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UNIFORMIZATION OF VARIETIES WITH LOG-CANONICAL

SINGULARITIES

BENOÎT CADOREL

Abstract. We study the problem of uniformizing quasi-projective varieties with log-
canonical compactifications. More precisely, given a complex projective variety X
with log-canonical singularities, we give criteria for X to be isomorphic to a Baily-
Borel-Mok compactification of a ball quotient, asking on the one hand the equality
case in a suitable Miyaoka-Yau (MY) inequality, and on the other hand some adequate
assumptions on the singularities. We also give as a result of independent interest that
log-resolutions of log-canonical singularities have their fibers connected by chains of
special varieties in the sense of Campana; this is used in the proof to control the
behaviour of the period map near the exceptional divisors of such resolutions.

We also show that it is necessary to assume that the singularities are at least log-
canonical: some examples of Deligne-Mostow-Deraux can be manipulated to provide
examples of singular varieties satisfying the equality case in MY, while not being
isomorphic to such Baily-Borel-Mok compactifications.

1. Introduction

Let X = Bn/Γ be a quotient of the complex unit ball by a lattice i.e. a discrete sub-
group Γ ⊂ Aut(Bn) with finite Bergman covolume. In the case where X is non-compact,
the work of Baily-Borel [BB66] and Mok [Mok12] implies that X is a quasi-projective
variety, admitting a normal compactification with boundary made of a finite number of
points: X∗ =X⊔{p1, . . . , pm}. This compactification has log-canonical singularities and
ample canonical bundle KX∗ . Possibly after replacing Γ by a finite index subgroup, we
may assume that X ⊂ X∗ is smooth, and that all boundary singularities pi are locally
analytically isomorphic to a cone over an abelian variety. In this situation, there exists
a log-resolution X̂ →X where every boundary divisor has discrepancy −1.

The goal of these notes is to investigate under which conditions a given projective
variety can be obtained as such a Baily-Borel-Mok compactification. In dimension
2, the situation is quite well-understood thanks to the work of Kobayashi [Kob85] –
these results can be used to give a criterion for a singular surface to be a ball-quotient
compactification, in terms of equality in some Miyaoka-Yau inequality (see Section 3.1).
It is natural to ask how to extend this type of statements to higher dimensional singular
varieties – assuming for example that the singularities are punctual. As far as the
Miyaoka-Yau inequality is concerned, it is actually possible to obtain such a statement
when X∗ has log-canonical singularities and is smooth in codimension 2, as follows:

Theorem 0 (= Theorem 5). Let X∗ be a variety of dimension n ≥ 3, with log-canonical
singularities and smooth in codimension 2. We assume that KX∗ is an ample Q-Cartier
divisor. Then X∗ satisfies a Miyaoka-Yau inequality:

(2(n + 1) c2(TX) − nc2
1(TX)) ⋅Kn−2

X∗ ≥ 0. (1)
1
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where X ⊂ X∗ is the smooth locus (see Section 3 for more details). In equality case,

there exists a map ϕ ∶ X̃ → Bn that is étale everywhere.

Proving the kind of statement above has now become quite classical and can be
done for example using the ideas of Greb-Kebekus-Peternell-Taji [GKPT19a, GKPT19a,
GKPT20]. The inequality can be obtained by first showing the stability of an adequate
Higgs bundle in restriction to a complete intersection surface sitting inside X, the latter
stability boiling down to a Metha-Ramanathan type statement.

The natural question is now to know whether this map ϕ is always a biholomorphism:
that would ensure that X∗ is indeed the Baily-Borel-Mok compactification of a ball
quotient. The hypothesis on the singularities seems important: it is indeed possible
to contract divisors in some examples of Deligne-Mostow [DM86, DM93] and Deraux
[Der05] to get counter-examples.

Theorem 1. (cf. Theorem 6 + Section 4.1) There exist examples of varieties X∗

with punctual, non log-canonical singularities and ample cotangent bundle, that satisfy
equality in (1), and that admit a non-isomorphic étale period map ϕ ∶ X̃ → Bn. The
smooth part X cannot be given the structure of a ball quotient.

In these examples, there exist a resolution of singularities X → X with exceptional
divisor D =D1 ⊔ . . . ⊔Dm, such that each Di is a smooth ball quotient: the diagram

X̃ Bn

X

ϕ

(2)

has a limit near each Di, inducing a totally geodesic embedding D̃i ↪ Bn whose image is
a ball embedded as a hyperplane section in Bn. The fact that the Di are ball quotients
implies in particular that these singularities of the X∗ are not log-canonical.

We believe that a suitable hypothesis on the singularities of X∗, jointly with the
equality case in (1) should be enough for X∗ to be a Baily-Borel-Mok compactification
– we don’t actually know if it is enough to assume that the singularities of X∗ are log-
canonical. We managed nonetheless to obtain partial results with stronger assumptions.
This is maybe the main result of this work:

Theorem 2. (=Theorem 11) Let X∗ be a projective variety with punctual, log-canonical
singularities and ample canonical divisor. Assume that:

(a) there exists a log-resolution of X∗ where every exceptional divisor has discrepancy
equal to −1;

(b) there is equality in (1).

Then the smooth part X ⊂ X∗ is a ball quotient, and X∗ is its Baily-Borel-Mok com-
pactification.

The proof of the theorem consist in studying the asymptotic behavior of the diagram
(2) near the singularities. Again, let X → X∗ be a resolution of singularities, with
exceptional divisor D. After some computations, essentially based on Schmid’s nilpotent
orbit theorem [Sch73] (or their recent version for C-VHS due to Sabbah-Schnell [SS22],

see also Deng [Den23]), one can induce limiting maps ϕT ∶ T̃ Ð→ Bn, where T ⊂ D is
any smooth stratum of D. To conclude, we want to show that any such map lands, not
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in Bn, but in its boundary ∂Bn. A topological argument permits to reduce the problem
to showing that if ϕT takes its image in Bn, then it is actually constant. But now,
remark that ϕT is the period map of a polarized C-VHS. To show that it is constant,
one can try to apply the results of [CDY23], that have as a corollary that a polarized
C-VHS on any quasi-projective manifold that is special in the sense of Campana, has
constant period map (see Theorem 10): this statement should be compared to a similar
isotriviality theorem for families of canonically polarized manifolds, due to Taji [Taj16].

The last piece of the proof then comes from the following theorem, which we believe
is interesting in its own right.

Theorem 3. (= Theorem 7 + Corollary 5.3) Let X be a complex analytic space with
log-canonical singularities. Let π ∶ X → X be a log-resolution of singularities. Then the
fibers of π are connected by chains of special varieties.

In addition, if for some x ∈ X, the sets π−1(x) and π−1(x) ∪ π−1(Sing(X)) are both
divisors with normal crossings, and if all discrepancies are equal to −1, then the smooth
locally closed strata of π−1(x) are themselves special quasi-projective varieties.

The previous result can be seen as generalization to a log-canonical setting of the
work of Hacon-McKernan [HM07], who proved that log-resolutions of klt singularities
have rationally chain connected fibers. The proof follows the same circle of ideas, and is
ultimately based on an application of Campana’s result around the subadditivity of the
orbifold Kodaira dimension – this is used to show that the core fibration of the strata
above must be trivial.

1.1. Comparison with earlier work. The problem of uniformization in the open or
singular case has been a long standing one, and many authors have contributed to that
question.

(1) Deng [Den22] gave a criterion for uniformization in terms of the polystability of
some natural logarithmic Higgs bundle on the open part of a log-pair (X,D).
To compare his hypotheses with ours, let us resume the assumptions of our

Theorem 0, and let X
πÐ→X be a log-resolution with boundary divisor D.

Then, one finds that KX + D = π∗KX is a nef and big divisor on X. In
this situation, one can use the work of Guenancia [Gue16] joint to a classical
computation (see [GKPT19a, Corollary 7.2] and the proof of Theorem 5), to
show that the standard Higgs bundle (ΩX(logD)⊕OX , θ) considered by Deng
is stable with respect to KX +D, for an ample Q-line bundle L sufficiently close
to KX +D.

We are thus allowed to apply [Den22, Theorem 4.7], which yields a Miyaoka-
Yau inequality with respect to L – we may then reobtain (1) by letting L tend
to KX +D. If we want to have the uniformization statement, Deng requires an
equality in the Miyaoka-Yau inequality associated to L:

(2(n + 1)c2(TX(− logD)) − nc1(TX(− logD))) ⋅Ln−2 = 0.

which is maybe less intrinsic than the equality case in (1). Also, the description
of [Den22, Theorem 4.7] does not allow to prove that the situation where D is
not smooth cannot occur – in the setting of Theorem 11, we do not need to
require anything on the regularity of D, and we are actually able to eventually
exclude the case where D is not smooth. Of course, in our setting the line bundle
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KX +D = π∗KX∗ is semi-ample and not merely nef and big, so our hypotheses
are not strictly weaker than the ones of [Den22].

(2) In [Yau93], Yau claims that for any log pair (X,D) with KX +D nef, big and
ample modulo D, with equality in the logarithmic Miyaoka-Yau inequality, the
open part X = X −D is a ball quotient. This would give almost immediately
Theorem 11 (even without the assumption that the singularities are punctual).
Unfortunately, we were not quite able to follow his arguments : Yau claims that
we can apply the Schwarz lemma of [Yau78] to deduce the completeness of the
natural Kähler-Einstein metric, but this lemma seems to already require the
completeness of the said metric.

