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Abstract

The stochastic optimization of a nonlinear energy sink (NES) with a time-
dependent sti↵ness is considered. The NES is linearly coupled to a main
system. The optimization aims to find the sti↵ness properties of the NES
that minimize the expected value of the velocity of the main system while
accounting for the statistical distributions of the excitation amplitude and
frequency. It is shown that the system’s responses are highly sensitive to
uncertainty and can even exhibit a discontinuous behavior. This represents
a major hurdle for the optimization, which is already hampered by the po-
tentially large computational cost associated with the time integrations. To
tackle the high-sensitivity to uncertainties and reduce the computational bur-
den, a dedicated surrogate-based stochastic optimization algorithm is used.
Specifically, the approach uses Kriging surrogates built from the unsuper-
vised identification of clusters resulting from response discontinuities. Com-
parisons between e�ciencies of optimal nonlinear absorbers with and without
time-dependent sti↵ness are performed and discussed.

1. Introduction

The safety of mechanical and structural components and the comfort of their
users require the design of appropriate noise and vibration mitigation sys-
tems [1, 2]. This can be achieved by various active to passive strategies [3, 4].
Active control [5] requires sensors, actuators, and external sources to modify
the responses of the main system to applied external forces. The passive
mitigation [3] of a system is achieved using one or several oscillators linearly



or nonlinearly coupled to the main system. In the domain of mechanical vi-
brations, the tuned mass damper [6] and its derived technologies such as the
tuned liquid damper [7], are examples of passive linear approaches. In acous-
tics, Helmholtz resonators [8] in the linear domain [9], are another example
of linear passive noise mitigation technique. Linear mitigation systems are
very e�cient around the tuned frequency of the main system. However, their
e�ciency is markedly reduced for other frequency bands. It is therefore es-
sential to account for this limitation when the frequencies of the main system
vary in time. Such variations can be due to damage accumulation or non-
linearities in the main system. Roberson [10] showed that by adding a cubic
term to the restoring force of an absorber, its e�ciency can be expanded to
larger frequency bands than the linear absorber. To take advantages of non-
linearities, many types of nonlinear absorbers have been developed. Among
them, the Nonlinear Energy Sink (NES) [11, 12] is characterized by a pure
nonlinear sti↵ness leading to a so-called Targeted Energy Transfer (TET)
[13, 14]. A TET is based on the channeling back and forth of vibratory
energies between coupled oscillators with amplitude-dependent frequencies
during resonant interactions [13]. This phenomenon can be exploited in the
domain of noise mitigation, for instance, by employing Helmholtz resonators
in nonlinear domains [15–19] to establish a TET between an acoustic mode
and the resonator [20]. Geometric nonlinearities exhibited for instance by
visco-elastic membranes have also been used in vibro-acoustics to trigger
acoustical modes [21–23]. Beyond pure cubic nonlinearities, other types of
nonlinearities have also been exploited for mechanical systems [24, 25], such
as vibro-impact [26–28], piece-wise linear and hybrid nonlinear-linear [29–
31], and time-dependent [32]. TET has also been studied in the context
of systems with time-dependent physical and mechanical properties such as
time-varying masses [33]. One of the methods for designing the TET is the
identification of the Slow Invariant Manifold (SIM) [34, 35] and character-
istic points of the system such as equilibrium points and singularities [36].
The SIM is mostly a critical manifold of singularity perturbed fast-slow gov-
erning equations [37]. The pertubation is introduced using a small physical
perturbation parameter representing the (modal) mass ratio between the os-
cillators which perform the TET. One of the challenges in designing a NES is
the tuning of its activation threshold to leverage the nonlinearity and trigger
a TET. Recently, several studies have been conducted to improve the e↵ec-
tiveness of NES by changing the activation threshold. Examples of studies
include bistable NESs [38–40], beams with acoustic black hole [41, 42], and
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specific geometries [43]. Depending on the initial conditions and other sys-
tem parameters such as the external excitation one or several bifurcations can
occur. However, it is well known that the NES e�ciency is very sensitive to
perturbations of the systems parameters or loading conditions [44]. In fact,
this sensitivity is such that it can lead to discontinuous responses, switching
abruptly, for instance, from high to low NES e�ciencies. For these reasons,
optimizing the NES design while accounting for uncertainties is essential.
The system under consideration in this paper is composed of a linear oscil-
lator, which is linearly and weakly coupled to a NES with a time-dependent
cubic nonlinearity. A stochastic optimization technique [45] based on de-
velopments by Boroson and Missoum [46] is used to account for di↵erent
sources of uncertainties in the design of the NES with time-dependent non-
linearity. The optimization scheme is based on a Gaussian Process surrogate
to significantly reduce the computational burden and can also tackle poten-
tial discontinuities exhibited by the system. The time-dependent nonlinear
resonator, its robust design optimization with a dedicated approach, and the
comparison with a constant cubic nonlinear absorber constitute the main
novelties of this article.
Note that the use of variable sti↵ness can be found in several engineering
applications. In [47], the authors exploited variable-sti↵ness electromagnetic
actuators able to perform adaptive shape morphing and latching of a mul-
tiple degrees of freedom robotic finger. Other applications involve the pro-
gramming electro-acoustic resonators [48] to impose desired nonlinear sti↵-
nesses: Du�ng-type [49], non-polynomial [50], and time-dependent cubic
non-linearities (as done in this work) [32] to control acoustical mode(s).
The article is organized as follows: Section 2 presents the system as well as
analytical developments to characterize its various dynamics. The Section
also demonstrates the e↵ects of uncertainties on the system’s responses. Sec-
tion 3 describes the stochastic optimization problem along with the solution
techniques. In Section 4, the optimization approach is applied to NES with
a time-dependent cubic nonlinearity and compared to the case of optimized
constant nonlinearity. Results are discussed in Section 5. Finally, conclusions
and perspectives are provided in Section 6.

