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Long-term memory induced correction to
Arrhenius law

A. Barbier-Chebbah1,2, O. Bénichou2 , R. Voituriez2,3 & T. Guérin 4

The Kramers escape problem is a paradigmatic model for the kinetics of rare
events, which are usually characterized by Arrhenius law. So far, analytical
approaches have failed to capture the kinetics of rare events in the important
case of non-Markovian processes with long-term memory, as occurs in the
context of reactions involving proteins, long polymers, or strongly viscoelastic
fluids. Here, based on a minimal model of non-Markovian Gaussian process
with long-term memory, we determine quantitatively the mean FPT to a rare
configuration and provide its asymptotics in the limit of a large energy barrier
E. Our analysis unveils a correction to Arrhenius law, induced by long-term
memory, which we determine analytically. This correction, which we show can
be quantitatively significant, takes the form of a second effective energy bar-
rier E 0 < E and captures the dependence of rare event kinetics on initial con-
ditions, which is a hallmark of long-term memory. Altogether, our results
quantify the impact of long-term memory on rare event kinetics, beyond
Arrhenius law.

Many physical and chemical processes are controlled by “rare” events,
referring to events that are qualitatively unlikely, but nonetheless
important because their realization has exceptional consequences1,2.
Such events are ubiquitous in the context of chemical physics, as
exemplified at the molecular scale by the formation or rupture of
bonds1 (e.g. in force spectroscopy experiments3–5 or adhesion
kinetics6), protein folding7, molecular motor dynamics8–10, or more
generally nucleation events. Rare events are also relevant in other
contexts, such as stock market crashes11 or climate12 or population13,14

dynamics. The kinetics of such events, quantified by the first-passage
time (FPT) to a target configuration, generally follows Arrhenius (also
called Kramers, or Eyring–Kramers) law: the mean waiting time for a
rare event is exponentially large with the energy barrier that has to be
crossed to reach the target configuration1. This picture is also valid in
non-equilibrium systems with the definition of a pseudo-potential15–18.
In the weak-noise limit, the mean FPT is generally obtained by ana-
lyzing the dynamics at the top of the (pseudo-)potential barrier, by
expanding around the most probable path leading to the target con-
figuration. In this limit thewaiting time for a rare event becomes larger

than all relaxation times of the dynamics, and is thus independent of
initial conditions.

While the effect of memory on first passage19–25 and rare event
kinetics4,26–39 has been the object of recent studies, an important open
question arises as to whether Arrhenius law is still valid for stochastic
processes (or “reaction coordinates”) x(t) displaying infinite relaxation
times, i.e. with correlation functions decaying as a power-law rather
than exponentially:

ϕðτÞ � lim
t!1

hxðtÞxðt + τÞi
hx2ðtÞi ’

τ!1
A
τα

, ð1Þ

where A > 0, α > 0 and 〈x(t)〉 =0 by convention. Stochastic processes
possessing the property (1) will be called hereafter long-term memory
processes40,41 and arise when their dynamics results from the evolution
of an infinite number of degrees of freedom. Examples of processes
with long-term memory are provided by the dynamics of polymers42,
proteins43,44 or interfaces19, but also earthquakes45 or rainfalls46. It is
known that long-term memory induces dispersed kinetics47,48 and
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correlations between successive realizations of rare events40,41,49; its
impact on the kinetics of rare events however remains to be elucidated.
In fact, this questionwas considered in ref. 34 bymeansof a generalized
Fokker–Planck equation, a controversial4,50,51 methodwhich leads to the
notable prediction that the mean FPT to a rare configuration is infinite
for a class of processes with long-termmemory ; in ref. 35, it was noted
that the standard so-called “Wilemski-Fixman” approximation52 also
predicts infinite mean FPTs when the exponent α defined in (1) satisfies
α < 1 (note that in the non-equilibriummodel of ref. 35, the correlation
function decays as 〈x(t)x(0)〉 ~ 1/tα with α = 2− 2H, whereH is defined so
that 〈x2〉 ∝ t2H in the absence of potential. As a consequence, the long-
term memory property α < 1 corresponds to H > 1/2, with an infinite
mean FPT predicted by the Wilemski-Fixman approximation). Never-
theless, these predictions of infinitemean FPTs for processes with long-
term memory seem inconsistent with numerical simulations35,50,51 and
themathematical results of refs. 53–55, which point to finitemean FPTs.
Such contradiction shows that the above mentioned methods cannot
be used to analyze the impact of long-term memory on rare event
kinetics.

