III. Related Work
A. Byzantine-resilient Federated Learning

The reliability of a submitted local model can be assessed in
several ways, whether it is used to detect honest-but-neglectful
or explicitly malicious participants. Some approaches use
evaluation to validate submitted models against a centralized
dataset [6], or against randomly selected distributed datasets [4]
if they are representative of each other—which is the case with
independent and identically distributed (IID) data partitioning.
Given IID settings, submitted models can also be compared
to each other [5], [6], [18] or with a reference model [19],
[20], using distance metrics. Among these, FLAME [18] stands
out, as it leverages multiple complementary methods to stop
malicious participants: clustering to identify multiple groups of
attackers, norm-clipping to mitigate gradient boosting attacks,
and adaptive noising to lessen the impact of outliers. Yet,
because it works under the assumption that the biggest cluster
represents benign participants and that attackers cannot exceed
50% of the population, FLAME de facto falters against a majority
of malicious clients. Furthermore, while the paper demonstrates
that it can resist to low proportions of non-IID participants, it
still aims at delivering one common global model, thus failing
to address the more skewed non-IID cases, where leveraging
multiple sub-federations might be necessary.

The assumption of IID data rarely holds in FL, even though
its properties facilitate the detection of Byzantine participants.
Indeed, given non-IID settings, You et al. [21] show most of
these mitigation strategies are inefficient. These methods rely
on a single source of truth that may be known beforehand [6],
or elected among participants [5]. However, by definition, this
single source of truth does not exist in non-IID datasets. To
circumvent this issue, FoolsGold [7] and CONTRA [8] assume
that sybils share a common goal, and thus produce similar
model updates, allowing to distinguish them from benign non-
IID participants that present dissimilar contributions. Similar
participants are classified as sybils using the cosine similarity
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between gradient updates, and their weight is reduced in the
final aggregation. However, while this mitigation strategy works
when multiple attackers collaborate, it fails at identifying lone
attackers. These approaches are also well suited for pathological
non-IID scenarios, where all participants are significantly
different. In practical non-IID settings, legitimate communities
of similar participants can exist. Those legitimate participants
would be falsely identified as sybils.

Finally, Zhao et al. [22] take a different approach and rely
on client-side evaluation. Local models are aggregated into
multiple sub models, which are then randomly attributed to
multiple clients for efficiency validation. To also address non-
IID datasets, clients self-report the labels on which they have
enough data to conduct an evaluation. While this self-reporting
limits the network and client resources consumption, abusive
self-reporting is possible. Nevertheless, directly leveraging the
participant datasets for evaluation removes the need for a single
exhaustive source of truth. Resource consumption is also less
of an issue in cross-silo use cases: they often imply fewer
participants, with more data and dedicated resources.

B. Clustered Federated Learning
Non-IID data can also be regarded as heterogeneous data

distribution that are regrouped together. Following this idea,
some works [23]–[26] try to group participants sharing similar-
ities. The purpose of this approach is twofold. First, from
a performance perspective, outliers that do not fit in any
group slow down the convergence [26]. Second, considering
outliers as poisoned models [23] allows poisoning detection.
Since the effective number of clusters is unknown, hierarchical
clustering is a common way to create appropriate clusters [24],
[26]. Specifically, Ye et al. [26] use the cosine similarity
of local models to successfully group participants in more
homogeneous subgroups. However, as this approach doesn’t
aim to address Byzantines, it does not consider that some
malicious participants might aim to be grouped with benign
ones to poison the cluster’s model.

C. Reputation Systems for Federated Learning
Reputation systems subjectively assess participants’ ability

to perform a task based on past interactions. FL leverages
reputation systems in three different ways. Some approaches [8],
[27], [28] rely on reputation to select reliable clients for the next
round. CONTRA [8] works this way. By progressively penalizing
the participants that propose models similar to each others,
and that are thus suspected of being sybils, it leaves room
for participants issuing dissimilar models to be selected more
often. We detail in Section III-A the limits of these types of
approaches in practical non-IID settings.

Others leverage reputation to weight local models during
the aggregation process [29], [30]: the higher the reputation,
the heavier the local model contributes to the aggregated
model. Some will even go so far as to discard contributions
when the author’s reputation is too low. Finally, as shown
by Karimireddy et al. [31], small malicious incremental changes
can be small enough to be undetected in a single round but

Local training

Evaluation

Clients Server

Orchestration

Clustering

Reputation

Aggregation

Models

Evaluations

Clusters

Weights

Fig. 1: Architecture overview.

still eventually add up enough to poison the global model over
the course of multiple rounds. Reputation system’s ability to
track clients’ contributions over time [27], [30] can be used as
a countermeasure to these attacks.

IV. Architecture
This section details RADAR’s architecture. It is divided

into three main components: (i) our cross-evaluation scheme
that provides local feedbacks on each participant’s contribu-
tions (Section IV-A), (ii) a similarity-based clustering algorithm
that groups participants based on evaluations (Section IV-B),
and (iii) a reputation system that assesses participants’ trust-
worthiness based on their past contributions (Section IV-C).
Figure 1 depicts the overview of RADAR.

A. Assessing Contributions with Cross-Evaluation
As highlighted in Section III, most related works on poison-

ing mitigation in FL rely on server-side models comparison [7],
[8]. They measure distance between the parameters (for DNNs,
𝑛-dimensional arrays containing the weights and biases of
each neuron) using metrics such as cosine similarity [7] or
Euclidean distance [32]. However, models that are statistically
further from others are not automatically of poor quality. To
cope with this limitation, as well as the absence of source of
truth, we propose to rely on client-side evaluation [22]. The
results of this evaluation can then be used by the server to
either discard or weight contributions. RADAR’s workflow thus
differs from typical approaches by adding an intermediate step
for evaluating parameters:

1. client fitting – The server sends clients training instructions
and initial parameters, i.e. randoms values for the first
round. For subsequent rounds, the initial parameters of
each client are set to the model 𝑤𝑟−1

𝑘 of the corresponding
cluster, using the results of Step 3. at round 𝑟 − 1.
Each client trains its own model using the provided
hyperparameters, and the initial parameters as a starting
point before uploading their parameters 𝑤𝑟

𝑖
to the server.

2. cross-evaluation – The server serializes all client param-
eters in a single list that is sent to every client. Each
client then locally evaluates each received model using its
validation set, generating a predefined set of metrics such
as loss, accuracy, or F1-score. The metrics of all clients
are then gathered server-side.
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3. parameter aggregation – The server partitions clients into
a set of clusters 𝒞

𝑟 based on the evaluations gathered in
Step 2. For each cluster 𝐶𝑟

𝑘
∈ 𝒞

𝑟 , the server computes
the new model 𝑤𝑟

𝑘 =
∑

𝑖∈𝐶𝑟
𝑘
𝑤𝑟
𝑖
𝜌𝑟
𝑖
, where the weight 𝜌𝑟

𝑖

is given by the reputation system for the participant 𝑝𝑖 .
The cross-evaluation step generates an evaluation matrix

that is used twice in the architecture. Since this matrix is not
symmetric, the vector of issued evaluations 𝐸𝑟

[𝑖,∗] is used
for clustering, while both the received evaluations vector
𝐸𝑟
[∗, 𝑗 ] and the issued evaluations vector 𝐸𝑟

[𝑖,∗] are used in
the reputation system. Algorithm 1 (in Appendix) details the
proposed workflow.