(3) As we mentioned before, we don’t know if having purely log-canonical singular-
ities is enough to obtain a uniformization theorem; the methods of the present
work are in any case not quite sufficient to deal with the case where discrepancies
aE > −1 are allowed to occur. The work of [GKPT19a, GKPT19b] – and the
recent generalization to the case of orbifold pairs by Claudon-Graf-Guenancia
[CGG23] – focuses on the klt case, where all discrepancies are > −1. One could
certainly mix the methods of their work and the current article to deal with some
intermediate situations (e.g. uniformizing a variety X∗ with klt locus disjoint
from a finite union of singular points admitting a resolution with −1 as only
discrepancy). Since to us the most interesting case should be the one where
we have some discrepancy > −1 above one of the only singular points, we have
preferred to stick to the pure situation to avoid any artificiality in our discussion.

1.2. Organization of the article.

(1) Section 2: We have gathered here several preliminary lemmas and notation for
the rest of the article.

(2) Section 3: After a brief discussion of the two-dimensional case, we give a proof
of Theorem 0. The method follows closely some ideas present in the work of
Greb-Kebekus-Peternell-Taji and Mochizuki.

(3) Section 4: We first prove a criterion for contracting totally geodesic divisors in
manifolds admitting a correspondence with the ball, so as to obtain a singular
variety satisfying the outcome of Theorem 1 (see Theorem 6). We then apply
this criterion to several examples of Deligne-Mostow and Deraux in Section 4.1.

(4) Section 5: We recall a few facts on Campana’s notion of special varieties, and
then prove Theorem 3.

(5) Section 6: We give some details on the proof of the isotriviality of p-CVHS on
special quasi-projective manifolds, that can be seen as a corollary of the main
results of [CDY23]. Most of the material of this section might be well-known to
experts, but we have chosen to include it for lack of a self-contained reference.

(6) Section 7: Given a manifold with an open subset admitting a period map, we
perform the local and global computations that allow to define a limiting period
map on the strata of the complementary divisor.

(7) Section 8: Finally, under the hypotheses of Theorem 11, we prove that the period
map is indeed uniformizing.

(8) Section 9: we have put here two criteria for a étale map to be a universal covering.
The first one plays an important role at the end of the proof of Theorem 11.
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2. Notation and preliminary remarks

2.1. Linear algebraic groups. If K is a field, we will use the notation GK ,HK , LK ...
to denote linear algebraic groups defined overK (which for us, will simply be an algebraic

subvariety of some GLn,K ≅ An2

K ∖ {det = 0}, invariant under the group structure). If
K ⊂K ′ is any field extension, we let GK′ ∶= GK ⊗K K ′ the group deduced by extension
of scalars. The K ′-rational points of GK′ will be denoted by G(K ′).

As usual, we will use the notation U(m),U(p, q),PU(p, q) to denote the real algebraic
groups of isometries (or projective isometries) with respect to a hermitian form of the
type

m

∑
j=1

∣zj ∣2 or
p

∑
j=1

∣zj ∣2 −
q

∑
j=1

∣zp+j ∣2.

2.2. Unitary similarities. We let Sim(Cm) = Cm ⋊ U(m) be the group of unitary
similarities of Cm: it is the direct product of the group of unitary transformations by
the group of translations.

Lemma 2.1. Let A ∈ Sim(Cm). Then there is a unique orthogonal decomposition

Cm = V
⊥
⊕ V ⊥ such that A acts as a non-zero translation on V ⊥, and on V as a unitary

rotation R ∈ Sim(V ) around some center ω ∈ V . The center is unique if and only if the
vectorial part R0 ∈ U(m) of R does not have 1 as eigenvalue.

We will say that A is a pure rotation if V ⊥ = 0; this is equivalent to saying that A has
a fixed point.

Proof. Write A under the form A ⋅ z = A0z +B, with A0 ∈ U(m) and B ∈ Cm. First take
W as the orthogonal complement of W ⊥ = ker(A0 − I), and let B = BW +BW ⊥ be the
corresponding orthogonal decomposition of B. Let ω ∶= (I −A0)∣−1

W (BW ) ∈W . Then, if
z ∈ Cm and writing the orthogonal decomposition z = zW + zW ⊥ , one has

A ⋅ z = (A0zW +BW ) + (A0zW ⊥ +BW ⊥)
= (A0(zW − ω) + ω) + (zW ⊥ +BW ⊥) .

Thus, A acts on W as a pure rotation R of center ω and vectorial part A0∣W , and on
W ⊥ as a translation of vector BW ⊥ . If this is vector is zero , take V = Cm. If not, take
V =W . The uniqueness statement comes from the fact that the difference between two
centers yields a 1-eigenvector for A0∣W . �

The following basic lemma will be quite useful to write a set of pure rotations in a
normal form.
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Lemma 2.2. Two pure rotations A,B ∈ Sim(Cn) commute if and only if they have a
common fixed point and their images in U(m) can be simultaneously diagonalized.

Proof. The statement is well-known if A,B ∈ U(m), and thus it suffices to prove that if
A,B commute, then they have a common fixed point. Assume that the origin is centered
at a fixed point of A so that A ∈ U(m), and Bz = B0z + b, where B0 ∈ U(m), b ∈ Cm.
Note that saying B is a pure rotation is equivalent to saying that b is orthogonal to the
1-eigenspace F of B0.

Now, since A,B commute, B leaves invariant the 1-eigenspace E of A. The conclusion
will come from the fact that B∣E is a pure rotation, so B has a fixed point in E. To prove
this fact, remark that since 0 ∈ E, then b = B ⋅0 ∈ E; this allows to write B∣E = B0∣E +Tb,
where Tb is the translation by b. Finally, since b is orthogonal to E∩F , the 1-eigenspace
of B0∣E , one deduces that B∣E is a pure rotation. �

2.3. General remarks on the complex unit ball. For more details on the material
presented here, we refer to [Mok12] and the appendix of [Den22].

2.3.1. Basic notation. For any integer n ∈ N, we let Bn ∶= {z ∈ Cn ∣ ∑j ∣zj ∣2 < 1} denote

the complex unit ball. We will also use the notation ∆ ∶= B1 for the unit disk, and write
H ∶= {z ∈ C ∣ Im(z) > 0} for the Poincaré upper half plane. The Bergman metric on Bn
will be denoted by hBn .

2.3.2. Automorphism group. We recall that the group of biholomorphisms of Bn identi-
fies with PU(n,1) acting on Bn via the standard inclusions PU(n,1) ⊂ PGL(n + 1) and
Bn ⊂ Cn ⊂ Pn. We will often write the elements of PU(n,1) as classes of matrices of the
form

⎛
⎜⎜
⎝

A X

Y µ

⎞
⎟⎟
⎠
, with A ∈ Mn(C), X, tY ∈ Mn,1(C) and µ ∈ C.

Note that the action of PU(n,1) on Bn extends to a continuous action on its closure
Bn.

2.3.3. Siegel model of the ball. For each point b ∈ ∂Bn, there is a corresponding biholo-
morphism φb ∶ Bn → Sn, where Sn is the Siegel domain

Sn ∶= {(y′, yn) ∈ Cn−1 ×C ∣ Im(yn) > ∣∣y′∣∣2}
Letting l(y′, yn) ∶= Im(yn) − ∣∣y′∣∣2, we recall that the Bergman metric on Sn corre-

sponds to the Kähler form

ωSn = −i∂∂ log(l) = i∂l ∧ ∂l
l2

− i∂∂l
l

(3)

with ∂l = 1
2idyn −∑1≤j≤n−1 y

′
jdy

′
j and i∂∂l = −∑1≤j≤n−1 idy

′
j ∧ dy′j .

2.3.4. Stabilizers of the boundary components. Let Nb ⊂ PU(n,1) denotes the stabilizer
of b ∈ ∂Bn. This is a real parabolic subgroup admitting a Levi decomposition

Nb =Wb ⋊Lb
where Lb ≅ R × U(n − 1) as a real Lie group. Using this decomposition, an element
(r,A) ∈ Lb acts as follows on Sn:

(r,A) ⋅ (y′, yn) = (erA ⋅ y′, e2ryn)
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The elements (r,0) in the factor R are the so-called transvections of axis (Ob).
The unipotent radical Wb is a central extension

0Ð→ RÐ→Wb Ð→ Cn−1 Ð→ 0

There is a natural 1-1 correspondence Wb
1−1= Cn−1 × R. In this decomposition, an

element (a, τ) acts on Sn as follows:

(a, τ) ⋅ (y′, yn) = (y′ + a, yn + 2ia ⋅ y′ + i∣∣a∣∣2 + τ).
One sees from the above that the group Nb admits a quotient Nb → Sim(Cn−1) that

is given by the restriction to the first factor of the inclusion Sn ⊂ Cn−1 × C. It can be
expressed as

(a, τ, r,A) ∈ Nb¯
1-1= Cn−1×R×R∗

+
×U(n−1)

z→ (a,A) ∈ Sim(Cn−1).
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1-1= Cn−1×U(n−1)

2.3.5. Iwasawa decomposition. Let b ∈ ∂Bn, and let K ≅ U(n) be the stabilizer of the
origin o ∈ Bn. Then, one has an equality

PU(n,1) =KNb

Indeed, if g ∈ PU(n,1), let b′ ∶= g ⋅ b ∈ ∂Bn, and let k ∈K be such that k ⋅ b′ = b. One has
then k−1g ∈ Nb. Taking inverses, one also get the reversed equality

PU(n,1) = NbK.