Here, on the basis of a simplemodel of a particle in a potential V(x)
at finite temperature with retarded friction force, we resolve this issue
and quantify the impact of long-term memory on the kinetics of rare
events.We generalize to processes with long-termmemory a formalism
that was so far restricted to the analysis of either FPTs in large confining
volumes with flat energy landscapes24, or of rare events without long-
termmemory37. Our theory predicts finite mean FPTs, and is supported
quantitatively by numerical simulations. In the limit of large energy
barriers—called hereafter rare events limit, we show that Arrhenius law
does hold, with however sub-exponential corrections induced by the
long-term memory, which we determine explicitly. We find that long-
term memory effectively induces a second effective energy barrier of
size E 0 = Eð1� αÞ (for α < 1), where E =V(L) −V(0) is the size of the real
barrier (see Fig. 1). We find that the prefactor of this correction, which
we explicitly calculate, is much larger than the prefactor of the leading
order Arrhenius law, which implies that this correction is significant for
a broad range of energy barriers.

RESULTS
Minimal model
Weconsider aminimalmodel of non-Markovian process x(t) with long-
term memory at temperature T , in a confining potential that is

assumed harmonic, see Fig. 1a. We assume that x(t) obeys the over-
damped Generalized Langevin Equation (GLE) :

Z t

0
dt0 Kðt � t0Þ _xðt0Þ= � k xðtÞ+ ξðtÞ: ð2Þ

Here, the 1-dimensional random variable x(t) stands typically for the
position of a particle, K(t) represents the friction kernel, k is the
stiffness of the harmonic potential applied to the particle, and ξ(t) is a
Gaussian thermal force with zeromean whose magnitude is set by the
fluctuation dissipation theorem hξðtÞξðt0Þi= kBT Kðjt � t0jÞ. With these
definitions the process x(t) is Gaussian and its stationary probability

density function (pdf) is psðxÞ= e�
kx2
2kBT =

ffiffiffiffiffiffiffiffiffiffi
2πl2

p
, where l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT =k

p
is the

confinement length. Memory effects are encoded in the friction kernel
K(t), and result typically from complex interactions of the variable x(t)
with other, potentially hidden, degrees of freedom. The dynamics (2)
describes a variety of physical processes: (i) the motion of a tracer
particle in a viscoelastic fluid56–58, (ii) the motion of a tagged particle
attached to a polymer chain42,59,60, (iii) the dynamics of the distance
between two protein residues as experimentally observed44. In the
following we will mainly focus on scale invariant friction kernels:

KðtÞ= Kα

Γð1� αÞtα , ð3Þ

where 0 < α < 1, Kα is a transport coefficient, and Γ( ⋅ ) is the gamma
function. While the theory presented below could be applied to other
kernels, this choice (3) is relevant to the physical examples (i),(ii),(iii)
above. Furthermore, in absence of target, the correlation function
defined in (1) isϕðtÞ= Eα ½�ðt=τdÞα �34,47 where τd = ðKα=kÞ1=α and Eα( ⋅ ) is
the Mittag–Leffler function. Since Eα( −u) ~ 1/[Γ(1− α)u] for large
arguments, the choice of kernel (3) ensures that the process x(t) dis-
plays long-term memory as defined in (1): there is no finite relaxation
time in the correlation function, and A =Kα/[Γ(1 − α)k] (SI, Section A).