B. Fighting Heterogeneity with Clustering
The clustering algorithm seeks to gather similar participants

together in more homogeneous sub-federations when appro-
priate. Nguyen et al. [18] and Ye et al. [26] both measure
participants’ similarity by comparing the distance between
model updates. This is biased, as models that are statically
different might still produce relevant results. RADAR addresses
this issue by defining similarity as the distance between partici-
pants emitted evaluations. Indeed, since all participants evaluate
the same models, the variation in evaluation results reflects a
difference in the evaluation datasets. Therefore, participants
having similar datasets should issue similar evaluations.

We note 𝛿𝑟
𝑖, 𝑗

the distance between the evaluations of 𝑝𝑖
and 𝑝 𝑗 at round 𝑟. 𝛿𝑟

𝑖, 𝑗
is defined as the cosine similarity

between 𝑝𝑖 and 𝑝 𝑗 issued evaluation vectors 𝐸𝑟
[𝑖,∗] and 𝐸𝑟

[ 𝑗 ,∗] ,
or 𝛿(𝐸𝑟

[𝑖,∗] , 𝐸
𝑟
[ 𝑗 ,∗]). We then iteratively group similar partici-

pants into different clusters, leveraging hierarchical clustering.
Initially, each participant is assigned to a different cluster. Then,
each closest pair of clusters is merged, thus reducing the number
of clusters. The process is repeated until the distance between
the two closest clusters exceeds a given threshold.

While hierarchical clustering does not require the number
of clusters as an input, choosing the right threshold can
be challenging. Contrarily to Ye et al. [26] who manually
adjust this parameter on a per-dataset basis, RADAR leverages a
dynamic threshold based on the mean inter-distance Δ𝑟 between
the clusters at round 𝑟 . This threshold 𝜃 is expressed as:

𝜃 = 𝛽Δ𝑟 =
𝛽

|𝒞𝑟 | ( |𝒞𝑟 | − 1)
∑︁

𝑘,ℓ∈𝒞𝑟 ,
𝑘≠𝑙

Δ𝑟
𝑘,ℓ (2)

where 𝛽 is a tunable hyperparameter, and Δ𝑟
𝑘,ℓ

the distance
between two clusters 𝐶𝑟

𝑘
and 𝐶𝑟

ℓ
, defined as the distance

between their centroids: 𝛿(𝜇𝑟
𝑘
, 𝜇𝑟

ℓ
). The centroid 𝜇𝑟

𝑘
of a cluster

𝐶𝑟
𝑘

is the average of the issued evaluations from its participants
at round 𝑟 , i.e., we have 𝜇𝑟

𝑘
= 1
|𝐶𝑟

𝑘
|
∑

𝑖∈𝐶𝑟
𝑘
𝐸𝑟
[𝑖,∗] .

Based on the results of the clustering, the server can then
aggregate the models of each cluster 𝐶𝑟

𝑘
separately, using the

reputation system described in Section IV-C. Consequently,
the server maintains as many global models 𝑤𝑟

𝑘 as there are
clusters at each round. Note that this is another difference with
FLAME [18], which only produces a single common model for
every participant.

C. Ensuring Quality Contributions with Reputation
The reputation system centrally computes the weights

𝜌𝑟
𝑖
,∀𝑝𝑖 ∈ 𝐶𝑟

𝑘
used in the aggregation of each cluster model 𝑤𝑟

𝑘

at round 𝑟 (see Section IV-A). Given the existence of methods
for common tasks, such as contribution filtering, RADAR models
trust using a multivalued Dirichlet probability distribution [33].
However, the evaluations 𝐸𝑟

[∗,𝑖 ] received by a participant 𝑝𝑖
are continuous over [0, 1], and thus need to be discretized into
a set of 𝑞 possible values E = {𝜀1, 𝜀2, . . . , 𝜀𝑞}.

A Dirichlet distribution on the outcome of an unknown event
(i.e., the mean of the received evaluation 1

𝑛

∑
𝑒𝑟
𝑖, 𝑗
∈𝐸𝑟
[∗, 𝑗 ]

𝑒𝑟
𝑖, 𝑗

) is
usually based on the combination of an initial belief vector
and a series of cumulative observations [33]. As a complete
cross evaluation is already available at the first round, RADAR
does not require an initial belief vector to bootstrap reputation.

Following the notation used by Fung, Zhang, et al. [33],
we note ®𝛾𝑟 = {𝛾𝑟1 , 𝛾

𝑟
2 , . . . , 𝛾

𝑟
𝑞} the cumulative evaluations

received by 𝑝𝑖: 𝛾𝑟2 = 3 means that three evaluations in
𝐸𝑟
[∗, 𝑗 ] had values bounded by

[
1
𝑞
, 2
𝑞

[
. We then note ®P =

⟨P{𝜀1}, P{𝜀2}, . . . , P{𝜀𝑞}⟩ the probability distribution vector
for the received evaluation of a participant, where

∑𝑞

𝑠=1 P{𝜀𝑠} =
1. Leveraging the cumulative evaluations ®𝛾𝑟 , the probability
P{𝜀𝑠 | ®𝛾𝑟 } is given by P{𝜀𝑠 | ®𝛾𝑟 } = 𝛾𝑠/

∑𝑞

𝑚=1 𝛾𝑚.
The system further needs to limit the ability of potential

malicious participants to manipulate their evaluations, either by
badmouthing another participant, or by artificially raising their
own ratings. Consequently, the evaluations issued by a partici-
pant 𝑝𝑖 ∈ 𝐶𝑟

𝑘
are weighted according to their similarity with

other cluster members’ [34] as 𝑒′
𝑖, 𝑗

= 𝑒𝑟
𝑖, 𝑗
𝑠𝑖𝑚(𝐸𝑟

[𝑖,∗] , 𝐸
𝑟
[𝐶𝑟

𝑘
,∗]),

where the similarity is defined as:

𝑠𝑖𝑚(𝐸𝑟
[𝑖,∗] , 𝐸

𝑟
[𝐶𝑟

𝑘
,∗]) = 1 −

√√√√∑𝑛
𝑗=1

(
𝑒𝑟
𝑖, 𝑗
−∑𝑖∈𝐶𝑟

𝑘

𝑒𝑟
𝑖, 𝑗

|𝐶𝑟
𝑘
|

)2

|𝑃 | . (3)

To prevent attacks phased over multiple rounds, while
preventing past mistakes from permanently impacting a partic-
ipant, we use an exponential decay as forgetting factor, noted
𝜆 ∈ [0, 1]. The reputation 𝜓𝑟

𝑖
of a participant 𝑝𝑖 at round 𝑟

based on the prior knowledge 𝛾𝑟
𝑖

of this participant is given
by Equation (4). Note that a small 𝜆 gives more importance
to recent evaluations: 𝜆 = 0 only considers the last round
while 𝜆 = 1, considers all round with equal weight. Based on
𝜓𝑟
𝑖
, the weight 𝜌𝑟

𝑖
of 𝑤𝑟

𝑖
for aggregation in 𝑤𝑟

𝑘 (see Step 3.
in Section IV-A) is given by Equation (5).