2.3.6. Stabilizer of a hyperplane in the ball. Let Bn be endowed with its standard coor-
dinates z1, . . . , zn, and let H ∶= {z1 = 0} ⊂ Bn. Then, the stabilizer S ∶= StabPU(n,1)(H)
identifies with the classes in PU(n,1) of matrices of the form

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ 0 0

0 A X

0 Y µ

⎞
⎟⎟⎟⎟⎟⎟
⎠

(∣λ∣ = 1,A ∈ Mn−1(C),X ∈ Mn−1,1(C), Y ∈ M1,n−1, µ ∈ C)

In each class, the element λ can be fixed to be equal to 1, determining uniquely the
elements A,X,Y,µ. This allows to identify S ≅ U(n − 1,1), and thus S sits in a central
exact sequence

1Ð→ U(1) diagÐ→ U(n − 1,1)Ð→ PU(n − 1,1)Ð→ 1

whose right arrow corresponds to the natural morphism S → Aut(H) ≅ Aut(Bn−1). We
also have the derived group exact sequence

1Ð→ SU(n − 1,1)Ð→ U(n − 1,1) detÐ→ U(1)Ð→ 1. (4)

The left group is the derived group of S, and the maps U(1)→ U(1) and SU(n−1,1)→
PU(n−1,1) induced by the previous two exact sequences are both degree n+1 isogenies.

Recall for later reference that the group SU(n−1,1) is generated by all the transvec-
tions of axis (Ox) for x ∈ ∂Bn−1 = ∂Bn ∩H.
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2.4. Higgs bundles and stability. We refer to [GKPT19a, GKPT19b, GKPT20] for
material related to Higgs sheaves on singular spaces and their associated notions of
stability. Let us just recall a few facts.

Definition 2.3. (see [GKPT19a, Example 5.3]) For any normal complex space Y , we

let EY ∶= Ω
[1]
Y ⊕OY , and θY ∶ EY → EY ⊗OY ΩY be the standard Higgs morphism given

by

θY ∶ Ω
[1]
Y ⊕OY Ð→ (Ω[1]

Y ⊕OY )⊗Ω
[1]
Y

(a, b) z→ (0,1)⊗ a

We say that (EY , θ) is stable with respect to a nef line bundle H if for any coherent

subsheaf F ⊂ EY such that θ(V) ⊂ V ⊗ Ω
[1]
Y in restriction to the maximal open subset

where Ω
[1]
Y is locally free, one has the slope inequality µH(V) < µH(EY ) whenever

0 < rk(V) < rk(EY ).
In the case where Y is smooth, then this notion coincides with the classical notion of

stability for Higgs bundles.

2.5. Induced coverings. Let X =X −D, where X is a complex manifold of dimension
n, and D is a SNC divisor. For some integer 1 ≤ k ≤ n, let Dk ⊂D be the locally closed
smooth stratum of codimension k, and let Y be one of its connected components. If
X ′ →X is any étale covering, there is an associated covering of Y that we can construct
as follows.

Definition 2.4. Let i ∶ Y ↪ X and j ∶ X ↪ X be the natural inclusion maps, and
denote by S the sheaf of sets on X given by the local sections of X ′ → X. Then the

covering Y ′ qÐ→ Y induced by X ′ → X is the covering whose sheaf of local sections is
i∗j∗S.

We may describe this covering a bit more concretely: let y ∈ Y be any point, and let
U = (∆∗)k × ∆n−k ⊂ X be a pointed polydisk adapted to Y centered at y. Then the

fiber product U ×X X̃ is a disjoint union of copies of Hl × (∆∗)k−l × ∆n−k. It is easy
to see that the fiber of Y ′ → Y over y is in natural 1-1 correspondence with the set of
connected components

π0(U ×X X̃).
With this notation, if the point y′ ∈ q−1(y) corresponds to the component Cy′ ∈ π0(U ×X
X̃), then Cy′ will be called the connected component of U ×X X̃ neighboring y′.

2.6. Multivalued maps. If X,Y are two complex manifolds, and if ρ ∶ π1(X,∗) →
Aut(Y ) is a morphism of groups, we will sometimes write ”Let ψ ∶ X → Y be a multi-

valued map with monodromy ρ” instead of ”Let ψ̃ ∶ X̃ → Y be a ρ-equivariant map”.
We will mostly use this terminology in the case where X = ∆∗ and Y = C. In this

context, the universal covering will be

w ∈ H↦ z = e2iπw ∈ ∆∗,

and if α ∈ R, we will sometimes write zα instead of w2iπα. We will refrain from using
this notation if the implied determination of logarithm matters in the discussion.
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2.7. Contractibility of analytic subsets. Let X be a complex manifold. Recall that
we say that an open subset U ⊂X is strictly Levi pseudo-convex if for any point x ∈ ∂U ,
there exists an open neighborhood x ∈ V ⊂X and a C2 function φ ∶ V → R such that

(i) U ∩ V = {y ∈ V ∣ φ(y) < 0}.

(ii) i(∂∂φ)x is positive definite on ker(dϕ)x ⊂ TxX.

If A ⊂ X is a compact analytic subset, then it is possible to blow-down A to a
point if and only if A admits a basis of strictly Levi pseudo-convex neighborhoods (see
[AMRT10, p. 104]).

2.8. Some basic results of complex analysis. We gather here a few lemmas of anal-
ysis in one complex variable, that will allow us to prove extension results for holomorphic
maps starting from ∆∗.

The first result is very classical.

Lemma 2.5. Let f ∶ ∆∗ → H be a holomorphic map. Then f extends to a holomorphic
map f̃ ∶ ∆→ H.

Indeed, H and ∆ are biholomorphic, so the result follows from Riemann’s extension
theorem. We will use the following strengthening of this statement.

Lemma 2.6. Let f ∶ ∆∗ → C be a holomorphic map. Assume that there exists C > 0
such that

Im(f(z)) > C log ∣z∣ for all z ∈ ∆∗.

Then f extends to a holomorphic map f̃ ∶ ∆→ C.

Proof. Consider the holomorphic map g ∶ z ∈ ∆∗ z→ g(z) = eif(z). Then, for all z ∈ ∆∗,
one has

∣g(z)∣ = e− Im(f(z))

< e−C log ∣z∣ = ∣z∣−C .
Thus, the function g has at most a pole at 0. This gives two possibilities:

(1) either there is D > 0 such that ∣g(z)∣ <D for all z close enough to 0. This implies
that Im(f(z)) > − logD, and so f extends by Lemma 2.5 (applied to f + logD).

(2) or ∣g(z)∣ Ð→ +∞ as z → 0. This implies that there exists D > 0 with ∣g(z)∣ > D
for all z ∈ ∆∗, and so Im(f(z)) < − logD. Again, f extends by Lemma 2.5
(applied to −f − logD).

�

Lemma 2.7. Let f, g ∶ ∆∗ → C be holomorphic functions, with no essential singularity
at 0. Let α,β be real numbers, with α > 0. Then there exists a point w ∈ H such that

Im(f(z) + g(z)w + iαw2 + βw) < 0

where we let z = e2iπw.

Proof. Let n = ord0(f) and m = ord0(g). There are three possible cases :

(1) n < m and n < 0. Then if a ∈ C is the coefficient of zn in the Taylor series of
f , one has

f(z) + g(z)w + iαw2 + βw = azn + o(∣z∣n).
(recall that ∣w∣ = O(∣ log ∣z∣∣)). We may let Im(w) → +∞ in such a way that
z → 0 and Im(azn)→ −∞. This gives the result.
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(2) m ≤ n and m < 0. Then, if b ∈ C is the coefficient of zn in the Taylor series of
g, one has

f(z) + g(z)w + iαw2 + βw = bzmw + o(∣z∣m∣ log ∣z∣∣).
This time, we may let Im(w)→ +∞ in such a way that Re(bzm)→ −∞ and thus
Im(bzmw)→ −∞. We also get the result.

(3) m,n ≥ 0 i.e. f, g extend holomorphically across 0. In this case, if we let w = ir
with r ∈ R+, one has

f(z) + g(z)w + iαw2 + βw ∼
r→+∞

−αr2 Ð→
r→+∞

−∞.

This gives the result also in this case.

�

2.8.1. Campana’s varieties of special type and orbifolds. We will need a few facts per-
taining to the notion of special varieties in the sense of Campana, whose general theory
is exposed in [Cam04].

Definition 2.8. Let f ∶ X ⇢ Y be a rational fibration i.e. an application which is
birationally equivalent to a holomorphic fibration f ′ ∶ X ′ → Y ′. Let D = ∑mi=1 aiDi be a
divisor on X with simple normal crossing support and ai ∈ [0,1]∩Q (the pair (X,D) is
an orbifold in Campana’s terminology).

(1) The Kodaira dimension of f is

κ(Y, f) = min{ κ(Y ′,KY ′ +∆(f ′,D′)) ∣ f ′ ∶ (X ′,D′)→ Y ′ birationally equivalent to f} .
In this definition, f ′ is a holomorphic fibration, and ∆(f ′,D′) denotes the orb-
ifold divisor of f ′ as defined in [Cam04, Definition 1.29].

(2) One says that the fibration f is of general type if κ(Y, f) = dimY .
(3) One says that an orbifold pair (X,D) is special (or of special type) if it admits no

non-constant rational fibration f ∶X ⇢ Y of general type. Alternatively, (X,D)
is special if it does not admit any Bogomolov sheaf (see [Cam04, Theorem 2.27]
and the discussion of [Cam04, p. 542]).

(4) One says that a quasi-projective variety V is of special type if there exists a
resolution of singularities U → V and a log-compactification X = U ∪D such
that (X,D) is an orbifold of special type.

The following proposition sums up the invariance properties we will use concerning
specialness.

Proposition 2.9. (i) [Cam04, Lemma 2.9] Let g ∶ U ′ ⇢ U be a rational dominant
map between two quasi-projective manifolds. If U ′ is special, then so is U .

(ii) [Cam04, Theorem 5.12] Let g ∶ U ′ → U be an finite étale map between two quasi-
projective manifolds. If U is special, then so is U ′.