If one imposes the initial condition x(0) = x0, the average path
m0ðtÞ � hxðtÞixð0Þ= x0 and the covariance σðt,t0Þ � CovðxðtÞ,xðt0ÞÞxð0Þ= x0
conditional to x(0) = x0 read61

m0ðtÞ= x0ϕðtÞ,σðt, t0Þ= l2½ϕðjt � t0jÞ � ϕðtÞϕðt0Þ�: ð4Þ

Fig. 1 | Sketch of the problem. a Let x(t) be a random walker in a potential at
temperature T , submitted to a power-law friction kernel. In this example of long-
termmemory (meaning that the correlation function of x(t) decay as a power-law),

what is themean FPT to a target at x = L that can be reached only by overcoming an
energy barrier E =V(L) −V(0). b Sketch of the FPT for a single stochastic trajectory
of x(t).
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We also define ψ(t) = σ(t, t) as the Mean Squared Displacement (MSD)
of x(t). In absence of potential (k =0), x(t) is the fractional Brownian
motion of Hurst exponent H = α/2; for finite k this regime is realized at
short times, when the harmonic force is negligible, as seen from the
MSD:

ψðtÞ ’
t!0

κ t2H , κ =
2kBT

KαΓð1 +αÞ
,H =

α
2
: ð5Þ

Hereafter we study the mean FPT of the process x(t) defined by (2), (3)
to a target threshold x = L, with an initial configuration either drawn
from the equilibrium distribution or set by x(0) = x0.

Numerical analysis
We have performed numerical simulations of the GLE (2) by using a
modified version of the circulant matrix algorithm62 described in
ref. 63, which is an exact generator of x(t) at sampling times tn = n × dt
for any value of the time step dt. The used values of dt are indicated in
the Supplementary Information (SI, Section D) and are always
< 2 × 10−5τd. We used the two values ofH = α/2 that are used in classical
polymer models : either a semi-flexible chain (H = 3/8) or a flexible
(Rouse) chain without hydrodynamic interactions (H = 1/4). For each
trajectory {x(tn)} we measured the FPT to L. The resulting survival
probability S(t) (defined as the probability that the FPT is larger than t)
is shown in Fig. 2. Our numerical results are consistent with the
mathematical results of refs. 53–55: an exponential decay of S(t) in the
rare events limit L → ∞, and a stretched exponential behavior for L =0.
This numerical analysis thus further supports that the mean FPT is
finite (see Fig. 3).

General non-Markovian analysis
We now proceed to the theoretical determination of the mean FPT to
x = L, denoted 〈T〉, with fixed initial condition x(0) = x0 [the case of
stationary initial conditions can be obtained by averaging over ps(x0)].
Our approach consists in generalizing the tools developed in
refs. 24,37,64, which, in the context of rare event kinetics, have been
used so far only to analyze processes with a finite maximal relaxation
time37. We describe the main steps of the approach for completeness ;
details can be found in SI (Section B). We start with the following
general exact expression of the mean FPT, derived in ref. 24:

hTipsðLÞ=
Z 1

0
dt ½pπðL, tÞ � pðL, tÞ�, ð6Þ

where we have introduced pπ(x, t) as the pdf of the process
xπ(t) ≡ x(t + T), where T is the FPT; xπ(t) is thus the process after a first-
passage event. To characterize pπ(x, t), we assume that the process
xπ(t) is Gaussian (as is x(t)), and thus fully characterized by its first
moment mπ(t) = 〈xπ(t)〉, and covariance σπðt,t0Þ ’ σðt,t0Þ that is
assumed to be identical to that of the unconditioned process x(t).
The validity of these hypotheses has been checked numerically
[Fig. 4(a) and SI, Section D] and analytically for weakly non-
Markovian processes (SI, Sections E). With these approximations, Eq.
(6) becomes

hTipsðLÞ=
Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πψðtÞ

p e�
½mπ ðtÞ�L�2

2ψðtÞ � e�
½x0ϕðtÞ�L�2

2ψðtÞ

� �
: ð7Þ

The so far unknown quantity mπ(t) can then be determined self-
consistently by analyzing a generalized version of the renewal
equation (see SI, Section B), leading to