𝜓𝑟
𝑖 =

𝑟∑︁
𝜅=1

𝜆𝑟−𝜅𝛾𝜅
𝑖 (4) 𝜌𝑟𝑖 =

𝜓𝑟
𝑖∑ |𝐶𝑟
𝑘
|

𝑗
𝜓𝑟

𝑗

(5)

As such, the weight 𝜌𝑟
𝑖

of 𝑝𝑖 will be proportional to its
reputation, and therefore the evaluations it received over time.
The attackers’ evaluations only vary on the subset of samples
that are impacted. Consequently, the differences between their
reputation scores and those of legitimate participants can be
relatively small, despite remaining meaningful. We apply a
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TABLE I: Hyperparameters. The model’s configuration is taken
from the work of Popoola et al. [37], while the parameters for
RADAR’s architecture have been selected empirically.

Model hyperparameters

Learning rate 0.0001
Batch size 512
Hidden layers activation ReLU
Output layer activation Sigmoid
# Input features 49
# Hidden layers 2
# Neurons (hidden layers) 128
Optimization algorithm Adam
Loss function Log loss
Number of local epochs 10

Clustering hyperparameters

Distance metric Cosine
similarity

Threshold factor 𝛽 0.25
Cross-eval metric F1-score

Reputation hyperparameters

Number of classes 10000
History parameter 𝜆 0.3
Cross-eval metric F1-score
Normal distribution 𝜎 0.0005

TABLE II: Cross evaluation (F1-score) on the used datasets.
Each dataset is uniformly partitioned into a training set (80%)
and an evaluation set (20%). The same partitions are kept
over the entire experiment. Each model (rows) is trained on
its training set during 10 epochs, and then evaluated on each
test set (columns). The highest scores are highlighted in bold.

Evaluation set

Tr
ai

ni
ng

se
t CIC-IDS NB15 ToN IoT Bot-IoT

CIC-IDS 0.961787 0.002723 0.524219 0.680166
NB15 0.108913 0.947204 0.009875 0.655943
ToN IoT 0.211792 0.419380 0.966679 0.081510
Bot-IoT 0.158477 0.017188 0.703195 0.999483

sigmoid function to convert these scores to aggregation weighs
and accentuate this difference. This sigmoid function is the
normal distribution cumulative density function adjusted with
the 𝜎 parameter.

V. Experimental Setup
We evaluate RADAR and any selected baseline on a set of

heterogeneous intrusion detection datasets [35] with various
attack scenarios (see Section V-B). We implement the described
use case (Section II-A) and threat model (Section II-C) as a
set of experiments using the FL framework Flower [36], with
Nix and Poetry to reproducibly manage dependencies. The
hyperparameters used in our setup are detailed in Table I.
The code for all experiments can be found online1, with
configuration and seeds for each considered baseline and
evaluation scenario. We also provide lock files to enable anyone
to reuse the same software versions as in this paper.

A. Datasets and local algorithm
To create groups of participants that share similar distribu-

tions, we use the standard feature set for flow-based NIDSs
proposed by Sarhan et al. [35], which is based on the NetFlow
v9 format from nProbe [38]. The authors converted four known
IDS datasets to this format: UNSW-NB15 [39], Bot-IoT [40],
ToN IoT [41], and CSE-CIC-IDS2018 [42]. The uniform
feature set allows evaluating FL approaches on independently
generated datasets [37], [43]. Each contains benign samples

1https://github.com/leolavaur/radar-srds-2024

and multiple attack classes. For instance, Bot-IoT is divided as
“Benign”, “DoS”, “DDos”, “Reconnaissance”, and “Theft”.

We use the “sampled” version (1,000,000 samples per
dataset) provided by the same team [44]. Like Carvalho Bertoli
et al. [43], we remove source and destination IPs and ports,
as they are more representative of the testbed environment
than of the traffic behavior. We then use one-hot encoding2

on the categorical features (both for samples and labels), and
apply min-max normalization to give all features the same
importance in model training.

Locally, we use a multilayer perceptron (MLP) with two
hidden layers, following Popoola et al. [37]. We reuse the
hyperparameters provided by the authors (see Table I), and
reproduce their results on our implementation, using the same
four datasets. Their algorithm shows low performance when
training the model on one dataset, and evaluating it on another,
as illustrated in Table II. This supports the assumptions behind
the cross-evaluation proposal, where the differences between
the evaluation results can be used to estimate the similarity
between the local data distribution.

B. Evaluation scenarios
The threat model defined in Section II-D is implemented

as a set of evaluation scenarios which model various data-
quality situations. These scenarios can be summarized in three
categories:
C1: Benign. This category actually contains one scenario

which showcases a practical non-IID situation, where
participants can be grouped into 4 use cases. Each of
the 4 datasets described in V-A is randomly distributed
among 5 participants without overlap. We thus have a
total of 20 participants with different data, but some share
similarities between their data distributions.

C2: Lone Byzantine. The scenarios in this category differ
from the Benign category (C1) by introducing a fault in
a single participant. This fault might be due to an honest-
but-neglectful participant that misclassified samples or
missed an intrusion, or a single malicious participant
actively trying to poison the system. We emulate the fault
by flipping the one-hot encoded label on a subset of the
participant’s data: given a label ®𝑦 ∈ {⟨0, 1⟩, ⟨1, 0⟩}, a
faulty sample will be assigned to ⟨¬®𝑦0,¬®𝑦1⟩. A fault is
characterized by two parameters:

(1) its target, i.e., the classes to which the affected samples
belong; and

(2) its noisiness, i.e., the percentage (ranging from 10% to
100%) of targeted labels that are actually flipped.

If a single class is affected, the fault is targeted, and
only the samples of this class see their label changed. We
arbitrarily chose Bot-IoT and its “Reconnaissance” class
as the target for the experiments. Otherwise, the fault is
untargeted, and all classes of Bot-IoT are equally affected,
including benign samples.

2Binary representation of categorical variables used in ML where each
unique category is represented in binary by a zeroed vector with a one for the
corresponding category.
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C3: Colluding Byzantines. This category encompasses
scenarios resembling the Lone Byzantine ones (Cat-
egory C2), but where the same fault is replicated on
multiple participants at the same time. This corresponds to
malicious participants in our threat model, as it is unlikely
that several honest-but-neglectful participants commit the
very same fault. The colluding attackers are a majority
if they outnumber the benign participants whose data
originate from the same dataset, and a minority otherwise.
As we experiment attacks on the Bot-IoT dataset whose
data is distributed among 5 participants, this respectively
means that there are three attackers and two benigns, or
two attackers and three benigns. These two sub categories
are referred to as Colluding majority and Colluding
minority, respectively.