2. Two-degree of freedom system with time-varying nonlinearity

This section introduces the system used in this study. Its fast and slow dy-
namics are investigated through analytical developments. Metrics to quantify
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the behavior of the system for optimization purposes are also presented.

2.1. Presentation of system
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Figure 1: Academic representation of the studied system.

In this study, we are considering a two degree-of-freedom (dof) system con-
sisting of a primary linear system linearly coupled to a nonlinear absorber
(Fig. 1). It has been extensively studied in [32]. The main system has a
mass M , a damping c1, and a sti↵ness k1. The nonlinear system consists
of a mass m, a time-dependent nonlinear sti↵ness k2(t), and a damping c2.
The coupling sti↵ness is �. The displacements of the masses M and m are
denoted as u1 and u2, respectively. The main mass M is subjected to an
external force F (t) = F0 sin(⌦t). The governing equations of the system are
as follows:

8
>>><

>>>:

M
@2u1

@t2
+ k1u1 + c1

@u1

@t
+ �(u1 � u2) = F0 sin(⌦t)

m
@2u2

@t2
+ c2

@u2

@t
+ �(u2 � u1) + k2(t)u

3
2 = 0

(1)

We introduce a dimensionless time ⌧ =

r
k1
M

t = !1t and a mass ratio " such

as 0 < " = m
M ⌧ 1. With these new variables, Eq. (1) becomes:
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+ "�0(u2 � u1) + "k(⌧)u3

2 = 0

(2)
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with "⇠1 =
c1p
k1M

, "⇠2 =
c2p
k1M

, "�0 =
�

k1
, "k(⌧) =

k2(t)

k1
, "f =

F0

k1
, and

⌫ =
⌦

!1
. To study the system around the 1:1 resonance, we define ⌫ = 1+�"

where � is denoted as detuning parameter.

We assume that the time-dependent sti↵ness varies around a constant value
and can be represented by a Fourier series:

k(⌧) =
+1X

n=�1
Kne

in⌫⌧ (3)

where K�n = K⇤
n and (⇤) stands for the complex conjugate.

2.2. Analytical study to identify the various dynamics

The system can be analytically studied to predict its behavior with respect
to parameters, external excitation, and initial conditions. The method is
described in detail by Labetoulle et al. [32]. First, the complex variables of
Manevitch [51, 52], corresponding to the envelope of the system response,
are introduced:

'me
i⌫⌧ = u̇m + i⌫um (4)

where m = 1, 2 and (.) stands for the derivative with respect to ⌧ . The
complex variables can be expressed in polar coordinates as follows:

'm = Nme
i�m (5)

Then, a multiple scale method [53] is used and di↵erent time scales are in-
troduced: a fast time scale ⌧0 = ⌧ and slow time scales ⌧j = "j⌧ (j = 1, 2...).
Afterward, only the first harmonic is retained using the Galerkin method.
By denoting '̇ as the derivative of ' with respect to ⌧ , Eq. (2) becomes:
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1

2
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1

2i⌫
('1 � '2) =

"f

2i
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i

2
⌫'2) +

1

2
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1

2i⌫
('2 � '1)

+
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8⌫3

�
'3
2K�2 � 3K0|'2|2'2 + 3K2|'2|2'⇤

2 � '⇤3
2 K4

�
= 0

(6)
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So, after keeping the first harmonic of the restoring force k(⌧)u3
2, considering

K0 2 R and Kn = knr + ikni, only the terms corresponding to n = 2 and
n = 4 are retained in Eq. 3. The time-dependent sti↵ness reads:

k(⌧) = k0 + 2k2r cos(2⌫⌧)� 2k2i sin(2⌫⌧) + k4r cos(4⌫⌧)� k4i sin(4⌫⌧) (7)

The study of Eq. (6) at the order "0, which corresponds to the fast dynam-
ics, yields the equation of the Slow Invariant Manifold (SIM), noted as H ,
defined as:

@'2

@⌧0
� 1

2

✓
'2(2i+ ⇠2 � i�0) + i�0'1 �

i'2

4

⇣
'2
2K

⇤
2 � 3|'2|K0 + 3'⇤2

2 K2 � '⇤4

2 K4

⌘◆

| {z }
H

= 0

(8)

We are looking for an asymptotic state as ⌧0 tends to 1, leading to H = 0
and:

N1 =
N2

�0

p
A(N2, �2)2 +B(N2, �2)2 (9)

where A and B are detailed in Appendix A. We can notice that for a
more classical case with a constant nonlinearity (k(⌧) = k0), the SIM is
independent of the phase �2. The boundary of the unstable zone of the SIM
(Eq. (10)) can be detected by introducing a perturbation of '2 in Eq. (8),
leading to the following polynomial equation:

avN
4
2 + bvN

2
2 + cv = 0 (10)

where av, bv, and cv are detailed in Appendix B.