Z 1

0
dt

e�
½mπ ðtÞ�L�2

2ψðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πψðtÞ

p mπðt + τÞ � mπðtÞ � L
� � σðt + τ, tÞ

σðt, tÞ � LϕðτÞ
� �8<

:
�e�

½x0ϕðtÞ�L�2
2ψðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πψðtÞ
p x0ϕðt + τÞ � x0ϕðtÞ � L

� � σðt + τ, tÞ
σðt, tÞ � LϕðτÞ

� �9=
;=0:

ð8Þ

This equation generalizes similar equations in refs. 24,37, which were
restricred on the determination of pπ(L, t) at short times and thus did
not enable the analysis of long-term memory effects. This integral
equation, together with the condition mπ(0) = L, allows to determine
the only unknown mπ(t) : this finally gives access to 〈T〉 thanks to
Eq. (7).

General results
This approach first shows unambiguously that the mean FPT is finite.
Indeed, we show in SI (Section B) that the solution to Eq. (8) satisfies at
long times

mπðtÞ ’
t!1

x0 ϕðtÞ, ð9Þ

which can be checked directly in numerical simulations, see fig-
ure 4b. This scaling, together with Eq. (6), shows that the mean
FPT is finite. This contradicts the results obtained with the gen-
eralized Fokker–Planck equation34 or with the Wilemski-Fixman
approximation52. The latter amounts to assuming that the process is
at all times in an equilibrium state, and would thus yield
mπ(t) ≃ Lϕ(t), leading to an infinite mean FPT when α < 1 (as noted
earlier in a similar, but out of equilibrium, situation35). Beyond this
proof of finiteness, our approach yields a quantitative determina-
tion of 〈T〉 by solving numerically the integral equation (8) formπ(t)
and next using Eq. (6); this shows quantitative agreement with
numerical simulations in Fig. 3.

Fig. 2 | Survival probabilities for the stochastic process defined by Eq. (2), as
measured in numerical simulations. a H = 3/8 and b H = 1/4, Here, x0 is drawn
from the equilibrium distribution ps(x). The black line represents S(t) = e−t/〈T〉. Error
bars represent 68% confidence intervals, due to statistical uncertainties.

13 13

Fig. 3 |MeanFPT for the process describedbyEq. (2)when the initial position is
x0 = 0. a H = 3/8 and b H = 1/4. Symbols: numerical simulations; dots: numerical
integration of Eqs. ((6), (8)); dashed red line: Arrhenius law at leading order, Eq.
(10); orange full line: refined Arrhenius law (13), including the corrections due to
long-term memory. We have used the values ν3/8 = 5.26 and ν1/4 = 5.0 calculated in
ref. 37.
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Rare events limit L → ∞
We now consider the rare event limit to determine explicitly the
impact of long-term memory on rare events kinetics. The mean FPT
obtained by the method of matched asymptotics which we sketch
here; calculation details are provided in SI (Section C). The dynamics
involves different time and length scales ; two can be readily identified:
(i) the confinement length l and (ii) the length l* = kBT =F, where F = kL
is the slope of the potential at L. The associated timescales are
respectively (i) τd and (ii) the time t* at which the characteristic fluc-
tuations

ffiffiffi
κ

p ðt*ÞH of the trajectories near the target become compar-
able to l*, this leads to t * = ðl*= ffiffiffi

κ
p Þ1=H . Note that in the rare events

limit t* ≪ τd.
The leadingorder termTRE of 〈T〉 in the L→∞ limit results from the

contribution of timescales t ~ t* ≪ τd only in (6). Indeed, after a time
t≫ t*, a particle initially at L has typically moved away from the target,
so that pπ(L, t) is exponentially small, whereas pπ is of order 1 at very
short times t ~ t*. In turn, if the starting position is typically not close
from L, p(L, t) is exponentially small with L at all times. The above
consideration suggests to look for solutions of the form
mπ(t) ≃ L − l*f(t/t*); inserting this ansatz in (8) and taking the rare event
limit leads to an equation for f that depends only on H, justifying our
ansatz. The mean FPT at leading order is then obtained as