We note the parameters of a fault as
<noisiness><initial_of_target>, and use this notation
to refer to scenarios hereafter. As such, a Lone 80T scenario
means that one of the five participants coming from the
Bot-IoT dataset will flip 80% of its “Reconnaissance” labels to
the opposite value. Colluding minority ≤30U refers to all
scenarios where two participants from Bot-IoT flip the labels
on 30% of their entire dataset, or less.

C. Metrics
To measure the ability of RADAR to cluster clients correctly,

we use the Rand Index. The Rand index compares two partitions
by quantifying how the different element pairs are grouped in
each. It is defined between 0 and 1.0, 1.0 meaning that both
partitions are identical. RADAR already produces evaluation
metrics at each round thanks to the cross-evaluation scheme,
based on each participant’s validation set. The same evaluation
methods are thus used on a common testing set (to each initial
client dataset) and aggregated to evaluate the approach. The
presented results focus on the mean accuracy and miss rate of
the benign participants. Finally, the attack success rate (ASR)
is computed over the benign participants of the affected cluster,
and defined as the mean miss rate on the targeted classes of
targeted attacks, and the mean of the misclassification rates
(i.e. 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) in untargeted ones.

VI. Experimental Results
RADAR serves multiple objectives at once: (a) maintaining

high performance on practical non-IID data, (b) correctly
identifying and weighting low-quality contributions, and (c) mit-
igating the impact of label-flipping attacks. As a result, we
select relevant baselines from the literature to evaluate each
of RADAR’s abilities. We use FedAvg [2] (abbreviated FA)
to highlight the existing issues with statistical heterogeneity,
using the setup provided by Flower [45]. Because RADAR
can be partially assimilated as a clustered FedAvg variant,
we also consider a theoretical setup where participants are
clustered based on their original data distribution, and one
instance of FedAvg is executed per cluster. We refer to it
as Clustered FedAvg or FC. To highlight RADAR’s ability to
compare with Sybil-focused mitigation strategies, we compare it

with FoolsGold [7] (also designated FG). We reuse the authors’
code [46], and adapt it to model updates, since FoolsGold
was originally implemented on FedSGD. The following sections
cover these topics using the scenarios laid out in Section V-B.
Like the others, RADAR is abbreviated as RA when needed.

A. Heterogeneity
Because our use case implies that some participants share

similar data distributions, we expect RADAR’s clustering com-
ponent to limit the impact of heterogeneity by grouping
similar participants together. To evaluate our approach, we
compare the partition created by RADAR’s clustering algorithm
with one where participants are grouped according to their
dataset of origin. This partition is presented as Partition A in
Table III. The constant Rand Index of 1.0 indicates that all
participants are correctly grouped, regardless of the considered
evaluation scenario. This validates the idea that similarity
between evaluations can be used to regroup participants.

In addition to managing heterogeneity, it is critical that the
countermeasures deployed in RADAR do not negatively impact
performance. Specifically, the reputation system must not un-
fairly penalize legitimate participants because of their potential
differences. Figure 2a presents the weights provided by the
reputation system for the aggregation. In the Benign scenario,
the 5 participants originating from the Bot-IoT dataset do have
equal weights, confirming that none of them is penalized by the
reputation system. Furthermore, Table IV indicates that RADAR’s
mean accuracy is superior to FoolsGold’s and FedAvg, as
both baselines falter in practical non-IID use cases. RADAR
almost matches the results of FC, which is ideally clustered by
design. Overall, FoolsGold, a reference Byzantine-resilient
FL strategy tailored for non-IID settings, falters in practical
non-IID settings, where RADAR strives.

B. Handling data quality
Another goal for RADAR is to handle contributions of various

quality. This objective is mostly represented by scenarios of
Category C2 (Lone), as we consider that coordinated faults are
improbable for legitimate participants. In this configuration, we
expect the Byzantine participant to be either, put in a cluster
of its own, or penalized by the reputation system. To verify the
former, we compare the partition made by RADAR with another
where Byzantines are segregated in an additional cluster (see
Partition B in Table III). Here, a Rand Index lower than 1.0
implies that Byzantine participants have been grouped with
legitimate ones of the same dataset, which is the case in most
scenarios of the Lone category. However, the noisiest untargeted
faults (Lone >95U) result in the Byzantine participant being
placed in his own separate cluster, thus neutralizing its impact
on the other participants. Note that the hyperparameters of the
clustering algorithm could be tuned so that attackers with lower
noisiness would be separated, notably the threshold factor 𝛽

and the cross-evaluation metric (see Table I).
When Byzantine participants are grouped with benign ones,

we rely on the reputation system to identify and diminish
the impact of their contributions. The weights given by the
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TABLE III: Rand Index between RADAR’s clustering and
two partitions of reference, under various scenarios.
Partition (A) contains only benign participants grouped
according to their respective dataset. Partition (B) con-
tains attackers placed in a separated group in addition
to benign participants.

Scenario Partition (A) Partition (B)Category Noisiness Target

Benign 1.00 1.00

Lone ≤100 T 1.00 0.97
Lone ≤95 U 1.00 0.97
Lone 100 U 1.00 1.00

Collud. min. ≤100 T 1.00 0.97
Collud. min. ≤90 U 1.00 0.97
Collud. min. 100 U 1.00 1.00

Collud. maj. ≤100 T 1.00 0.96
Collud. maj. ≤90 U 1.00 0.96
Collud. maj. 100 U 1.00 1.00

TABLE IV: Effect of different attack configurations (100T/U) on
all baselines. The attack success rate (ASR) is computed over the
targeted classes in targeted attacks, and over all samples otherwise
(see Section V-C). RA is RADAR, FG is FoolsGold, FA is FedAvg
(on all participants), and FC is FedAvg ideally clustered per dataset.
The ASR of benign runs is provided as a baseline. RADAR’s limiting
scenario is marked ‡.

Scenario Mean accuracy (%) ASR (%)
RA FG FA FC RA FG FA FC

Targeted (100T)
Benign 99.07 55.04 79.49 99.24 0.00 5.17 5.10 0.09
Lone 99.06 60.51 77.38 99.22 0.00 93.82 6.73 0.45
Collud. min. 98.96 54.64 78.48 98.33 0.00 2.97 9.99 53.40

‡ Collud. maj. 98.28 85.10 79.40 98.22 73.39 8.10 17.65 59.36

Untargeted (100U)
Benign 99.07 55.04 79.49 99.24 0.09 0.39 33.30 0.06
Lone 98.96 49.56 78.38 99.22 0.08 99.89 54.70 0.12
Collud. min. 98.98 49.67 72.47 97.69 0.10 0.04 44.53 6.26
Collud. maj. 98.96 69.09 81.87 75.66 0.08 38.98 59.49 94.36

reputation system can be seen in Figure 2b, where the Byzan-
tine client is heavily penalized in the Lone 100T scenario.
The effect of the clustering and reputation system are also
apparent in Table IV, where the ASR for both Lone 100T and
Lone 100U are comparable to the benign case, underlining
RADAR resilience. The results in Figure 3 confirm this trend:
RADAR maintains a low ASR in most configurations. As a result,
RADAR demonstrates its ability to mitigate isolated Byzantine
faults, regardless of their intensity.