Equation (6) is examined at the order "1, representing the slow dynamic, to
detect equilibrium and singular points. The equation for equilibrium points
can be derived from the first equation of Eq. (6) at the order "1 by setting
E = 0, where E is defined as:

@'1

@⌧1
+

1

2
(2i�'1 + ⇠1'1 � i�0('1 � '2)� if)

| {z }
E

= 0 (11)
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Then, the equation of equilibrium points is:

p10N
10
2 + p8N

8
2 + p7N

7
2 + p6N

6
2 + p5N

5
2 + p4N

4
2 + p3N

3
2 + p2N

2
2 + p0 = 0 (12)

where pg (g = 0, ..., 10) are defined as a function of �, f , �0, ⇠1, ⇠2, k0, k2r,
k2i, k4r, k4i, �2, and detailed in Appendix F in [32]. According to [32], the
equation of the singular points is the same as the boundaries of the unstable
zone and depends on � (the detuning parameter), N1, N2, and �2 (for the
variable nonlinearity). In the case of a constant nonlinearity (k(⌧) = k0), the
equation of equilibrium points is simpler and is given by:

p6,cN
6
2 + p4,cN

4
2 + p2,cN

2
2 + p0,c = 0 (13)

with
8
>>>><

>>>>:

p6,c =
�
3
4k0

�2
[⇠21 + (2� � �0)2]

p4,c =
3
2k0 [(�1 + �0) [⇠21 + (2� � �0)2] + (2� � �0)�2

0 ]
p2,c = (�1 + �0)2 [⇠21 + (2� � �0)2] + 2(�1 + �0)(2� � �0)�2

0

+(⇠1⇠2 + �2
0)

2 + (2� � �0)2⇠22
p0,c = �f 2�2

0

(14)

Di↵erent dynamics of the forced system can be predicted by examining the
equilibrium points. Depending on the parameters, the external force, and the
initial conditions, the system can exhibit periodic or quasi-periodic regimes.
Figure 2 illustrates the equilibrium points for various cases. Specifically,
Figs. 2a, 2b, and 2c correspond to a system with a constant nonlinearity
(k(⌧) = k0) while Fig. 2d represents a system with variable sti↵ness. In
each figure, the gray solid, black dotted, and black solid lines represent the
equilibrium points of the 2 dof system, the single dof linear system, and the
unstable zone of the SIM, respectively.

In the following analysis, only the response of the main system will be con-
sidered. Thus, the focus will be on the equilibrium points as functions of N1

and �. For cases with constant nonlinearity, the equilibrium points exhibit
di↵erent behaviors. For example, for relatively small values of f and k0,
the equilibrium points present a single branch as shown in Fig. 2a. As k0
or f increases, an isolated branch appears in addition to the main branch,
corresponding to higher energy levels of the main system (Fig. 2b). The
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Parameter " ⇠1 ⇠2 �
Value 0.01 0.1 0.1 0.5

Table 1: Parameters of the 2 dof system

two branches eventually converge (Fig. 2c) as these parameters are further
increased. For the system with time-dependent nonlinearity, only one exam-
ple is given in Fig. 2d with two branches, but the system exhibits similar
behaviors to the system with constant nonlinearity. In this case, the graph
is more complex due to the dependence of the phase �2. The solid black line
representing the unstable zone of the SIM corresponds to a quasi-periodic
regime [54].

2.3. Examples of dynamic behaviors: discontinuities, periodicity, and quasi-
periodicity

To study the various dynamical behaviors of the system, numerical results
are provided for both constant and variable sti↵nesses. The results are also
compared to analytical predictions reported in Fig. 2. The simulations are
carried out with the parameters presented in Table 1 under initial conditions
set to zero for all variables, i.e. (u1(⌧ = 0), u2(⌧ = 0), u̇1(⌧ = 0), u̇1(⌧ = 0)) =
(0, 0, 0, 0). Equation (2) is numerically integrated using the Runge-Kutta
method, implemented with the MATLAB function “ode45”. The displace-
ments and velocities um(⌧) and u̇m(⌧) are used to compute the amplitudes
Nm =

p
u̇m(⌧)2 + (⌫um(⌧))2, m = 1, 2 (Eqs. (4) and (5)). Figure 3 depicts

the numerical results for the system with constant nonlinearity (k0 = 0.7,
f = 0.4), while Fig. 4 shows the numerical results for the system with vari-
able sti↵ness (k0 = 0.5, k2r = 0.1, k2i = k4r = k4i = 0, see Eq. 3, and
f = 0.3). The responses of the 2 dof system are represented by solid gray
lines and those of the single dof system by dotted black lines. Figures 3a and
3b illustrate the variations of N1(⌧) and N2(⌧) for � = �0.15 demonstrating
that the 2 dof system is in periodic regime and on the isola (Fig. 2b). Mean-
while, Fig. 3c represents the time response of N1(⌧) for � = �0.25 where
the 2 dof system is also in a periodic regime but on the main branch of the
equilibrium point, corresponding to a lower energy level (Fig. 2b). Figures
4a and 4b depict N1(⌧) and N2(⌧) for � = 0.88 while Fig. 4c corresponds to
N1(⌧) for � = 0.89. In Figs. 4a and 4b, the 2 dof system is in quasi-periodic
regime (� is in the unstable zone of the SIM see Fig. 2d), while in Fig. 4c, the

8



-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

(a)

-2 -1 0 1 2
0

1

2

3

4

(b)

-3 -2 -1 0 1 2 3
0

2

4

6

8

10

(c) (d)

Figure 2: Equilibrium points of 1 dof (without coupled nonlinear absorber) and 2 dof (with

coupled absorber) systems with respect to N1 versus the detuning parameter � for several

sets of parameters: a) f = 0.2, k0 = 0.4 (constant nonlinearity); b) f = 0.4, k0 = 0.7
(constant nonlinearity); c) f = 0.9, k0 = 0.8 (constant nonlinearity); d) f = 0.3, k0 = 0.5,
k2r = 0.1 (time-variable nonlinearity). The specific parameter values are detailed in Table

1.