(iii) Let f ∶ U ′ → U be a proper birational map between two quasi-projective manifolds.
If U is special, then so is U ′.

Proof. (iii) The last item is not explicitly stated in [Cam04], and dealing with open
varieties can lead to some confusion regarding birational maps, so let us explain how
this follows from the definitions. We may take X = U ⊔D and X ′ = U ′ ⊔D′ to be two
projective smooth compactifications with SNC boundary, in such a way that f extends
to f ∶ X ′ → X, and so that f−1(D) = D′. But then there exists a Zariski closed subset
Σ ⊂ X of codimension 2, such that f ∶ (X ′,D′) → (X,D) is an isomorphism above
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X ∖Σ. Any Bogomolov sheaf on (X,D′) then restrict to X −Σ to define a Bogomolov
sheaf for (X,D) after taking the reflexive hull. Thus, (X ′,D′) is special if (X,D) is
(see [Cam04, p. 542] on how to define Bogomolov sheaves without referring to adapted
covers). �

One crucial result of this theory is the following.

Theorem 4 (Campana [Cam04]). Let (X,D) be a complex projective orbifold pair.
Then there exists a fibration of general type c ∶ (X,D) ⇢ C, whose very general fibers
are special orbifolds. The fibration c is unique up to birational equivalence.

The fibration of Theorem 4 is called the core fibration of the pair (X,D). Note that
(X,D) is special if and only if dimC = 0.

3. Miyaoka-Yau inequality and uniformizing map

3.1. The surface case. Uniformization in the non-compact surface case is already
well-understood thanks to the work of Kobayashi [Kob85]. Let us simply say that if

X∗ is a variety with ample canonical bundle and minimal log-resolution X
πÐ→X∗ with

discrepancy −1 for all exceptional components, then

∆MY(X∗) ∶= 6c2(TX(− logD)) − 2c2
1(TX(− logD)) ≥ 0

where D is the exceptional divisor. Indeed, in this situation, KX +D = π∗KX∗ is nef
and big, and ample modulo the boundary D. It is then quite easy to check that the
hypotheses of [Kob85, Theorem 1] are all met. Also, in the case of equality, the regular
part X =X −D is uniformized by the ball B2.

3.2. The higher dimensional case. Let us now focus on the higher dimensional
situation. It is quite easy to define an intrinsic Miyaoka-Yau characteristic for varieties
with ample canonical bundle that are smooth in codimension 2, in a manner similar to
[GKPT19a]:

Definition 3.1. Let X∗ be a complex n-dimensional variety smooth in codimension 2,
and with ample canonical bundle KX∗ . Assume that n ≥ 3. We define the Miyaoka-Yau
characteristic number of X∗ to be the rational number ∆MY(X∗) computed as follows.

Consider a smooth complete intersection S =H1∩ . . .∩Hn−2, where Hi ∈ ∣miKX∗ ∣ is a
generic hypersurface (with m1, . . . ,mn−2 ≫ 0). Since the singularities of X∗ are only in
codimension 2, S does not intersect the singular locus, and so TX is locally free around
S. Thus, the following number readily makes sense:

∆MY(X∗) ∶= 1

∏jmj
[2(n + 1)c2(TX ∣S) − nc2

1(TX ∣S)] (5)

It is easy to check that this number depends only on X∗, but not on the choice of S.

The main goal of this section is to prove the following.

Theorem 5. Let X∗ be a complex projective variety of dimension n ≥ 3 that is smooth
in codimension 2. Assume that the singularities of X∗ are log-canonical, and that KX∗

is ample. Then one has
∆MY(X∗) ≥ 0.

In case of equality, if one denotes by X ⊂ X∗ the smooth locus, there exists a repre-
sentation ρ ∶ π1(X) → PU(n,1) and an étale holomorphic map ψ ∶ X̃ → Bn that is
ρ-equivariant.
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Proof. The beginning of the proof follows closely the main steps of [GKPT19a, GKPT19b,
GKPT20], so we will present only the necessary details.

Step 1. Stability of the Higgs sheaf (EX , θX). By the work of Guenancia [Gue16, The-
orem A], the tangent sheaf TX is polystable with respect to KX∗ . This implies by the
computation of [GKPT19a, Corollary 7.2] that the Higgs sheaf (EX , θX) is stable.

Step 2. Restriction theorem for Higgs sheaves. Let S ⊂ X be a smooth complete
intersection S = H1 ∩ . . . ∩Hn−2, where Hi ∈ ∣miKX∗ ∣ is a generic hypersurface (with
m1, . . . ,mn−2 ≫ 0). Apply now the restriction theorem [GKPT19b, Theorem 6.1] to
deduce that the restriction (EX , θX)∣S is stable as a Higgs bundle.

Step 3. We deduce the Miyaoka-Yau inequality. Since (EX , θX)∣S is a stable Higgs
bundle, it satisfies the Bogomolov-Gieseker inequality by [Sim88, Proposition 3.4], which
implies that

2c2(EX ∣S) −
n

n + 1
c1(EX ∣S)2 ≥ 0.

If we compare with Definition 3.1, we see that it implies that ∆MY(X∗) ≥ 0.

Step 4. In case of equality, we obtain the representation ρ and a period map on the
surface. As (EX , θX)∣S is stable with vanishing Bogomolov-Gieseker characteristic, it
underlies an irreducible projective p-CVHS by [Sim88]. Thus, fixing adapted base points

p ∈ S and b̃ ∈ S̃, there exists an irreducible representation ρ ∶ π1(S) → PU(n,1) and a
(pointed) period map

ΨS ∶ (S̃, b̃)→ (Bn, o),
that is ρ-equivariant. Also, the differential of this period map identifies with the com-
position

TS ↪ TX ∣S
θX ∣SÐ→ Hom(ΩX ∣S ,OS)

so we deduce that Ψ is immersive at any point.

Step 5. We show the compatibility of period maps ΨS for various surfaces S. By
Goresky-McPherson’s Lefschetz theorem [GM88, Thm. in Sect. II.1.2], the natural
morphism π1(S)→ π1(X) is an isomorphism. This implies that one has a fiber product
of connected pointed spaces

(S̃, b̃) (X̃, b̃)

(S, b) (X, b)
so that when the hypersurfaces Hi vary in their linear system with S always containing
b, then the surfaces S̃ can link b̃ to any point of X̃.

Let S1, S2 be two such surfaces containing b, and let x̃ ∈ S̃1 ∩ S̃2 with projection
x ∈X. Denote by Ψk ∶ (S̃k, b̃)→ (Bn, o) the two period maps (k = 1,2). We are going to
show that Ψ1(x̃) = Ψ2(x̃). First, pick another complete intersection surface S′ passing

through b and x (so that b̃, x̃ ∈ S̃′). By Bertini’s theorem, we may choose S′ so that
both S′∩S1, S′∩S2 are smooth, and thus, by dealing with the two cases where the pair
(S1, S2) is replaced by (S1, S

′) and (S2, S
′), we see that we may assume in turn that

the curve C = S1 ∩ S2 is smooth.
Both restrictions Ψk∣C×XX̃ (k = 1,2) are period maps associated to the same Higgs

bundle (EX , θ)∣C . The latter is stable since the corresponding representation π1(C, b)↠
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π1(X, b)
ρ→ Aut(Bn) is irreducible (the first arrow is surjective by the Lefschetz theorem).

By the uniqueness of harmonic metrics for stable Higgs bundles, we see that Ψ1 and Ψ2

must coincide above C, and thus Ψ1(x̃) = Ψ2(x̃).

Step 5. We glue the maps together. The previous step shows that we may glue
all period maps associated to the complete intersections S to get a well-defined ρ-
equivariant map X̃ → Bn. This map is immersive. Indeed, for any tangent vector v to
X, there exists a surface S as above tangent to v, and one has Ψ∗(v) = (ΨS)∗(v) ≠ 0
since ΨS is immersive. �

Remark 3.2. Steps 4 and 5 and this method of glueing together period maps on surfaces
is directly inspired by the work of Mochizuki [Moc06, proof of Theorem 9.4]. We thank
Y. Brunebarbe for pointing that reference to us.

4. Example of varieties with non-log-canonical singularities and
non-complete period map

In this section, we will use classical examples of Deligne-Mostow [DM86] and Deraux
[Der05] to obtain varieties X∗ satisfying the case of equality in Theorem 5 but with
period map ψ failing to be an isomorphism; as we will see later on, restricting the type
of singularities of X∗ can be used to avoid this type of situation.

It is very easy to contract totally geodesic divisors in Deligne-Mostow and Deraux’s
examples to construct X∗ as an abstract analytic space. One has to be a bit more
careful to ensure they indeed admit a Q-Cartier ample canonical divisor KX∗ ; we will
provide a simple criterion for this in Theorem 6. We will then explain why this criterion
applies to Deligne-Mostow and Deraux’s manifolds.

Notation. Let us consider a complex Kähler manifold X admitting a correspondence
with the ball Bn, as given by the following diagram

M Bn

D1, . . . ,Dm X

ψ

π (6)

where

(1) the Di are disjoint smooth irreducible divisors on X (1 ≤ i ≤m). Let D ∶= ⋃iDi;
(2) π is an infinite Galois étale covering of Galois group Γ0 ⊂ Aut(M);
(3) ψ is a surjective holomorphic map, étale outside π−1(D), and ramifying at order

mi along each component of π−1(Di).
Assumptions. We make the following assumptions on this data:

(a) there exists a subgroup Γ ⊂ Aut(Bn) with an action Γ ↺ M that makes ψ a Γ-
equivariant map;

(b) Γ0 acts on M as a subgroup of Γ;
(c) for any 1 ≤ i ≤ m, and for each connected component Ti of π−1(Di), ψ realizes an

isomorphism between Ti and a totally geodesic hypersurface Hi ⊂ Bn. Consequently,
one has an identification

Di = StabΓ(Hi)/Hi ,

which makes in turn Di a smooth ball quotient.
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Note that we do not assume ψ to be a ramified cover: in Deligne-Mostow and Deraux’s
examples, the image ψ(π−1(D)) is a dense set of hypersurfaces in Bn.