The same cannot be said for FoolsGold’s, which aims at
providing a single global model. Further, by construction, it
identifies groups of similar participants as colluding attackers
and considers that only the faulty participant is legitimate. This
appreciation error leads FoolsGold to have the worst attack
success rate among all tested baselines, even when compared
against the naive FedAvg approach.

C. Label flipping attacks
We evaluate the resistance to label-flipping attacks using

two different scenarios. First, we consider that Colluding
Byzantines can only refer to attackers, as it is unlikely that the
very same fault happens over multiple clients at the same time.
Second, the Lone 100U scenario, as it is similarly unlikely
that for an honest-but-neglectful participant to misclassify the
entirety of its data.

Like discussed in Section VI-B, the clustering algorithm
separates the noisiest attacks from the rest. This is true
regardless of the number of attackers, as confirmed by the
results in Table III. For untargeted faults with at least 95%
noisiness, the Rand Index at round 10 stays equal to 1.0. This
means that for those loud attacks, attackers are separated from
benign participants, hence negating their poisoning effect. This
is a critical result for RADAR, as this mitigation occurs for any
number of attackers, even if they outnumber benign participants.
However, the attackers in Colluding T scenarios are placed
with legitimate participants in the same cluster.

Minority of attackers: The Colluding minority class
(Category C3) contains scenarios where 2 out of 5 participants
instantiated in Bot-IoT perpetrate label-flipping attacks. Here,
the results depicted in Figure 2c indicate that the attackers are
heavily penalized by the reputation system. This is coherent
with the results in Table IV for these scenarios, where we can
see that RADAR indeed fend off attackers with an ASR of 0.0.
Among the other baselines, FedAvg is especially affected, since
it does not have any protection against such attacks. This is
also true for our theoretical baseline FC, although the effect
is logically limited to participants using the Bot-IoT dataset.
FoolsGold, on the other hand, detects the attackers since they
are similar and thus manages to discard the attack, obtaining a
rather low ASR of 2.97%. Unfortunately, it also detects benign
members from the other clusters as colluding attackers and thus
train on BoT-IoT only, leading to a very low 54.64% accuracy
overall.

Majority of attackers: The Colluding majority 100T
scenario, with 3 attackers out of 5 participants, sees the
attackers gain precedence. Figure 2d clearly illustrates this
phenomenon, where the legitimate participants’ weights drop
as the reputation system favors the attackers. This is a known
limit of the reputation system, which favors the majority
by construction. This is further illustrated in Figure 5: a
steeper drop in accuracy and miss rate occurs when attackers
outnumber benign participants in one cluster. However, the
metric distribution over the participants highlights that the
other clusters remain unaffected, and that the majority of
benign participants continues to perform well. Furthermore,
as illustrated in Figures 3 and 4, the noisiness of attackers
must exceed 80% for attackers to poison the cluster’s model.
Consequently, while this scenario highlights a limitation of
RADAR, it is significantly constrained.

Impact of the attack timing: Additionally, Figure 6 depicts
how the reputation system reacts to participants that change
their noisiness over time. Figure 6a features a Colluding
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(b) Lone 100T.
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(c) Colluding minority 100T.
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Fig. 2: Aggregation weights 𝜌𝑟
𝑖

for the participants coming from the BoT-IoT dataset depending on the number of Byzantines
(100T). Byzantines are correctly penalized when they are a minority, but gain precedence when they become the majority.
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Fig. 3: Attack success rate (ASR) of the different baselines. Even though attackers are a majority, they gain weight precedence
only for higher poisoning rates (>90%).
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Fig. 4: Aggregation weights 𝜌𝑟
𝑖

per participant of the poisoned cluster (Colluding majority T). Even though attackers are a
majority, they gain weight precedence only for higher poisoning rates (≥90%).

minority 100T scenario where the noisiness drops to 0%
at round 3. The system forgives attackers approximately four
rounds after they adapted their behavior. This rather short delay
depends on the chosen 𝜆 history parameter of our reputation
system (see Table I). On the contrary, Figure 6b showcases
Colluding minority T attackers going from 0 to 100%
noisiness over the course of a few rounds. The reputation
system detects and penalizes them at round 5 when the noisiness
reaches 60%. This in phase with the conclusions of Figures 3
and 4: for lower noisiness levels, the attackers have no effect.
The reputation system thus detects attackers only when they
start to present a threat to the global model’s performance.

D. Synthesis
First, the results highlight the relevance of clustering in

practical non-IID use cases, as attacks are confined to the
cluster attackers have been assigned to. This is particularly
visible in the performance of RADAR and the clustered FedAvg
variant, which both maintain high accuracy overall by providing
each community with a specific model. This is true even in the
presence of Byzantine faults or attackers. However, since FC
does not implement any mitigation strategy, its performance
quickly degrades with the quality of the contributions, especially

in the presence of colluding attackers (as illustrated by
Figure 3).

The results in Table IV also emphasize on FoolsGold’s
unsuitability for practical non-IID use cases, where groups of
participants sharing similar distributions can exist. Especially in
a Lone scenario, any groups of similar participants are consid-
ered as colluding attackers and penalized, leading to high ASR,
as only the attacker is considered as legitimate. Similarly, in
Colluding majority T/U scenarios, FoolsGold penalizes
all the other clusters, leading to a model trained on Bot-IoT
only. Overall, RADAR presents the most consistent results, with
high accuracy and low ASR in most scenarios, only failing
against a majority of extremely noisy colluding attackers that
still managed to get similar enough to be grouped with benign
participants.

VII. Discussion

The experiments illustrate how RADAR succeeds at identifying
attackers in heterogeneous context, thus demonstrating its
versatility. In this section, we discuss the limitations and
potential consequences of our architecture and propose research
directions to close these gaps.
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Fig. 5: RADAR’s metric distribution among participants in
different scenarios (100T). The accuracy’s and miss rate’s
lower bounds suddenly drop when attackers outnumber benign
participants in the affected cluster. Indeed, clients in other
clusters are unaffected by the poisoning.
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(a) Attackers act with 100% noisi-
ness, but become benign on round 3.
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Fig. 6: Aggregation weights 𝜌𝑟
𝑖

per participant of the poisoned
cluster (Colluding minority T). Attackers are forgiven over
time, and the reputation system reacts quickly to newly detected
attackers.

A. Generalizability
While the experiments are only conducted on intrusion

detection datasets, RADAR’s design could be used in different use
cases regarding the following conditions: (1) parametric local
models whose parameters can be aggregated using FL, and (2)
local testing sets and relevant metrics allowing participants to
evaluate the others’ models. Since the NIDS use case induces a
focus on malicious samples (i.e. positive values), we choose the
F1-score as input for our clustering and reputation algorithms,
as it emphasizes on false positives and false negatives. However,
RADAR can handle different metrics, for instance the loss of
a model during evaluation, particularly relevant for similarity
measurements.