9



system is on the main branch in a periodic regime. As a summary, the results
presented in Figs. 3 and 4 illustrate the possibility of existence of periodic
and quasi-periodic regimes. Furthermore, the system can be attracted by
an equilibrium point located on the main branch of the frequency response
curve, corresponding to lower energy amplitudes for the main mass, or by a
point located on the isola, representing higher energies of the main system.
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Figure 3: Main system amplitude (N1(⌧)) in the case of a 2 dof (solid gray curve) and

1 dof (dotted black curve) system and absorber amplitude (N2(⌧)) (solid gray curve),

for di↵erent values of the detuning parameter �. a) N1(⌧) for � = �0.15; b) N2(⌧) for

� = �0.15; c) N1(⌧) for � = �0.25 with k0 = 0.7, f = 0.4, and parameters detailed in

Table 1. The results are obtained from direct numerical integration of Eq. (2) for initial

conditions as: (u1(⌧ = 0), u2(⌧ = 0), u̇1(⌧ = 0), u̇1(⌧ = 0)) = (0, 0, 0, 0).

It is interesting to note that for specific parameter values, as predicted by the
equilibrium points, the amplitude of the response of the main system with
NES is higher than the one without NES (Fig. 4c). Additionally, the isola,
although corresponding to an important energy level, does not necessarily
end to a higher amplitude response than without the coupled NES (Fig. 3a).
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Figure 4: Main system amplitude (N1(⌧)) in the case of a 2 dof (solid gray curve) and

1 dof (dotted black curve) system and absorber amplitude (N2(⌧)) (solid gray curve),

for di↵erent values of the detuning parameter �. a) N1(⌧) for � = 0.88; b) N2(⌧) for

� = 0.88; c) N1(⌧) for � = 0.89 with k0 = 0.5, k2r = 0.1, f = 0.4, and parameters detailed

in Table 1. The results are obtained from direct numerical integration of Eq. (2) for initial

conditions as: (u1(⌧ = 0), u2(⌧ = 0), u̇1(⌧ = 0), u̇1(⌧ = 0)) = (0, 0, 0, 0).

11



These observations emphasize the complex interplay of system parameters
and their influence on the behavior of the system.
Moreover Fig. 3 reveals two very di↵erent response amplitudes for closely
spaced values of �. This indicates the presence of discontinuous behavior
with respect to system parameters such as � and the nonlinear sti↵ness. Such
discontinuity is also visible for a slight variation of the sti↵ness (k0) which
significantly a↵ects the amplitude of the response of the main system. This
is demonstrated in Fig. 5 where the black dotted curve corresponds to the
response of the single dof system for � = �0.2 and f = 0.4. Subsequently,
the gray solid and gray dashed curves represent the response of the main
system with NES for k0 = 0.65 and k0 = 0.7, respectively. It can be observed
that for the system with k0 = 0.7, the response is approximately equal to 1
in a stationary regime, as for the single dof system, while for the system with
k0 = 0.65, the response is approximately 0.3.

0 2000 4000 6000 8000
0

0.5

1

Figure 5: Time responses of N1(⌧) corresponding to the 2 dof and 1 dof systems for k0
values close to each other showing large di↵erences in amplitudes during the stationary

regimes. The values of k0 are: k0 = 0.65 (gray solid line), k0 = 0.7 (gray dashed line) and

without NES (black dotted line) (� = �0.2, f = 0.4, and parameters in Table 1). The

results are obtained from direct numerical integration of Eq. 2 for initial conditions as:

(u1(⌧ = 0), u2(⌧ = 0), u̇1(⌧ = 0), u̇1(⌧ = 0)) = (0, 0, 0, 0).

These discontinuities demonstrate that the NES is highly sensitive to uncer-
tainties, which play a crucial role in the dynamics and e�ciency of the NES
[44, 55]. The NES e�ciency is particularly sensitive to slight perturbations of
the design parameters and external excitation [56]. In many cases, the opti-
mization process to maximize vibration absorption might locate the optimal
solution on the boundary between high and low e�ciency regions, leading to
a design whose performance can vary drastically with small perturbations in
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the design parameters and/or external force [44].

In the next subsection, an e�ciency metric of the NES is presented along
with some deterministic optimization results.

2.4. E�ciency metric

Various approaches exist to characterize the e�ciency of NES. For instance,
previous works have investigated the NES optimization by computing the
energy dissipated by the NES coupled to a system subjected to an initial
velocity [44, 46]. In the present study, we consider a linear system subjected
to a forced excitation. The NES e�ciency is quantified by comparing the
responses of the system with and without the NES. Specifically, we chose the
root mean square (RMS) value of the time response of the velocity of the
main mass, u̇1(⌧) taking into account the response of the main system in both
transient regime and steady state, which is relevant for forced excitation. The
RMS response is obtained by numerical integration of Eq. 2. The metric is
defined as follows:

RMSv1 =
RMS2dof (u̇1(⌧))

RMS1dof (u̇1(⌧))
(15)

where RMS2dof (u̇1(⌧)) is the RMS of the velocity of the main mass M of the
2 dof system with NES, and RMS1dof (u̇1(⌧)) is the RMS of the linear main
system velocity without NES.
The integration time is a crucial parameter. It should be long enough to
allow systems to reach their stationary or quasi-periodic regimes. For the 2
dof system, it strongly depends on the parameter ": a smaller value demands
a longer integration time to reach to stationary regimes [57]. To obtain an
acceptable integration time and to facilitate the optimization, the mass ratio
is set to " = 0.01.
The discontinuities highlighted in the previous sub-section are also present
with this metric. Figures 6a, 6b, and 6c represent RMSv1 , RMS1dof , and
RMS2dof as functions of �, respectively, for � 2 [�3; 3], k0 = 0.7, k2r = 0.2,
f = 0.6, and parameters presented in Table 1. Two major discontinuities
are visible: the first one for � 2 [�0.3; 0.1] corresponds to the isola and the
second one for � 2 [0.1; 0.5] corresponds to the unstable branch of the SIM
and to a quasi-periodic regime.
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Figure 6: Root mean square (RMS) as a function of � 2 [�3; 3]. a) RMSv1 ; b) RMS1dof ;

c) RMS2dof . System parameters are: k0 = 0.7, k2r = 0.2, f = 0.6, and those reported in