hTi ∼
L!1

l
2
H�1

νH

L
1
H�1 κ

1
2H

× eβE � TRE, ð10Þ

where νH =
R1
0

du
uH e�f 2ðuÞ=2u2H

depends only on H, E = kL2/2 is the energy
barrier and β= 1=ðkBT Þ. This leading order result displays the usual
Arrhenius factor eβE, which is the hallmark of rare event kinetics, and is
compatible with the mathematical results of Pickands54. Of note, it is
controlled only by the short-time behavior of the MSD ψ(t), and is
independent of the long time relaxation of correlations, and thus of
long-term memory. It is indeed identical to the results of ref. 37
obtained for non-Markovian processes with the same MSD at short
times but finite relaxation time. To prove this result self-consistently,

we need to estimate the contributions to 〈T〉 in (6), that are induced by
the behavior of the integrand at timescales t≫ t *. These contributions
are expected to be relevant in the case of long-term memory, due to
the slow decay of correlation functions.

Here, the key point is to note that, in addition to the previously
identified timescales τd and t*, a third relevant timescale for the
dynamics of xπ(t) is the time TRE itself. Indeed, we show in SI that
mπ(t, L) can be written for t ≫ t* :

mπðtÞ ’
LϕπðtÞ ðt*≪t =OðτdÞ≪TREÞ

LA
Tα
RE
χ t

TRE

	 

ðτd ≪ t =OðTREÞÞ

(
, ð11Þ

whereA is defined in (1) and χ andϕπ are scaling functions. The analysis
of Eq. (8) at timescales τd and TRE, respectively, enables us to obtain
equations for ϕπ and χ that can be solved, leading to

ϕπðtÞ=ϕðtÞ, χðyÞ=α 1� x0

L

	 

Γð�α, yÞey + x0

yαL
, ð12Þ

where Γðs,yÞ= R1
y ts�1e�tdt is the upper incomplete gamma function.

Finally, inserting the scaling forms for mπ(t) into Eq. (6), we obtain

hTi ’ TRE +T
1�α
RE ×

A

l2
LðL� x0ÞΓð1� αÞ: ð13Þ

This is the central result of this Letter. It confirms the validity of the
leading order term TRE, which is independent of long-term memory,
and explicitly determines the subleading term, which is induced by
long-termmemory, as seen by the factor A that characterizes the long-
time decay of fluctuations. Several remarks are in order: (i) Since
TRE / eβE , the correctiondue to long-termmemory is of order eβE

0
with

an effective energy barrier E 0 = Eð1� αÞ. The smaller the value of α the
larger the value of E 0, so that the convergence to the rare event limit is
expected to be slower for small α (where non-Markovian effects are

Fig. 4 | Check of the approximations of the theory. a Check of the stationary
covariance approximation (i.e. σπ ðt, t0 Þ ’ σðt, t0Þ): comparison between
ψπ(t) = Var(xπ(t)) measured in numerical simulations (symbols) and ψ(t) (dashed
line: H = 3/8, full line H = 1/4). b Check of Eq. (9): comparison between the value
mπ(t) in simulations (symbols) and x0ϕ(t) (full line: x0 = l/2 for H = 3/8; dashed line

x0 = l forH = 1/4). Note thatmπ(t)≃ x0ϕ(t) is expected at large times only. cCheck of
the short-time scaling regime for H = 3/8. d Check of the long-time scaling regime
(11) for H = 3/8. In a, c, d, the initial position is drawn from an equilibrium dis-
tribution, corresponding to our predictions for x0 = 0. When present, error bars
represent 68% confidence intervals.

Article https://doi.org/10.1038/s41467-024-50938-1

Nature Communications |         (2024) 15:7408 4

www.nature.com/naturecommunications


stronger). (ii) Furthermore, the pre-exponential factor is clearly much
larger for the corrective term than for the leading order term in the
limit L→∞, so that the corrective term can be quantitatively important.
Indeed, as observed in figure 3, taking into account this correction is
essential to predict the rare event kinetics for not-too-large values of L.
(iii) Eq. (13) shows that the subleading correctiondepends on the initial
position x0: because of long-term memory, initial conditions can thus
impact quantitatively rare event kinetics. (iv) As a further validation of
our analysis, the expected scalingbehaviorsofmπ are given inFig. 4c, d
and hold in the large L limit, with discrepancies at small times in Fig. 4c
due to limitations in the choice of the time step (see SI, Section D for
additional parameters).