B. Scalability and performance
The focus on small-scale collaboration (i.e. a few dozens

of participants) makes the overhead of the cross-evaluation
step (Section IV-A) practical, and justifies the absence of
performance-related metrics in this paper. However, one can
question the scalability of the proposed approach in larger
scale applications. Indeed, at each round, clients evaluate |𝑃 |
additional models, which scales linearly with the number of
clients. Two new communications are also introduced, one to
send the models and one to collect the evaluations. Their size
also grows linearly with |𝑃 |, as the models of all participants

must be evaluated. Likewise, we exclude execution-related
performance evaluation such as training time, CPU overhead,
or bandwidth consumption. It opens the way to interesting
research directions on how to implement and scale RADAR
while guarantying its properties.

C. Evaluation poisoning

Attackers could try to poison the evaluations that they
provide on other participants to abuse the system. However, the
implementation presented in Section V implies that attackers
poison both their training and testing sets. Consequently, the
evaluations they produce on other participants are directly
affected. We thus expect the system to cope with arbitrary
poisoning similarly to data poisoning: either by placing the
attackers in a different cluster because of their dissimilarity, or
by penalizing their reputation.

D. Information disclosure

Because RADAR shares models with the other participants
to obtain feedbacks, it can be argued that it revels more
information about the participants. This is limited to the
participants’ models, which are shared without identifiers.
However, since clients also receive the global model of their
cluster, they can try to estimate the models that belong to their
cluster. This remains challenging, as the models are weighted
using the reputation score of the participants, which are only
available to the server. Comparing the privacy impact of
RADAR with those of simpler approaches like FedAvg represents
interesting research directions.

VIII. Conclusion

In this paper, we introduced RADAR, a federated learning
framework that effectively deals with Byzantine participants,
even with heterogeneous data-distributions. Our approach is
built on the assumption that heterogeneous participants can be
grouped based on the similarity between their data distribution.
This assumption is validated through experiments relying on
four different public datasets, each dataset corresponding to
a different client use case. We introduce a cross-evaluation
scheme that allows participants to measure their pairwise
similarities. Based on those measurements, we manage to
rebuild the initial participant distribution using hierarchical
clustering. Our results confirm that evaluation metrics can
indeed be used to assess similarity between participants, without
accessing their datasets nor comparing their models statistically.

We further designed a reputation system based on the cross-
evaluation results. Our reputation system uses the perceived
similarity of participants and their cumulated past results
to give a score to each participant inside a cluster. We are
able to validate that the combination of the clustering and
reputation system can mitigate all tested Byzantines scenarios,
with the single exception of targeted attacks where a majority
of Byzantines flip more than 80% of their labels. We compared
our work to FoolsGold and FedAvg, which highlighted the
versatility of RADAR.
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Finally, the construction of the proposed architecture, with
indirect feedbacks and personalized model weighting, makes
it a suitable candidate for decentralized architectures. In this
regard, being able to remove the central server dependency
is a key step towards a truly decentralized, trustworthy, and
privacy-preserving collaborative machine learning framework.
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[4] B. Pejó and G. Biczók, Quality Inference in Federated
Learning With Secure Aggregation. IEEE Transactions
on Big Data, vol. 9, no. 5, Oct. 2023.

[5] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and
J. Stainer, Machine learning with adversaries: Byzantine
tolerant gradient descent. Advances in Neural Informa-
tion Processing Systems, 2017.

[6] X. Cao, M. Fang, J. Liu, and N. Z. Gong, FLTrust:
Byzantine-robust Federated Learning via Trust Bootstrap-
ping. In 28th Annual Network and Distributed System
Security Symposium, ser. NDSS, 2022.

[7] C. Fung, C. J. M. Yoon, and I. Beschastnikh, The
limitations of federated learning in sybil settings. In
23rd International Symposium on Research in Attacks,
Intrusions and Defenses, ser. RAID, 2020.

[8] S. Awan, B. Luo, and F. Li, CONTRA: Defending
Against Poisoning Attacks in Federated Learning. In
26th European Symposium on Research in Computer
Security, ser. ESORICS, 2021.

[9] C. V. Zhou, C. Leckie, and S. Karunasekera, A survey of
coordinated attacks and collaborative intrusion detection.
Computers & Security, no. 1, Feb. 2010.

[10] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and
Y. Zhang, Personalized Cross-Silo Federated Learning
on Non-IID Data. Proceedings of the AAAI Conference
on Artificial Intelligence. AAAI, May 18, 2021.

[11] A. Jain, H. Patel, L. Nagalapatti, N. Gupta, S. Mehta,
S. Guttula, S. Mujumdar, S. Afzal, R. Sharma Mittal,
and V. Munigala, Overview and Importance of Data
Quality for Machine Learning Tasks. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, ser. KDD ’20,
Aug. 20, 2020.

[12] Y. Deng, F. Lyu, J. Ren, Y.-C. Chen, P. Yang, Y. Zhou,
and Y. Zhang, FAIR: Quality-Aware Federated Learning
with Precise User Incentive and Model Aggregation. In
IEEE INFOCOM 2021 - IEEE Conference on Computer
Communications, May 10, 2021.

[13] Y. Deng, F. Lyu, J. Ren, H. Wu, Y. Zhou, Y. Zhang, and
X. Shen, AUCTION: Automated and Quality-Aware
Client Selection Framework for Efficient Federated
Learning. IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 8, Aug. 2022.

[14] M. Fang, X. Cao, J. Jia, and N. Gong, Local Model Poi-
soning Attacks to Byzantine-Robust Federated Learning.
In 29th USENIX Conference on Security Symposium,
ser. USENIX Security, 2020.

[15] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, Data
Poisoning Attacks Against Federated Learning Systems.
In 25th European Symposium on Research in Computer
Security, ser. ESORICS, 2020.

[16] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo,
Analyzing Federated Learning through an Adversarial
Lens. In 36th International Conference on Machine
Learning, ser. ICML, 2019.

[17] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, Bad-
Nets: Evaluating Backdooring Attacks on Deep Neural
Networks. IEEE Access, vol. 7, 2019.

[18] T. D. Nguyen, P. Rieger, H. Chen, et al., FLAME:
Taming Backdoors in Federated Learning., presented
at the 31st USENIX Security Symposium (USENIX
Security 22), 2022.

[19] Q. Xia, Z. Tao, and Q. Li, ToFi: An Algorithm to
Defend Against Byzantine Attacks in Federated Learning.
In Security and Privacy in Communication Networks,
2021.

[20] J. Zhou, N. Wu, Y. Wang, S. Gu, Z. Cao, X. Dong,
and K.-K. R. Choo, A Differentially Private Federated
Learning Model against Poisoning Attacks in Edge
Computing. IEEE Transactions on Dependable and
Secure Computing, 2022.

[21] X. You, Z. Liu, X. Yang, and X. Ding, Poisoning attack
detection using client historical similarity in non-iid
environments. In 2022 12th International Conference
on Cloud Computing, Data Science & Engineering,
ser. Confluence, 2022.

[22] L. Zhao, S. Hu, Q. Wang, J. Jiang, C. Shen, X. Luo,
and P. Hu, Shielding Collaborative Learning: Mitigating
Poisoning Attacks through Client-Side Detection. IEEE
Transactions on Dependable Secure Computing, 2020.