Remark 4.1. Since the Di are ball quotients by torsion free groups, it follows from
Proposition 7.8 below that the open set X −D is not a ball quotient.

4.0.1. Singular Bergman metric on X. The Bergman metric hBn can be pulled back by
ψ and pushed down to X via π to yield a singular metric h on TX , smooth on X −D,
and with conical singularities of order mi around each Di. Note that this metric induces
a well-defined distance d on the whole of X.

For each i, we pick εi > 0 and define

Ui ∶= {x ∈X ∣ d(x,Di) < εi}.
The following proposition follows easily from the fact that Γ0 act freely on M by

isometries with respect to ψ∗hBn :

Proposition 4.2. Let Ti be any connected component of π−1(Di), and let

Vi ∶= {x ∈M ∣ dψ∗hBn (x,Ti) < εi}.
Wi ∶= {x ∈ Bn ∣ d(x,Hi) < εi},

where Hi ∶= ψ(Ti) ⊂ Bn. Let Λi ∶= StabΓ0(Ti). Then if εi is chosen small enough, one
has the following properties:

(1) Λi acts freely on Vi and π∣Vi ∶ Vi → Ui can be identified with the quotient map.
In particular, π1(Ui) ≅ Λi;

(2) picking coordinates z1, . . . , zn on Bn so that Hi = {z1 = 0}, the map Vi → Wi

identifies with the corestriction to Wi of the map

{∣z1∣2mi + ∣z2∣2 + . . . + ∣zn∣2 < 1} Ð→ Bn.

(z1, . . . , zn) z→ (zmi1 , . . . , zn)

Lemma 4.3. Let H ⊂ Bn be the hyperplane section {z1 = 0}, and consider the following
function on Bn:

z ∈ Bn z→ δ(z) = log( ∣z1∣2
1 −∑nj=2 ∣zj ∣2

)

This function is invariant under StabAut(Bn)(H). For any A ∈ R+, the open subset
ΩA ∶= {δ < −A} is a strictly pseudoconvex neighborhood of H.

Proof. Let us check the invariance. Recall from Section 2.3.6 that S ∶= StabAut(Bn)(H) is
isomorphic to U(n−1,1), acting on Bn by its standard action on the last n homogeneous
coordinates

[Z1 ∶ Z2 ∶ . . . ∶ Zn ∶ Z0] ∈ Bn ⊂ Pn

Thus, if one takes z = [z1 ∶ . . . ∶ zn ∶ 1] ∈ Bn and A ∈ U(n − 1,1), one may write
A ⋅ z = [z1 ∶ T2 ∶ . . . ∶ Tn ∶ T0] ∈ Bn with (T2, . . . , T0) = A ⋅ (z2, . . . zn,1). Thus

δ(A ⋅ z) = log( ∣z1∣2
∣T0∣2 −∑nj=2 ∣Tj ∣2

) .

However, A leaves invariant the standard (n − 1,1)-signature hermitian form on Cn, so
∣T0∣2 −∑nj=2 ∣Tj ∣2 = 1 −∑nj=2 ∣zj ∣2. This shows the required invariance.
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Let us show the second statement. Let π ∶ (z1, z
′) ∈ Bn ↦ z′ ∈ Bn−1 be the canonical

projection. One has then, at any point z ∈ ∂ΩA:

i∂∂δ(z) = i∂∂ log ∣z1∣2 − i∂∂ log(1 −∑
j≥2

∣zj ∣2)

= 0 + π∗ωBn−1

where we used the standard fact that z′ ∈ Bn−1 ↦ log(1 − ∣∣z′∣∣2) is a potential for the

Bergman metric on Bn−1. To show that i∂∂δ(z) is positive definite in restriction to
ker(∂δ)z, is suffices to remark that the projection map

π∗ ∶ ker(∂δ)z ⊂ Tz Bn → Tπ(z)Bn−1

is injective. However, the latter is certainly true, since for u ∈ ker(π∗)z, one may write
u = α ∂

∂z1
, and one has then ∂uδ(z) ≠ 0 unless α = 0. �

Proposition 4.4. The manifold X is projective. There exists a normal complex space
X∗ and a morphism τ ∶ X → X∗ that contracts every connected component Di to a
single point.

Proof. The data of Ψ induces a polarized C-VHS on X−D, which has maximal variation
since Ψ is étale. Thus X is Moishezon by the main result of either [BC18] or [CD21],
hence projective since it is Kähler.

To show that Di can be contracted, use Lemma 4.3 to obtain strictly convex neigh-
borhoods ΩA of Hi for A > 0. Then for A≫ 0 so large so that ΩA ⊂ Vi, the inverse image
ψ−1(ΩA) yields a strictly pseudo-convex neighborhood of Ti, invariant under Λi. It thus
goes down by the étale map π, providing in turn a strictly pseudoconvex neighborhood
of Di. One may conclude by the criterion of Section 2.7. �

4.0.2. Positivity properties of orbifold canonical bundles on X. Our next goal is to study
the positivity of various Q-line bundles of the form O(KX + (1+α)D) with α ∈ Q. The
next lemma will allow to control the restriction of these line bundles to the boundary.

Lemma 4.5. For all 1 ≤ i ≤m, the restriction to Ui of the line bundle

Ni ∶= O(KX + (1 + nmi)Di)
admits a flat unitary connection. In particular, it is numerically trivial when restricted
to Di.

Proof. We resume the notation of Proposition 4.2, and again choose coordinates on Bn
so that Hi = {z1 = 0}.

Step 1. Corresponding line bundle on Wi. Remark first that Ni is the line bundle
descended by π from the π1(Ui)-equivariant line bundle Mi ∶= ψ∗OBn(KBn + (1+n)Hi)
in the following diagram:

Vi Wi

Ui.

ψ

π

The action of π1(Ui) on Mi is through the composite map

π1(Ui) ≅ Λi ↪ Γ0.
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This image stabilizes the totally geodesic hypersurface Hi = {z1 = 0}, and thus defines
a representation ρi ∶ π1(Ui)Ð→ StabAut(Bn)(Hi).
Step 2. Factorization through a unitary representation. Consider the following global
section of KBn ⊗O((n + 1)Hi), defined by

e ∶= dz1 ∧ . . . ∧ dzn
zn+1

1

(7)

By Lemma 4.6 below, the action of π1(Ui) on e factors through the composition σi ∶=
det ○ ρi ∶ Λi → U(1) so that

γ∗e = σi(γ)e
for all γ ∈ π1(Ui).
Step 3. Descent to Ui and conclusion. By the previous step, the pullback ψ∗e yields
a global trivializing section of Mi, on which π1(Ui) acts by the unitary representation
σi. Denoting by Li the complex local system associated with σi on Ui, this proves that
Ni = Li ⊗C OUi , which gives the result. �

The following lemma was used in the previous proof. The reader is invited to refer
to Section 2.3.6 for some of the notation.

Lemma 4.6. Let H ⊂ Bn be the hyperplane section H = {z1 = 0}, and let S ∶=
StabAut(Bn)(H). Then the section

e ∶= dz1 ∧ . . . ∧ dzn
zn+1

1

is invariant under all elements of SU(n − 1,1)↪ S.

Proof. The group SU(n−1,1)↪ Aut(Bn) is generated by the standard transvections of
axis (Ox) where x ∈ ∂Bn−1∩H, so it suffices prove invariance under any such transvection
T . One may find α ∈ {IdC}×U(n− 1) such that T = αT0α

−1, where T0 is a transvection
in the direction x = (0, . . . ,0,1) ∈ ∂Bn−1 ∩H. The transvection T0 is then given by a
matrix of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 In−2 0 0

0 0 c s

0 0 s c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(c = cosh(t), s = sinh(t) for some t ∈ R)

One can now compute

T ∗0 (dzi) = d(
zi

szn + c
)

= dzi
szn + c

− szidzn
(szn + c)2

(1 ≤ i ≤ n − 1)

T ∗0 (dzn) = d(
czn + s
szn + c

)

= dzn
(szn + c)2

(use c2 − s2 = 1)
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so T ∗0 (dz1 ∧ . . . ∧ dzn) = dz1∧...∧dzn
(szn+c)n+1 . On the other hand,

T ∗0 z1 =
z1

szn + c
.

Putting everything together, we get first that T ∗0 e = e, and then

T ∗e = (α−1)∗T ∗0 α∗e
= (α−1)∗T ∗0 ((detα)e)
= (α−1)∗((detα)e) = e.

�

Definition 4.7. For any 1 ≤ i ≤ m, let us denote by σi ∶ π1(Di) → U(1) the unitary
representation underlying the line bundle Ni, as discussed in Lemma 4.5.

Our goal in this section is to prove the following:

Theorem 6. The following are equivalent:

(i) KX∗ is Q-Cartier;
(ii) every representation σi has finite image.

If these conditions are met, then we have the following as well:

(1) KX∗ is ample. In particular, X∗ is projective;
(2) If dimX ≥ 3, the variety X∗ satisfies the case of equality in the Yau-Miyaoka

inequality i.e. ∆MY(X∗) = 0.
(3) The singularities of X∗ are not log-canonical.

We need a few lemmas before starting the proof.

Lemma 4.8. For each 1 ≤ i ≤ n, the line bundles KDi and ODi(−Di) are ample.