Discussion
We have proposed a theoretical analysis of the classical Kramers
escape problem for non-Markovian processeswith long-termmemory.
Although our approach is approximate, it captures the essence of
memory effects and allows for a quantitative determination of the
mean FPT to a target, which we unambiguously show is finite, whereas
all existing theoretical approaches so far incorrectly predicted infinite
mean FPTs (for α < 1). This comes from the assumption of a system at
equilibriumat all times that is implicitlymade in themethods that have
been employed so far, namely the Wilemski-Fixman approximation or
the generalized Fokker–Planck equation approach. Such hypothesis is
too strong to take properly into account long-termmemory effects. In
our approach, the genuine non-equilibriumness of the system upon a
first passage event manifests itself in the trajectory mπ(t), whose
behavior at very long times is affected by long-term memory. In the
rare event limit, we have explicitly determined the correction to
Arrhenius laws, which is due to long-termmemory. This takes the form
of a second effective energy barrier o f size E 0 = Eð1� αÞ, which we
showcanbequantitatively significant, and captures thedependenceof
the kinetics on initial conditions. It is known that Arrhenius laws canbe
identified for non-Gaussian models by considering the linearized
dynamics around the target37. Since our study reveals that the effect of
long-term memory on rare event kinetics comes from the slow
dynamics at the bottom of the potential only, we may expect that our
main result (13) could be generalized to non-Gaussian models. More-
over, although we have focused here on a simple model of a particle
with viscoelastic friction at equilibrium at constant temperature, it is
clear that our arguments to identify themean FPT could be adapted to
active models where the fluctuation-dissipation theorem does not
hold. Indeed, Eq. (7) and (8) would still be valid, and would involve
similarly the properties of the process in absence of target
(A, ϕ, ps, κ, . . . ), which are in principle still accessible from the defi-
nition of the process in Eq. (2), even if the fluctuation-dissipation
relation does not hold because of active effects35. Last, because our
approach puts forward deviations from Arrhenius law due to long-
termmemory, we also anticipate deviations from exponential laws for
the distribution of FPTs, that could be studied by generalizing our
approach to higher moments of the FPT, possibly giving access to the
analytical study of extreme events clustering and dispersed kinetics.
Altogether, our results shed light on the effect of long-term memory
on rare event kinetics, beyond Arrhenius laws.

METHODS
Numerical methods
To generate stochastic trajectories x(tn) satisfying the GLE (2) at sam-
pling times tn = n × dt, a modified version of the circulant matrix
algorithm62 described in ref. 63 was used. This algorithm enables one
to generate trajectories of N points with a computational complexity
OðN logNÞ. The value of the maximal time of the simulations and the
time steps were systematically varied to check that the measured
properties of the FPT do not depend on such values. Next, to deter-
mine the FPT, we have used a theory relying on the analysis of

trajectories after the FPT, assumed to display Gaussian statistics with
the same covariance function as the original stochastic process. The
control of such approximations can be found in SI (Sections D for
numerical check and E for a perturbative analysis for weakly non-
Markovian processes). To obtain numerical predictions for the mean
FPT, equations (7) and (8) were integrated numerically by evaluating
the integrals over a non-uniformmesh (withmore concentrated points
near the origin) using the trapezemethod; the number of points in the
mesh and the maximal time were systematically varied to make sure
that predictions do not depend on the properties of the mesh.

Data availability
The simulation data of the first passage time which were used to plot
Figs. 2-4 have been deposited in the figshare database [https://doi.org/
10.6084/m9.figshare.25817599].

Code availability
The code which has been used to generate the simulation data have
been deposited in the figshare database [https://doi.org/10.6084/m9.
figshare.25817599].
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