Table 1. We note that discontinuities exist near resonance.
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2.5. Deterministic optimization

In this section, we present results for the deterministic optimization of the
NES sti↵ness without considering uncertainties. These results are given as a
reference for the stochastic optimization of the following sections.
For given characteristics of the external force such as the amplitude f and
the detuning parameter �, we search for the constant and variable nonlinear
sti↵ness parameters (k0 and k0, k2r, respectively) that minimize RMSv1 . A
Particle Swarm Optimization (PSO) method [58], which is a zero-order global
optimization approach, is used. PSO is insensitive to discontinuities and is
therefore suitable for this deterministic optimization. The bounds of the
design variable parameters are: k0 2 [0.1; 1], k2r 2 [0; 0.5] and those of the
aleatory variables are: � 2 [�2; 2], f 2 [0.3; 0.7].
Figure 7 depicts the deterministic optimization of the system with constant
nonlinearity (k = k0). More precisely, Fig. 7a corresponds to the optimal
sti↵ness (k0,opt) and Fig. 7b shows the objective function RMSv1 for k0,opt,
named RMSv1,opt, as functions of � and f . We observe that the optimization
at the resonance level (� = 0) is highly dependent on �.

(a) (b)

Figure 7: Deterministic optimization for the system with constant nonlinearity (k = k0).
a) Optimal k0; b) Optimal RMSv1 as function of � and f with the parameters of Table 1.

In the next section, the stochastic optimization problem and methods will
be presented.
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3. Stochastic Optimization Method

3.1. Optimization Problem Formulation

We would like to maximize the e�ciency of the NES for ranges of external
excitations considered as random parameters. The optimization problem is
formulated as follows:

Min
xd

EXa (RMSv1 (xd,xa))

s.t. xd
min  xd  xd

max
(16)

where E is the expected value, xd is the vector (deterministic) of design vari-
ables, xd

min and xd
max are the lower and upper bounds. Xa is the vector

of aleatory variables. The design variables considered in this study are the
sti↵ness parameters of the NES: k0, k2r, k2i, k4r, k4i (Eq. 3). The aleatory
variables are the amplitude f and the detuning parameter � linked to the
frequency of the external force.

In order to solve this optimization problem in a tractable way, special tech-
niques are used to reduce the computational cost and handle discontinuities.
Specifically, the algorithm splits the space into regions where individual Krig-
ing surrogates can be constructed. The region boundary is defined by a Sup-
port Vector Machine (SVM) classifier based on the results of a clustering
algorithm. Finally, an adaptive sampling scheme is used to iteratively refine
the Kriging surrogates and the region boundary. The following subsections
describe the main components of the stochastic optimization approach and
the corresponding algorithm.

3.2. Clustering

As shown in Sect. 2.3, the response of the 2 dof system exhibits discontinu-
ities and strong gradients, due to the presence of isolas and unstable zones.
Several clusters are visible in Fig. 6, demonstrating the complex dynamics
of the system. Figure 6a reveals several discontinuities: the upper branch for
� 2 [�0.5; 0] corresponds to the isola, and the lower one around � = 0.3 is due
to the quasi-periodic regime. The complexity of the problem increases with
the dimensionality (i.e., the number of variables and parameters). In this
paper, we choose to divide the dynamic responses into two classes, loosely
corresponding to two levels of e�ciency. These clusters can be identified in
an unsupervised manner using techniques such as K-means [59].
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3.3. Support Vector Machine (SVM) boundary

Following the unsupervised clustering into two classes, a SVM classifier [60–
62] is used to identify the boundary of the regions in the design and aleatory
variables space by handling discontinuities. SVM provides an explicit expres-
sion of the boundary in terms of the parameters. Given a set of N training
samples xi in a d-dimensional space and the corresponding class label yi, the
SVM boundary is written as:

s(x) = b+
NX

i=1

�iyiK(xi,x) = 0 (17)

where b is a scalar called the bias, �i are Lagrange multipliers obtained from
the quadratic programming optimization problem used to construct the SVM
boundary, and K is a kernel function. The classification of any arbitrary
point x is given by the sign of s(x). The training samples for which the
Lagrange multipliers are non-zero, are called support vectors. The chosen
kernel function K in Eq. (17) is the Gaussian kernel defined as:

K(xi,xj) = exp

✓
� ||xi � xj||2

2�⇤2

◆
(18)

where �⇤ is the width parameter. The SVM boundary covers the entire space
and will be refined during the optimization process (see Sect. 3.5).

3.4. Computation of objective function

Numerical integrations using the Runge-Kutta method can be computation-
ally expensive. Due to the large number of simulations required for opti-
mization and calculation of the expected value, it is not possible to call the
ODE solvers directly. Therefore, a Kriging surrogate (also referred to as
Gaussian Process) can be employed to obtain an approximation of RMSv1

for various combinations of the design and aleatory variables [46]. These
combinations are obtained through a design of experiments (DOE) such as
Latin Hypercube Sampling (LHS).
Based on the clustering and SVM results, two Kriging surrogates are con-
structed over the two regions. These surrogates correspond to two levels of
e�ciency. An example with two variables (k0 and �) is presented in Fig.
8. In detail, Fig. 8a depicts an example with two clusters and an SVM
boundary. The black crosses represent the cluster with a high response am-
plitude, while the gray dots represent the cluster with a lower amplitude.
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The black line represents the SVM boundary separating the two clusters.
Two corresponding Kriging surrogates are shown in Fig. 8b.

(a) (b)

Figure 8: a) Separation of the responses into two clusters and SVM boundary of the two

regions; b) Krigings corresponding to the two clusters.