[23] N. Peri, N. Gupta, W. R. Huang, L. Fowl, C. Zhu, S.
Feizi, T. Goldstein, and J. P. Dickerson, Deep k-NN
Defense Against Clean-Label Data Poisoning Attacks.
In Computer Vision – ECCV 2020 Workshops, 2020.

[24] C. Briggs, Z. Fan, and P. Andras, Federated learning
with hierarchical clustering of local updates to improve
training on non-IID data. In International Joint Confer-
ence on Neural Networks, ser. IJCNN, 2020.

11

https://doi.org/10.1561/2200000083
https://doi.org/10.1561/2200000083
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1109/TNSM.2022.3177512
https://doi.org/10.1109/TNSM.2022.3177512
http://dx.doi.org/10.1109/TBDATA.2023.3280406
http://dx.doi.org/10.1109/TBDATA.2023.3280406
https://dl.acm.org/doi/10.5555/3294771.3294783
https://dl.acm.org/doi/10.5555/3294771.3294783
https://www.ndss-symposium.org/ndss-paper/fltrust-byzantine-robust-federated-learning-via-trust-bootstrapping/
https://www.ndss-symposium.org/ndss-paper/fltrust-byzantine-robust-federated-learning-via-trust-bootstrapping/
https://www.ndss-symposium.org/ndss-paper/fltrust-byzantine-robust-federated-learning-via-trust-bootstrapping/
https://www.usenix.org/conference/raid2020/presentation/fung
https://www.usenix.org/conference/raid2020/presentation/fung
https://dl.acm.org/doi/abs/10.1007/978-3-030-88418-5_22
https://dl.acm.org/doi/abs/10.1007/978-3-030-88418-5_22
http://dx.doi.org/10.1016/j.cose.2009.06.008
http://dx.doi.org/10.1016/j.cose.2009.06.008
https://ojs.aaai.org/index.php/AAAI/article/view/16960
https://ojs.aaai.org/index.php/AAAI/article/view/16960
http://dx.doi.org/10.1145/3394486.3406477
http://dx.doi.org/10.1145/3394486.3406477
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488743
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488743
http://dx.doi.org/10.1109/TPDS.2021.3134647
http://dx.doi.org/10.1109/TPDS.2021.3134647
http://dx.doi.org/10.1109/TPDS.2021.3134647
https://dl.acm.org/doi/abs/10.5555/3489212.3489304
https://dl.acm.org/doi/abs/10.5555/3489212.3489304
https://arxiv.org/abs/2007.08432
https://arxiv.org/abs/2007.08432
http://proceedings.mlr.press/v97/bhagoji19a.html
http://proceedings.mlr.press/v97/bhagoji19a.html
http://dx.doi.org/10.1109/ACCESS.2019.2909068
http://dx.doi.org/10.1109/ACCESS.2019.2909068
http://dx.doi.org/10.1109/ACCESS.2019.2909068
https://www.usenix.org/conference/usenixsecurity22/presentation/nguyen
https://www.usenix.org/conference/usenixsecurity22/presentation/nguyen
https://doi.org/10.1007/978-3-030-90019-9_12
https://doi.org/10.1007/978-3-030-90019-9_12
https://doi.org/10.1109/TDSC.2022.3168556
https://doi.org/10.1109/TDSC.2022.3168556
https://doi.org/10.1109/TDSC.2022.3168556
https://doi.org/10.1109/Confluence52989.2022.9734158
https://doi.org/10.1109/Confluence52989.2022.9734158
https://doi.org/10.1109/Confluence52989.2022.9734158
https://doi.org/10.1109/TDSC.2020.2986205
https://doi.org/10.1109/TDSC.2020.2986205
https://doi.org/10.1007/978-3-030-66415-2_4
https://doi.org/10.1007/978-3-030-66415-2_4


[25] X. Ouyang, Z. Xie, J. Zhou, J. Huang, and G. Xing,
ClusterFL: A similarity-aware federated learning system
for human activity recognition. In 19th Annual Inter-
national Conf. on Mobile Systems, Applications, and
Services, ser. MobiSys, 2021.

[26] C. Ye, H. Zheng, Z. Hu, and M. Zheng, PFedSA:
Personalized Federated Multi-Task Learning via Sim-
ilarity Awareness. In IEEE International Parallel and
Distributed Processing Symposium, ser. IPDPS, 2023.

[27] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and
M. Guizani, Reliable Federated Learning for Mobile
Networks. IEEE Wireless Communications, 2020.

[28] X. Tan, W. C. Ng, W. Y. B. Lim, Z. Xiong, D. Niyato,
and H. Yu, Reputation-Aware Federated Learning Client
Selection based on Stochastic Integer Programming.
IEEE Transactions on Big Data, 2022.

[29] N. Wang, Y. Xiao, Y. Chen, Y. Hu, W. Lou, and
Y. T. Hou, FLARE: Defending Federated Learning
against Model Poisoning Attacks via Latent Space
Representations. In ACM on Asia Conf. on Computer
and Communications Security, 2022.

[30] Y. Wang and B. Kantarci, Reputation-enabled Federated
Learning Model Aggregation in Mobile Platforms. In
IEEE International Conference on Communications,
ser. ICC, 2021.

[31] S. P. Karimireddy, L. He, and M. Jaggi, Learning
from History for Byzantine Robust Optimization. In
38th International Conference on Machine Learning,
ser. ICML, 2021.

[32] Z. Ma, J. Ma, Y. Miao, Y. Li, and R. H. Deng,
ShieldFL: Mitigating Model Poisoning Attacks in
Privacy-Preserving Federated Learning. IEEE Transac-
tions on Information Forensics and Security, 2022.

[33] C. J. Fung, J. Zhang, I. Aib, and R. Boutaba, Dirichlet-
Based Trust Management for Effective Collaborative
Intrusion Detection Networks. IEEE Transactions on
Network and Service Management, 2011.

[34] L. Xiong and L. Liu, PeerTrust: Supporting Reputation-
Based Trust for Peer-to-Peer Electronic Communities.
IEEE Transactions on Knowledge and Data Engineering,
2004.

[35] M. Sarhan, S. Layeghy, and M. Portmann, Towards a
Standard Feature Set for Network Intrusion Detection
System Datasets. Mobile Networks and Applications,
2021.

[36] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet,
and N. D. Lane, Flower: A friendly federated learning
research framework. 2020.

[37] S. I. Popoola, G. Gui, B. Adebisi, M. Hammoudeh, and
H. Gacanin, Federated Deep Learning for Collaborative
Intrusion Detection in Heterogeneous Networks. In IEEE
94th Vehicular Technology Conference, ser. VTC2021-
Fall, 2021.

[38] ntop, Nprobe documentation.
[39] N. Moustafa and J. Slay, UNSW-NB15: A comprehen-

sive data set for network intrusion detection systems

(UNSW-NB15 network data set). In 2015 Military
Communications and Information Systems Conference,
ser. MilCIS, Nov. 2015.

[40] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turn-
bull, Towards the development of realistic botnet dataset
in the Internet of Things for network forensic analytics:
Bot-IoT dataset. Future Generation Computer Systems,
2019.