Proof. The ampleness of KDi is clear from the fact that Di is a smooth ball quotient.
As for the second assertion, remark that Lemma 4.5 implies that

ODi(KDi + nmiDi) ≅ O(KX + (1 + nmi)Di)∣Di
is numerically trivial. �

Lemma 4.9. The metric hBn induces a singular metric with positive curvature in the
sense of currents on the Q-line bundle

L ∶= OX(KX +∑
i

(1 −mi)Di).

The line bundle L is ample.

Proof. Step 1. L supports a orbifold positively curved metric. Recall that the metric
h is smooth on TX−D, with conical singularities of angle 2πmi around each Di. This
implies that deth, seen as a singular metric on L∗ has locally bounded potentials, and
thus for any locally trivializing section η of some power L⊗m, one may write

∣∣s∣∣2(deth∗)m = e−ϕ,
with ϕ bounded. The potential ϕ being psh outside of D, it extends across the boundary
as a psh function, strictly psh on X −D. This shows that the singular metric det(h∗)
has positive curvature in the sense of currents on L.
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Step 2. L is nef. First remark that the potentials of deth∗ are bounded everywhere,
so they have zero Lelong numbers on the whole X and thus the class c1(L) is nef by a
theorem of Demailly [Dem92, Corollary 6.4].

Step 3. Nakai-Moishezon criterion. Let V ⊂X be a any subvariety. We distinguish two
cases.

(a) V /⊂ D. Then, if f ∶ W → V is a resolution of singularities, the metric f∗h is a
well-defined singular metric on f∗L with positive curvature in the sense of currents.
This metric is smooth with strictly positive curvature at the generic point of W .
Thus, applying Boucksom’s criterion for bigness [Bou02, Theorem 1.2], one deduces
that

vol(f∗L) ≥ ∫
W

(iΘ(det f∗h∗)ac)dimW

= ∫
U
(iΘ(f∗ deth∗))dimW > 0,

where U ⊂ W is the Zariski open subset where f is immersive and f∗h is smooth.
This proves that vol(f∗L) > 0. The latter number equals V ⋅ c1(L)dimV since L is
nef.

(b) V ⊂Di for some 1 ≤ i ≤m. Then, one has

L∣Di ≅ ODi(KDi −miDi)
By Lemma 4.9, one deduces that L∣Di is ample, and thus has positive top intersection
with V .

This is enough to obtain the ampleness of L by the Nakai-Moishezon criterion. �

Proposition 4.10. For any choices λj ∈ [−mi, nmi[ for 1 ≤ j ≤m, the line bundle

Lλ ∶= OX(KX +D +∑
i

λiDi)

is ample.

Proof. Write µi = nmi − λi > 0. We can prove the result as follows.

One claims first that for any closed subvariety V ⊂X, one has vol(Lλ∣V ) > 0. Indeed, if
V ⊂Di for some i, this comes from the fact that

Lλ∣Di ≡num ODi(−µiDi).
is ample. In the case where V /⊂D, one has vol(Lλ∣V ) ≥ vol(L∣V ) > 0 since L is ample.

Taking V to be any curve in X, this shows that Lλ is nef. But then, one has

∫V c1(Lλ)dimV = vol(V,Lλ∣V ) > 0 for each subvariety V , and thus Lλ is ample again by
the Nakai-Moishezon criterion. �

Proposition 4.11. Assume that all σi have finite image. Let N ∶= O(KX + ∑i(1 +
nmi)Di). Then for m ≫ 1, the line bundle N⊗m is base-point free, and the associated
morphism identifies with

τ ∶X Ð→X∗.

Proof. Step 1. The stable base locus is included in the boundary. Remark first that
N is nef by Proposition 4.11. It is also big since vol(N) ≥ vol(L) > 0. The proof of
Proposition 4.11 shows that vol(V,N ∣V ) > 0 for any subvariety V ⊂ X with V /⊂ D
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and thus, Nakamaye’s theorem [Nak00, Theorem 0.3] (see also Collins-Tosatti [CT15])
implies that

B+(N) = ⋃
V ⊂X

Ndim(V )⋅V =0

V =D.

In particular, one has B(N) ⊂ B+(N) ⊂ D. The next steps will show that some power
of N is also globally generated on the boundary.

Step 2. Sections on the thickenings of the boundary. Pick α ∈ N so that α > nmi + 1 for
all i, and denote by αD the α-th schematic thickening of the boundary divisor. One
has a natural restriction map

H0(X,N⊗q)Ð→H0(αD,N ∣⊗qαD).
Let us show that this map is onto for q ≫ 1. The next term in the long exact sequence
in cohomology is H1(X,N⊗q ⊗O(−αD)). However, one may write

q (KX +∑
i

(1 + nmi)Di) − (KX + αD) = (q − 1) [KX +∑
i

(1 + qnmi − α + 1

q − 1
)Di]

Now, if q is large enough, one has

0 < qnmi − α + 1

q − 1
< nmi

since α > nmi + 1. This shows that N⊗q ⊗O(−αD −KX) is ample by Proposition 4.10,
and thus one has the requested vanishing by Kodaira’s theorem.

Step 3. From thickenings to D itself. By our hypothesis, the line bundle N⊗q is trivial
on a neighborhood of the boundary if q ≫ 1 is divisible enough. Thus, N ∣⊗qαD ≅ OαD,
and the constant section s ≅ 1 is sent onto 1 via the map

H0(αD,N⊗q ∣αD)Ð→H0(D,N⊗q) ≅H0(D,OD) ≅ C.

Joint with Step 2, this shows that the restriction map

H0(X,N⊗q)Ð→H0(D,N⊗q ∣D) ≅ Cπ0(D)

is onto. This shows that N⊗q is globally generated also above D, and thus B(N⊗q) = ∅.

End of proof. Since N⊗q ∣D ≅ OD, the linear system ∣N⊗q ∣ contracts all the boundary
components to points. Also recall that we have proved that for any curve C ⊂ X with
C /⊂D, one has c1(N) ⋅C > 0. This implies that no subvariety of X is contracted unless
it is included in the boundary. By classical results on semi-ample line bundles [Laz04,
Section 2.1.B], the linear system ∣L⊗q ∣ realizes an isomorphism on X −D, possibly after
replacing q by a larger integer. This ends the proof. �

Proposition 4.12. Under the hypothesis that Im(σi) if finite for all 1 ≤ i ≤ m, the
divisor class of KX∗ is Q-Cartier and ample, and one has τ∗O(KX∗) ∼Q N .

Proof. Let O(1) be the very ample line bundle on X∗ associated with the linear system
∣N⊗q ∣ for q ≫ 1 divisible enough, so that τ∗O(1) ≅ N⊗q. One may pick a hyperplane
section s ∈ H0(X∗,O(1)) not passing through any point of the boundary. Now, the
restriction s∣X−D identifies with a section of O(qKX−D), which proves that qKX∗ is
Cartier near any point of the boundary. Also, one deduces that O(qKX∗) ≅ O(1), and
thus KX∗ is ample.



20 B. CADOREL

Since the only τ -exceptional divisors are the Di, one may write

τ∗KX∗ ≅Q−lin KX +∑
i

αiDi

for some coefficients αi. However, each Di is contracted to a point, so this divisor has
to be Q-linearly trivial near each component of the boundary. As each Di∣Di is anti-
ample, this implies because of Lemma 4.5 that one needs αi = 1+nmi for all i, and thus
τ∗KX∗ ∼Q N , as was to be proved. �

In particular, the log-discrepancies of X∗ at each boundary component Di are equal
to −nmi < 0, so the singularities of X∗ are not log-canonical.

Proposition 4.13. Assume that KX∗ is Q-Cartier in the neighborhood of the point
pi ∶= τ(Di). Then the image of σi is finite.

Proof. Resume the notation of Proposition 4.2, and denote U∗
i ∶= σ(Ui). Under the

hypotheses, we may chose εi small enough so there exists q ∈ N>0 such that qKU∗

i
is

cut out by a section si of its associated line bundle O(qKU∗

i
). We may choose si, and

adequately change qKX∗ in its linear equivalence class, so that pi ∉ Supp(qKU∗

i
).

But now, the pull-back σ∗si is a meromorphic q-canonical section, and thus gives a
section of O(qKUi)⊗O(αDi) for some α ∈ Z. By our choice of si, the previous pullback
is identically non-zero when restricted to Di and thus

O(qKUi)⊗O(αDi)

is trivial. Lemma 4.5 and 4.9 together imply that α = q(1 + nmi) and thus one deduces
further that N⊗q

i ∣Di is trivial. Thus, σ⊗qi ∶ π1(Di) → U(1) is the trivial representation,
and σi is a torsion representation. �

Propositions 4.12 and 4.13 together show that (i), (ii) are equivalent, and that (1)
holds if they are satisfied. Showing that (2) holds presents no difficulty:

Proposition 4.14. Assume that (i) and (ii) hold in Theorem 6. Then (2) holds as well.

Proof. Let S ⊂X∗ be a smooth complete intersection as in the hypotheses of the propo-
sition. If S is sufficiently generic, then it does not meet any point of X∗ −X and thus
it identifies with its preimage S′ ⊂X −D.

The map ψ induces a structure of flat holomorphic vector bundle to the C∞ vector
bundle underlying End(OX−D ⊕ΩX−D), and thus

∫
S
c2(End(ΩX∗ ∣S′ ⊕OS′)) = ∫

S′
c2(End(ΩX−D ⊕OX−D)∣S′) = 0.