The computation of the expected value is based on Monte Carlo simulations,
such as:

EXa (RMSv1 (xd,xa)) ⇡
1

Nlhs

NlhsX

i=1

Is(xi) (19)

with

Is(xi) =

(
R̂MSv1,1(xi) if s(xi) < 0

R̂MSv1,2(xi) if s(xi) � 0
(20)

where xi are the Monte Carlo samples following the distributions of Xa.
^RMSv1,1 and R̂MSv1,2 are the kriging surrogates based on the two clusters:

high and low e�ciency samples. s(x) is the SVM approximation. The sign of
s(x) determines the classes of the samples. s(x) < 0 means that the sample
x belongs to the lower e�ciency cluster and the corresponding Kriging and
vice versa.

3.5. Stochastic Optimization Algorithm

The optimization process begins with an initial DOE. At this stage, the
Kriging approximations and the SVM boundary are generally imprecise due
to the limited number of samples. They are refined iteratively using an
adaptive sampling scheme. Two adaptive samples are added per iteration.
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First, we search for the optimal sti↵ness parameters (Eq. (21)). Then, for
this sti↵ness, the component in the aleatory space for which kriging is least
accurate are identified (Eq. (22)). This sample is added to refine the Kriging.
Finally, the second sample is a variation of the generalized max-min sampling
scheme [63] and is dedicated to the refinement of the SVM boundary (Eq.
(23)) [64]. The entire optimization algorithm can be summarized as follows:

(a) Construct the Design of experiments (DOE) in the ({xd,Xa}) space.
Compute RMSv1 for each sample.

(b) Divide samples into two groups using unsupervised clustering based on
the RMSv1 values.

(c) Construct an SVM trained from the class labels from the two clusters.
The SVM is the boundary between two regions associated with distinct
system RMS responses.

(d) Construct a Kriging approximation over the two regions identified by
clustering and SVM.

(e) Solve an approximation of the optimization problem at the nth itera-
tion. The solution is performed using a global optimizer such as Particle
Swarm Optimization (PSO) which is e�ciently run using the Kriging
surrogates.

xd
(n) = arg min

xd

EXa

⇣
R̂MSv1 (xd,xa)

⌘

s.t. xd
min  xd  xd

max
(21)

(f) Find the aleatory component xa
(n) that maximizes the Kriging variance

for xd
(n) with PSO. Add RMSv1(xd

(n),Xa
(n)) to the samples.

xa
(n) = arg max

xa

fxa(xa)
1

Na �̂2(xa)

s.t. xa
min  xa  xa

max
(22)

with fxa the joint density function of xa at xd
(n); Na the number of

random parameters; �̂2 the variance of the Kriging; xa
min and xa

max

the limits of random parameters.
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(g) Refine the SVM boundary using a max-min sampling:

xmm = arg max
x

min
i

||x� x
(i)||

s.t. s(x) = 0
x
min  x  x

max

(23)

where x
(i) represents the ith existing samples used to train the SVM s

(Eq. 17).

(h) Update the SVM and the Krigings. Repeat steps (e) to (g) until

EXa

⇣
R̂MSv1

⌘
and xd

(n) converge.

Figure 9 presents a flowchart of the algorithm for better readability.
In the following Section, some results for a constant and time-varying non-
linearity are provided.

4. Results

The optimal design of a NES with time-dependent nonlinearity is investi-
gated. For comparison, the NES optimization with constant sti↵ness is also
carried out.

4.1. Optimization problem

For the system with a constant nonlinearity, the optimization problem is for-
mulated as:

Min
k0

E⌃,F (RMSv1 (k0, �, f))

s.t. 0.1  k0  1.1
(24)

⌃ ⇠ Nt(0, 0.33)
F ⇠ Nt(0.55, 0.075)

(25)

In this paper, only k0 and k2r are considered for the time-dependent nonlin-
earity, and the other sti↵ness parameters (k2i, k4r, and k4i, Eq. 3) are equal
to zero. Moreover, the variable sti↵ness should remain positive so the upper

bound of k2r depends on k0, and we also impose k2r  k0
2
. The problem is

formulated as it follows:
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Construct a DOE in the ({xd,Xa}) space.
Compute the corresponding

response (RMSv1) (Eq. (15))

Identify two clusters

based on the RMSv1 metric.

Identify two regions in the ({xd,Xa}) space
using an SVM boundary (Eq. (17))

Construct a Kriging surrogate over each region n = 1

Solve for the design variables xd
(n)

based on the

approximated optimization problem (Eq. (21))

Find the aleatory component xa
(n)

using the predictive variance of the Kriging

at xd
(n)

(Eq. (22))

Add xd
(n)

, xa
(n)

and RMSv1(xd
(n),xa

(n)
)

to the training samples

Refine the SVM boundary using

a max-min sample (xmm) (Eq. (23)

Add xmm and RMSv1(xmm)

to the training samples

Update the SVM and the Krigings

n = n+ 1

Figure 9: Flowchart of the optimization algorithm.
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Min
k0,k2r

E⌃,F (RMSv1 (k0, k2r, �, f))

s.t. 0.1  k0  1.1
0  k2r  k0/2

(26)

⌃ ⇠ Nt(0, 0.33)
F ⇠ Nt(0.55, 0.075)

(27)

where � 2 [�3; 3] and f 2 [0.1; 1] for both cases. The ranges of design and
aleatory parameters have been chosen to have the di↵erent dynamics of the
2 dof system and to be centered on the resonance of the main linear system.
For convenience, E⌃,F is written as E.