[41] N. Moustafa, M. Keshky, E. Debiez, and H. Janicke,
Federated TON IoT Windows Datasets for Evaluating
AI-Based Security Applications. In IEEE 19th Interna-
tional Conf. on Trust, Security and Privacy in Computing
and Communications, ser. TrustCom, 2020.

[42] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani,
Toward Generating a New Intrusion Detection Dataset
and Intrusion Traffic Characterization. In 4th Interna-
tional Conference on Information Systems Security and
Privacy, 2018.

[43] G. de Carvalho Bertoli, L. Alves Pereira Junior, O.
Saotome, and A. L. dos Santos, Generalizing intru-
sion detection for heterogeneous networks: A stacked-
unsupervised federated learning approach. Computers &
Security, 2023.

[44] S. Layeghy and M. Portmann, On Generalisability of
Machine Learning-based Network Intrusion Detection
Systems. Computers and Electrical Engineering, 2022.

[45] Flower Labs GmbH., fedavg.py (flower). https : / /
github.com/adap/flower/blob/main/src/py/flwr/server/
strategy/fedavg.py, Jan. 5, 2024.

[46] C. Fung, C. J. M. Yoon, and I. Beschastnikh, deep-fg/
(foolsgold). https : / / github . com / DistributedML /
FoolsGold/tree/master/deep-fg, May 15, 2019.

12

https://doi.org/10.1145/3458864.3467681
https://doi.org/10.1145/3458864.3467681
https://doi.org/10.1109/IPDPS54959.2023.00055
https://doi.org/10.1109/IPDPS54959.2023.00055
https://doi.org/10.1109/IPDPS54959.2023.00055
https://doi.org/10.1109/MWC.001.1900119
https://doi.org/10.1109/MWC.001.1900119
https://doi.org/10.1109/TBDATA.2022.3191332
https://doi.org/10.1109/TBDATA.2022.3191332
https://doi.org/10.1145/3488932.3517395
https://doi.org/10.1145/3488932.3517395
https://doi.org/10.1145/3488932.3517395
https://doi.org/10.1109/ICC42927.2021.9500928
https://doi.org/10.1109/ICC42927.2021.9500928
http://proceedings.mlr.press/v139/karimireddy21a/karimireddy21a.pdf
http://proceedings.mlr.press/v139/karimireddy21a/karimireddy21a.pdf
http://dx.doi.org/10.1109/TIFS.2022.3169918
http://dx.doi.org/10.1109/TIFS.2022.3169918
https://doi.org/10.1109/TNSM.2011.050311.100028
https://doi.org/10.1109/TNSM.2011.050311.100028
https://doi.org/10.1109/TNSM.2011.050311.100028
https://doi.org/10.1109/TKDE.2004.1318566
https://doi.org/10.1109/TKDE.2004.1318566
https://doi.org/10.1007/s11036-021-01843-0
https://doi.org/10.1007/s11036-021-01843-0
https://doi.org/10.1007/s11036-021-01843-0
https://doi.org/10.48550/arXiv.2007.14390
https://doi.org/10.48550/arXiv.2007.14390
https://doi.org/10.1109/VTC2021-Fall52928.2021.9625505
https://doi.org/10.1109/VTC2021-Fall52928.2021.9625505
https://www.ntop.org/guides/nprobe/index.html
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1016/j.future.2019.05.041
https://api.semanticscholar.org/CorpusID:223961022
https://api.semanticscholar.org/CorpusID:223961022
https://api.semanticscholar.org/CorpusID:4707749
https://api.semanticscholar.org/CorpusID:4707749
https://doi.org/10.1016/j.cose.2023.103106
https://doi.org/10.1016/j.cose.2023.103106
https://doi.org/10.1016/j.cose.2023.103106
http://dx.doi.org/10.1016/j.compeleceng.2023.108692
http://dx.doi.org/10.1016/j.compeleceng.2023.108692
http://dx.doi.org/10.1016/j.compeleceng.2023.108692
https://github.com/adap/flower/blob/main/src/py/flwr/server/strategy/fedavg.py
https://github.com/adap/flower/blob/main/src/py/flwr/server/strategy/fedavg.py
https://github.com/adap/flower/blob/main/src/py/flwr/server/strategy/fedavg.py
https://github.com/DistributedML/FoolsGold/tree/master/deep-fg
https://github.com/DistributedML/FoolsGold/tree/master/deep-fg


Appendix

Algorithm 1 RADAR. 𝑅 is the number of rounds, 𝛽 the local
batch size, 𝜂 the learning rate, E the number of epochs, and 𝜆

a loss function.
Require: 𝑃

1: with 𝑟 ← 0 do
2: 𝒞

𝑟 ← {𝑃}
3: 𝑊

𝑟 ← (Random( ))

4: for 𝑟 ← 1, . . . , 𝑅 do
5: ⊲ Step (1): model training ⊳

6: for all 𝑝𝑖 ∈ 𝑃 in parallel do
7: 𝑘 ← GetCluster(𝑝𝑖 ,𝒞𝑟 )
8: 𝑤𝑟

𝑖
← ClientFit(𝑝𝑖 , 𝑤𝑟

𝑘
)

9: 𝑊𝑟 ← (𝑤𝑟
𝑖
)𝑖∈𝑛⟦1,𝑛⟧

10: ⊲ Step (2): cross-evaluation ⊳

11: for all 𝑝𝑖 ∈ 𝑃 in parallel do
12: (𝑒𝑟

𝑖, 𝑗
) ← ClientEvaluate(𝑝𝑖 ,𝑊𝑟 )

13: 𝐸𝑟
[𝑖, 𝑗 ] = [𝑒

𝑟
𝑖, 𝑗
]𝑖, 𝑗∈⟦1,𝑛⟧

14: ⊲ Step (3): parameters aggregation ⊳

15: 𝒞
𝑟 ← ComputeClusters(𝐸𝑟 ) ⊲ See: Section IV-B

16: for all 𝐶𝑟
𝑘
∈ 𝒞𝑟 do

17: (𝜌𝑟
𝑖
) ← ComputeReput(𝐸𝑟 ,𝒞𝑟 ) ⊲ See: Section IV-C

18: 𝑊
𝑟 ← 1

|𝐶𝑟
𝑘
|
∑ |𝐶𝑟

𝑘
|

𝑖=0 𝑤𝑟
𝑖

19: function ClientFit(𝑝, 𝜔) ⊲ On client.
20: for 𝑖 ← 1, . . . , E do
21: for all 𝑏 ∈ split(𝑑𝑖 , 𝛽) do
22: 𝜔← 𝜔∇𝜆(𝜔; 𝑏) ⊲ See: Section II-A
23:
24: return 𝜔

25: function ClientEvaluate(𝑝, Ω) ⊲ On client.
26: for all 𝜔 𝑗 ∈ Ω do
27: 𝑒𝑟

𝑖, 𝑗
← Eval(𝜔, 𝑑𝑖)

28: return (𝑒𝑟
𝑖, 𝑗
)𝑖, 𝑗∈[[1,𝑛]]
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