A standard computation shows that the first number is proportional to (5), which gives
the result. �

4.1. Deligne-Mostow and Deraux’s examples. Let us show in this section that
several of the varieties constructed by Deligne-Mostow [DM86, DM93], or Deraux’s
three examples in [Der05], satisfy the hypotheses of Theorem 6.
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4.1.1. A reminder on Deligne-Mostow’s constructions. We are going to recall several
aspects of Deligne-Mostow’s original construction [DM86], without going into full detail;
we refer to [Der11] for more information.

Let N > 3 be an integer, and let µ1, . . . , µN be positive rational numbers such that

∑j µj = 2. We let PGL(2) act on the product P ∶= (P1)N by its diagonal action, and we

endow P with a polarization given by the Q-line bundleM ∶=⊗N
j=1 pr∗O(µj). Mumford’s

Geometric Invariant Theory explains how to construct a GIT quotient Q ∶= P �PGL(2)
with respect to the linearization M : this variety Q has dimension n ∶= N − 3, and is the
target of a surjective map P sst → Q, where P sst is the semi-stable locus

P sst = {(z1, . . . , zn) ∈ P ∣ if any zi1 , . . . , ziq coincide, then∑
j

µij ≤ 1}.

Also, Q contains as a dense open subset the quotient Qst ∶= P st/PGL(2) where P st is

the stable locus

P st = {(z1, . . . , zn) ∈ P ∣ if any zi1 , . . . , ziq coincide, then∑
j

µij < 1}.

Let Q0 ⊂ Qst be the open locus corresponding to n-uples of all distinct points. On Q0,
one may construct a variation of mixed Hodge structures by associating to (z1, . . . , zn)
the natural mixed Hodge structure on H1(P1 − {z1, . . . , zn}, Lµ), where Lµ is a rank
1 local system on P1 − {z1, . . . , zn} with monodromy e2iπµi around each zi. One has

an associated period map Q̃0 → Bn, that is ρµ-equivariant for some representation
ρµ ∶ π1(Q0)→ PU(n,1). Let Γµ be the image of ρµ; it is generated by complex reflections
in PU(n,1) that correspond to letting two points zi, zj turn around one other (see
[DM86, Proposition 9.2]).

If no subset of the µi sum up to 1, one has Q = Qst, and under various additional nu-
merical conditions on the µi detailed in [DM86, DM93, Der05, Der11], one can construct
varieties sitting in a diagram

M Bn

D1, . . . ,Dm X

Q

ψ

π

q

(8)

where the top part is as in (6), and the morphism q ∶ X → Q is a finite map, étale over

Q0. The variety Q is a (singular) quotient Γµ/M , while X = Γ′µ/M for some finite

index subgroup Γ′µ ⊂ Γµ.

Remark 4.15. Note that X − D could be larger than q−1(Q0). In Deligne-Mostow
original examples [DM86, DM93], the map ψ is an isomorphism so one may take D = ∅.
Alternatively, it is possible in some situations to artificially add a new totally geodesic
component Di, taking mi = 1; that is what we will do in Example 2 below.
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4.1.2. Example 1. Contraction of hyperplanes in Deraux’s 3-dimensional examples. In
[Der05], Deraux generalizes to the dimension 3 a famous construction of negatively
curved surfaces due to Mostow-Siu [MS80] – it yields three examples of varieties that
can sit as Q in the diagram (8) above (where the µi are given by the first three lines
of [op.cit Table 1, p.516]). By contracting two exponents (i.e. replacing µi and µj by
their sum µi +µj), one obtains a new datum µ′ of length shortened by 1. If this datum
µ′ happens to satisfy the numerical condition (INT) of [DM86], then it gives a ball
quotient admitting a totally geodesic embedding in Q. Let Q′ ⊂ Q be the union of all
hypersurfaces obtained that way. According to [Der05, Remark 4.2], the hypersurface
(q ○ π)−1(Q′) is the branch locus of ψ. We take D ∶= q−1(Q′).

By [op.cit. Remark 3.5.], the divisor Q′ is the disjoint union of either one or three
connected components. Let Q1 ⊂ Q be one of these components, corresponding to

letting points zi, zj coalesce. One may then write Q1 ≅ Γµ′/B
2

where µ′ is as above.

As in Definition 4.7, one has a unitary representation σ ∶ π1(Q○
1) → U(1) obtained by

composing

π1(Q○
1)

ρµ′Ð→ Γµ′ Ð→ U(2,1) detÐ→ U(1)
where U(2,1) is the stabilizer of a totally geodesic surface B2 ⊂ B3 associated to Q1 by
the correspondence (8).

Proposition 4.16. The representation σ has finite image.

Proof. Without loss of generality, we may renumber the µk so that i = 1 and j = 2. The
group Γµ′ is then obtained by the Deligne-Mostow construction consisting in letting
5 points z1 + z2, z3, . . . , z6 move on P1. It is generated by finitely many monodromy
elements, associated to the rotations of two of these five points around one another. Let
γ be one of these monodromies, seen as an element of Γµ ⊂ Aut(B3), and let us show
that γ is in fact a torsion element. There are two cases to consider:

(1) γ is given by rotating two points zk, zl for k, l /∈ {1,2}. Then, the image of γ in
Γµ is given by a complex reflection of rational angle by [DM86, Proposition 9.2],
so γ is torsion.

(2) γ is given by rotating zk around the merged point z1 + z2. Then the image
of γ in Γµ belongs to the group G ⊂ PU(3,1) generated by the monodromies
rotating only the 3 points z1, z2, zk. According to the discussion of [Der05,
p.516], Deraux’s examples are precisely constructed so that G is finite for any
triple of points z1, z2, zk. Thus γ is again torsion in this case.

Consequently, Im(σ) ⊂ U(1) is generated by a finite number of roots of unity, and
thus is finite. �

Thus, if D1 is any component of q−1(Q1), the representation of Definition 4.7 is the

composition π1(D1) → π1(Q○
1)

σ→ U(1), which has finite image. This shows that it is
possible to contract all components in D in X to obtain a singular variety X∗ satisfying
the conclusion of Theorem 6.

4.1.3. Example 2. Contraction of a totally geodesic surface in a 3-dimensional ball
quotient. Deligne-Mostow [DM86] provides several examples of compact ball quotients
totally geodesically embedded in one another. Take for example N = 6 and µ =
1
12(5,5,5,3,3,3). Then, according to the table of [DM86, p.86], the variety Q is a

compact (singular) ball quotient by an arithmetic lattice Γµ ⊂ Aut(B3). If Γ′µ ⊂ Γµ is a
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sufficiently small sublattice, then X = Γ′µ/B
3

is smooth, and we are in the situation of

(8) with D = ∅.
If one lets µ1 = 1

12(10,5,3,3,3), one finds this time a 2-dimensional ball quotient Q1

and again for a sublattice of sufficiently high index Γ′µ1 ⊂ Γµ1 , we obtain a smooth ball

quotient X1 = Γ′µ1
/B2

. Now, by [DM86, 8.8], there is a totally geodesic embedding

Q1 → Q (whose image corresponds to the locus where z1, z2 ∈ P1 coalesce) and a natural
morphism of lattices Γµ1 → Γµ. One may take X1 and X compatibly so as to have a
diagram

M1 M B3

X1 X

Q1 Q

ψ

≅
π

q1 q

(9)

where all horizontal arrows are totally geodesic embeddings, and M1 ≅ B2, M ≅ B3.

We take D1 to be the image of X1; note that one has m1 = 1 in this situation i.e. ψ
does not ramify near D1. Then, with the notations of Definition 4.7, the representation
σ1 ∶ Γµ′1 → U(1) is given by the composition

σ1 ∶ Γµ′1 Ð→ Stab(T1) ∩ Γµ → U(1),

where T1 is the image of M1 ≅ B2 in B3, and the second morphism is given by the right
arrow in (4). With the same arguments as in our first example, one can show in this
case that Im(σ1) is finite, and thus it is possible to contract X1 in X to obtain again a
variety satisfying Theorem 6.

5. Special connectedness and log-canonical singularities

Our next goal is to further investigate the situation of Theorem 5, expanding on the
hypothesis that the singularities of the variety X∗ are log-canonical. To do this, we will
need an extension to the log-canonical case of the results of Hacon-McKernan [HM07],
based on Campana’s theory of orbifolds and special varieties.

Let us introduce the following notion of connectedness by chains of special varieties,
that generalizes the notion of connectedness by chains of rational curves.

Definition 5.1. Let X be a complex analytic space, not necessarily irreducible. One
says that X is specially chain connected if any two points of X can be linked by a chain
of special subvarieties of X. One says that X is specially chain connected modulo a
sublocus Z ⊂ X if any point of X can be linked to Z by a chain of special subvarieties
of X.

Note that since P1 is special, any rationally chain connected variety is specially chain
connected.

Remark 5.2. According to Campana’s conjectures on special manifolds, a cycle should
be specially chain connected if and only if it h-special in the sense of [CDY23, Definition
1.11].

The main result of this section is the following.
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Theorem 7. Let X be a complex analytic space with log-canonical singularities. Let
π ∶ Y → X be a resolution of singularities. Then the fibers of π are specially chain
connected .

The proof is strongly inspired by the work of Hacon-McKernan [HM07]. We will
derive the result from the following more precise statement.

Theorem 8. Let X be a complex analytic space with log-canonical singularities. Let
p ∈ X be a point, and let π ∶ Y → X be a resolution of singularities such that both
F ∶= π−1(p) and π−1(p) ∪ π−1(Sing(X)) are divisors with normal crossings. For any
prime divisor D ⊂ Y , denote by aD its discrepancy. Denote by

LCS(F ) = ⋃
E⊂F,aE=−1

E.

the purely log-canonical locus in F . Then there exists a decomposition F = F0∪F1∪ . . .∪
Fm, in which each Fi is a union of prime divisors, satisfying

(1) F0 = LCS(F );
(2) for any i ≥ 0, Fi+1 is rationally connected modulo Fi.
(3) Let E be a component of F0, and let E○ be the set of points of E that do not

belong to any other divisor D with aD = −1. Then the quasi-projective variety
E○ is special. In particular, E itself is special.