4.2. Results of optimization of the system with constant nonlinearity

For the system with a constant nonlinear sti↵ness, the optimization is per-
formed with a DOE of 30 samples at the beginning and the computation of

E
⇣
R̂MSv1

⇣
k(n)
0

⌘⌘
and E (RMSv1 (k0,opt)) with 4000 and 2000 Monte-Carlo

simulations, respectively, where k(n)
0 is the optimal k0 at the iteration n and

k0,opt is the optimal k0 found at the last iteration. Figure 10a corresponds to

the evolution of k(n)
0 with respect to the iterations while Fig. 10b represents

the evolution of E
⇣
R̂MSv1

⇣
k(n)
0

⌘⌘
with respect to the iterations (gray curve

with diamonds) with its confidence interval (gray area) and E (RMSv1(k0,opt))
for the last iteration (gray dot with black border) with its confidence inter-
val (black solid line). The optimization is considered correct when the two

curves (k(n)
0 and E

⇣
R̂MSv1

⇣
k(n)
0

⌘⌘
) converge and when E

⇣
R̂MSv1

⇣
k(n)
0

⌘⌘

is close to E
⇣
RMSv1

⇣
k(n)
0

⌘⌘
. Thus, after 40 iterations, we can say that the

optimal result is reached. The results of the optimization are presented in
Table 2.
In order to understand the behavior at the optimum, the analytically deter-
mined equilibrium points for the optimal design are plotted in Fig. 11. In
detail, Fig. 11a represents the equilibrium points for four di↵erent ampli-
tudes of the external force (f = 0.2, f = 0.4, f = 0.6, f = 0.8). In Fig. 11b
the equilibrium point for f = 0.6 are isolated for a better readability. Thus,
for k = k0,opt = 0.271, the equilibrium points of 2 dof system present di↵erent
types of behavior (periodic and quasi-periodic) and an isola is observed for
large force amplitudes.
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Figure 10: Optimization results for the constant case. a) Optimal sti↵ness at each iteration

k(n)0 ; b) E
⇣
R̂MSv1

⇣
k(n)0

⌘⌘
as a function of iterations. The parameters are detailed in

Table 1. The plot indicates convergence after 40 iterations.
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k0,opt E
⇣
R̂MSv1

⌘
E (RMSv1)

0.271 0.449 0.463
CI 95% [0.442; 0.455] [0.450; 0.475]

relative error 3.04%

absolute error 0.014

Table 2: Results for the constant nonlinearity and the parameters shown in Table 1 after

40 iterations.

(a) (b)

Figure 11: a) Equilibrium points for k = k0 = 0.271 (optimal sti↵ness), f =

0.2, 0.4, 0.6, 0.8; b) Equilibrium points for k = k0 = 0.271, f = 0.6, and the parame-

ters in Table 1.
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k0,opt k2r,opt E
⇣
R̂MSv1

⌘
E (RMSv1)

1.041 0.435 0.291 0.298
CI 95% [0.424; 0.440] [0.450; 0.466]

relative error 2.37%

absolute error 0.007

Table 3: Results of the optimization of the time-varying nonlinearity. System parameters

are reported in Table 1.

Nevertheless, Figure 11 shows that for the constant sti↵ness, the ampli-
tude of the equilibrium points of the 2 dof system (gray solid line) remains
smaller than that the one of the single dof (black dotted line) under di↵erent
amplitude of external excitation, i.e. f , which explains the small value of

E(R̂MSv1).

4.3. Results of optimization of the system with time-dependent nonlinearity

To optimize of the time-dependent sti↵ness, a DOE is initially composed of 40

samples, and the calculation of E
⇣
R̂MSv1

⇣
k(n)
0 , k(n)

2r

⌘⌘
and E (RMSv1 (k0,opt, k2r,opt))

are performed with 4000 and 2000 Monte Carlo simulations, respectively,
where k(n)

0 and k(n)
2r are the optimal parameters of iteration n and k0,opt and

k2r,opt are the optimal parameters after the last iteration. The results of the
optimization of the time-varying nonlinearity are shown in Fig. 12. In detail,
Fig. 12a illustrates k(n)

0 (black curve with crosses) and k(n)
2r (gray curve with

squares) as functions of iterations. In Fig. 12b, E
⇣
R̂MSv1

⇣
k(n)
0 , k(n)

2r

⌘⌘
is

plotted as a function of iterations with the confidence interval (gray area)
and E (RMSv1 (k0,opt, k2r,opt)) is represented by a gray dot with black border
with its confidence interval in black. In Fig. 12a the curves representing
k(n)
0 and k(n)

2r as functions of iterations quickly converge, while in Fig. 12b,

E
⇣
R̂MSv1

⇣
k(n)
0 , k(n)

2r

⌘⌘
converges after 35 iterations. This di↵erence can be

explained by the many variables and dimensions that require more samples
for accurate Kriging. However, at iteration 35, we notice that the Krig-

ings are well precise, indeed E
⇣
RMSv1

⇣
k(n)
0 , k(n)

2r

⌘⌘
is within the confidence

interval of E
⇣
R̂MSv1

⇣
k(n)
0 , k(n)

2r

⌘⌘
. Table 3 summarizes the results of the

time-varying sti↵ness optimization.
Equilibrium points for the optimal varying sti↵ness are plotted in Fig. 13
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Figure 12: Optimization results for the system with time-dependent nonlinearity: a) Op-

timal sti↵ness at each iteration k(n)0 (black line with crosses) and k(n)2r (gray line with

squares); b) E
⇣
R̂MSv1

⇣
k(n)0 , k(n)2r

⌘⌘
as a function of iterations for a time-varying nonlin-

earity and the parameters provided in Table 1. The results show a convergence after 35

iterations.
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for several amplitudes of external excitation: f = 0.2, f = 0.4, f = 0.6, and
f = 0.8.

(a) (b)

Figure 13: a) Equilibrium points for k0 = 1.041, k2r = 0.435 (optimal sti↵ness), f =

0.2, 0.4, 0.6, 0.8; b) Equilibrium points for k0 = 1.041, k2r = 0.435 f = 0.6. System

parameters are reported in Table 1.

It should be mentioned that the equilibrium points of the system with time-
dependent nonlinearity depicted in Fig. 13, are also phase-dependent (�2).
That is why these figures present some areas due to the e↵ect of the phase in
another dimension [32]. As for the system with a constant nonlinearity, the
equilibrium points illustrate the absorption capabilities of the system with
the NES compared to the linear system. We can see that the equilibrium
points of the 2 dof system are below those of the single dof system indicating
the ability of the optimized NES to control the main system.

4.4. Comparison between results of optimized designs of constant and time-
dependent nonlinearities

The comparison of the results presented in Tables 2 and 3 reveals that
E (RMSv1) at the optimum is lower for the system with time-dependent cubic
nonlinearity than for the one with constant nonlinearity and is summarized
in Table 4. This observation suggests that, under the chosen conditions, for
the same mean excitation centered on the resonant frequency of the main
system alone, the NES with a variable sti↵ness is more e�cient, resulting in
a reduction of 36% of the response of the main system.
The improved mitigation observed in the system with time-varying sti↵ness
can be attributed to the parametric nature of the system. The variable sti↵-
ness introduces a frequency component that is twice the external frequency,
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Sti↵ness E (RMSv1)
Constant case 0.463
Variable case 0.298

Table 4: Comparison of optimization results with constant and variable nonlinearities.

with a phase shift of �⇡
2 . This particular relationship leads to a significant

response from the absorber, resulting in enhanced attenuation of the main
system response [53, 65, 66]. Thus, the system acts as auto-parametric ab-
sorbers [67–69] including e↵ects and interactions of higher harmonics than
the main ones in the system (e.g. the second and fourth, Eq. 3).

5. Discussion

The presented optimization approach and methodology provide valuable in-
formation on mitigation of nonlinear systems using variable sti↵ness. How-
ever, the following aspects will require further investigation.

5.1. Clustering approach
Figure 6a illustrates multiple clusters corresponding to the main branch of
the frequency response curve (equilibrium points), the unstable zone and the
isola. Dividing the samples into two clusters is clear for an unforced system
under di↵erent initial conditions. In this case, the clusters correspond to the
activation of the NES [46]. However, for a forced system, the dynamics are
more complex, and there exist discontinuities justifying the use of clusters.
However, two clusters might not be su�cient. This work would require an
optimal clustering strategy, which is beyond the scope of this article. A num-
ber of clusters corresponding to di↵erent response behaviors and amplitudes
can lead to a more accurate approximation and take discontinuities better
into account.

5.2. Sensitivity to initial conditions
In this article, the forced system under zero initial conditions is considered.
Even though the 2 dof system reaches an isola with these conditions and
thus exhibits the three di↵erent dynamics, non-zero initial conditions would
allow it to reach an isola for more parameters. Additionally, considering the
non-zero initial conditions could capture transient regimes during which the
2 dof system may have a rapid nonlinear decrease, while the single dof system
presents linear mitigation.
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5.3. Practical implementation

The 2 dof system could be used to model an acoustic mode of a tube coupled
to a programmable electro-acoustic resonator [49, 50]. The actual dynamics
of the membrane is more complex than the NES as presented in this article
and could be modeled using, for instance, finite elements. However, the
proposed optimization method for robust design would still be applicable.

6. Conclusion

The stochastic optimization of a NES with a time-varying nonlinear sti↵ness
has been investigated. This system also corresponds to a practical application
consisting of an acoustical mode of a tube coupled to a programmable electro-
acoustic resonator.
The optimization problem is formulated so as to minimize the expected value
of the ratio of RMS responses of the system with and without NES. The
expected value is computed over a range of excitation amplitudes and fre-
quencies. Because the system’s response is highly sensitive to uncertainties
and in fact exhibits discontinuities, a dedicated surrogate-based optimization
approach was used. The optimization relies on the identification of clusters
and the construction of several Kriging surrogates. Analytical developments
were used to demonstrate the presence of discontinuities. The method is
applicable to the robust optimization of any system including complex ones.
The performance of the NES with time-varying nonlinear sti↵ness was com-
pared to the case with constant sti↵ness. The initial results demonstrate that
the proposed design leads to a better response attenuation than the constant
sti↵ness case.
The optimization of time-varying sti↵ness designs will be further investigated
to include additional sources of uncertainty, such as initial conditions, and
design variables. Moreover, optimal clustering strategy should be considered
for having more detailed insights about optimized designs.
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Appendix A. Details of parameters of the SIM

A = (�1 + �0)�
N2

2

4
(4k2r cos(2�2) + 4k2i sin(2�2)� 3k0 � k4r cos(4�2)

�k4i sin(4�2)) (A.1)

B = ⇠2 �
N2

2

4
(�2k2r sin(2�2) + 2k2i cos(2�2) + k4r sin(4�2)� k4i cos(4�2))

(A.2)

Appendix B. Details of boundary of the unstable zone of the SIM

av =
9

64
(3k2

0 � 2k2
2i � 2k2

2r � k2
4i � k2

4r + 4(�k0k2r + k2ik4i + k2rk4r) cos(2�2)

� 2(k2
2i � k2

2r + k0k4r) cos(4�2)� 4(�k2rk4Ii + k2i(k0 + k4r)) sin(2�2)

+ 2(2k2ik2r � k0k4i) sin(4�2)) (B.1)

bv =
3

4
(�1 + �0) (k0 � k2r cos(2�2)� k2i sin(2�2)) (B.2)

cv =
1

4
((�1 + �0)

2 + ⇠22) (B.3)
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