A fortiori, F is specially chain connected .

Since any resolution of singularities of X can be dominated by one as in Theorem 8,
we see from Proposition 2.9, (i) that Theorem 8 implies Theorem 7.

The existence of a decomposition F = F0 ∪ F1 ∪ . . . Fm for which Theorem 8, (1) and
(2) hold, follows directly from [HM07, Theorem 5.1]. As we will see right away, the third
point can be proven in a quite similar manner, replacing the use of the MRC fibration
by Campana’s core fibration.

Proof of Theorem 8, (3). Step 1. Preparation of the core fibration. Let E ⊂ LCS(F ) be
an irreducible component, and let Λ be the sum of the divisors D satisfying D ≠ E and
aD = −1. By definition, one has E○ = E−Λ. Consider the core fibration c ∶ (E,Λ∣E)⇢ C.
We may blow-up further F at points of E to change the birational model of c, so we
can assume without loss of generality that

c ∶ E → C

is a holomorphic fibration such that κ(C,KC +∆(c)) = dimC. Our goal is to show that
E○ is special, i.e. that this latter number is equal to 0.

Step 2. We introduce some divisors on E. We may write

KY + Γ ∼Q π∗KX +G,
where G,Γ are effective, π-exceptional without common component, and E is a compo-
nent of Γ with multiplicity 1. We may also ask that Γ +G has simple normal crossing
support. Note that we have Γ ≥ Λ +E. Thus, if we let Θ = (Γ −E)∣E , one has

KE +Θ = (KY + Γ)∣E ∼Q G∣E
This latter divisor is effective, so if T ⊂ E denotes the general fiber of c, one has

κ(T, (KE +Θ)∣T ) ≥ 0. (10)
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Step 3. One shows that κ(E,KE +Θ) ≤ 0. As in [HM07], we are going to apply a result
of [HM06], stated below as Theorem 9. With the notation of this statement, let us take
C = 0, and check that all hypotheses of the theorem are met. The first items (a) and
(b) are obviously satisfied. The divisor KE +Θ ∼Q G∣E is effective as we saw above, so
(c) holds as well. Finally, (d) holds since KY + Γ ∼Q G where G does not contain any
stratum of Γ.

Thus, any section in H0(E,m(KE +Θ) +H ∣E) lifts to a section of

π∗OY (m(KY + Γ) +H +A) ≅ π∗OY (mG +H +A) ⊂ π∗OY (H +A)∨∨

where the last inclusion holds since G is π-exceptional. Since the latter coherent sheaf
does not depend on m, this shows that

κ(E,KE +Θ) ≤ 0. (11)

Step 4. One applies the orbifold additivity of the Kodaira dimension. Let ∆(c,Θ)
be the Q-divisor on C adapted to the fibration (E,Θ) → C as it is defined in [Cam04,
1.29]. Since Γ ≥ Λ +E, one has Θ ≥ Λ∣E , and thus one has ∆(c,Θ) ≥ ∆(c,Λ∣E), so that

κ(C,KC +∆(c,Θ)) ≥ κ(C,KC +∆(c,Λ∣E)),

which implies that the pair (C,∆(c,Θ)) is of general type.
Further blowing-up E and C does not change the validity of the previous steps. One

can thus assume that the morphism (E,Θ)→ C is high and prepared in the terminology
of [Cam04]. Thus, Campana’s orbifold additivity theorem [Cam04, Theorem 4.2] (see
also the discussion of [Cam04, p. 342]) implies that

κ(E,KE +Θ) = κ(T, (KE +Θ)∣T ) + dim(C),

for a general fiber T of c ∶ E → C. Using (10) and (11), one concludes that dim(C) = 0,
which implies that the pair (E,Θ) is special. Since for any component of E′ ⊂ F0 with
E′ ≠ E, the divisor E′∣E appears in Θ with multiplicity 1, this implies a fortiori that
E○ = E ∖ ⋃

E′⊂F0,E′≠E
E′ is special. �

The next theorem is proved by Hacon–McKernan [HM06]. We have replaced their
symbol X (resp. S) by E (resp. X) to match our own notation.

Theorem 9 ([HM06], see Theorem 5.2 in [HM07]). Let Y be a smooth complex space,
and let E ⊂ Y be a divisor. Let π ∶ Y → X be a projective morphism. Let H be a
sufficiently π-very ample divisor, and let A = (dimE + 1)H. Assume that

(a) Γ is a Q-divisor on Y with simple normal crossing support such that E ⊂ Γ has
coefficient 1 and KY + Γ is log-canonical ;

(b) there exists a Q-divisor C ≥ 0 on Y whose support does not contain E;
(c) KE +Θ is pseff, where Θ = (Γ −E)∣E, and
(d) there exists a Q-divisor G ≥ 0 on Y such that G ∼Q KY + Γ + C, and ∣G∣ does not

contain any log-canonical center of (Y, ⌈Γ⌉).

Then for m≫ 0 divisible enough, the image of

π∗OY (m(KY + Γ +C) +H +A)Ð→ π∗OE(m(KE +Θ +C ∣E))

contains the image of π∗OF (m(KE+Θ)+H ∣E), considered as a subsheaf of π∗OF (m(KE+
Θ +C ∣E) +H ∣E +A∣E).
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Corollary 5.3. Let X be a complex analytic space with log-canonical singularities. Let
p ∈ X be a point, and let π ∶ Y → X be a resolution of singularities such that both
π−1(p) and π−1(p)∪π−1(Sing(X)) are divisors with normal crossings. Assume that for
all irreducible exceptional divisor, one has aD = −1. Then, any smooth locally closed
stratum F of π−1(p) is a special quasi-projective variety.

Proof. Let ρ ∶ Y ′ → Y be the blowing-up of Y along the smooth subvariety F , and
denote by E its exceptional divisor. A simple computation shows that aE = −1, and
thus all (π ○ ρ)-exceptional divisors have discrepancy −1.

Thus, denoting by E○ the points of the exceptional divisor E that do not belong to any
other component, one sees by Theorem 8 that E○ is special. But since the blowing-up
gives a dominant morphism E○ → F , one sees that F is special by Proposition 2.9 (i). �

6. Variations of Hodge structures on special varieties

6.1. Complex algebraic monodromy group and isotriviality of p-CVHS. In
this section, we will prove an isotriviality statement for polarized C-VHS on special
quasi-projective manifold, reminiscent in this setting of a similar theorem due to Taji
[Taj16] for families of canonically polarized varieties. The result would be a consequence
of Deligne’s theorem of the fixed part in the case of Q-VHS, but does not seem to have
been explicitly stated for p-CVHS. Several of the following facts can also be seen as an
adaptation to the quasi-projective case of the discussion of [Sim92, Groups of Hodge
type, pp.46-48]. We will not try to recall the general theory, but will gather only the
necessary facts relevant to our purposes.

Let X be a complex variety, endowed with a polarized C-VHS V ∶= (E,∇, h,Ep,q) of
weight n. Recall that this means that E = ⊕p+q=0E

p,q is a direct sum of C∞ complex

vector bundles, endowed with a flat connection ∇ ∶ A0(X,E) → A1(X,E) that maps
A0(X,Ep,q) into

A1,0(X,Ep,q)⊕A1,0(X,Ep−1,q+1)⊕A0,1(X,Ep,q)⊕A0,1(X,Ep+1,q−1).
Accordingly, one gets a decomposition ∇ = ∂ + θ + ∂ + θ∗. The polarization h on E is a
∇-flat hermitian pairing for which the Ep,q are orthogonal, with h of definite sign (−1)p
on each Ep,q. If e = ∑p,q ep,q is a section in E, we will write

Q(e, e) =∑
p,q

(−1)ph(e, e);

this defines a positive definite hermitian form.

Fix a base point o ∈ X, and let GR = U(Eo, ho). This is a real algebraic group
that acts transitively on the period domain D parametrizing the Hodge structures of
type given by (Eo,Ep,qo , ho). From the data associated to V, one gets a representation

ρ ∶ π1(X,o)→ GR and a ρ-equivariant period map ψ ∶ X̃ → D.

Another point of view on D is to consider the morphism of real algebraic groups

α ∶ U(1)→ GR

that can be associated to the decomposition Eo =⊕p,qE
p,q
o , letting a point z = eiθ ∈ U(1)

acts on Ep,q by zpzq. Then D is in natural 1-1 correspondence with the connected
component of α in the G(R)-conjugacy class of α in HomR(U(1),GR), in such a way
that a point g ⋅ o ∈ D is sent to gαg−1.
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Definition 6.1. We let the real algebraic monodromy group HR be the Zariski closure
of the image of ρ in the real algebraic group GR.

Our first goal is to show the following.

Lemma 6.2. Assume X is a quasi-projective variety. Then α(U(1)) ⊂H(R).

Proof. Step 1. HC is the stabilizer of some unitary holomorphic sub-line bundle in
some ⋀mE. By Chevalley’s classical lemma [Che51], there exists m ∈ N and a tensor
ω ∈ ⋀mEo − {0} such that

HC = {g ∈ GC ∣ g ⋅ ω ∈ Cω}
Let us denote by σ ∶ H → C∗ the induced representation, so that g ⋅ ω = σ(g)ω for all
g ∈H.

Since the line Cω is left invariant by π1(X,o), it defines a flat C∞ line subbunble

(L,∇L) ⊂ ⋀mE,∇)) (we also denote by ∇ = ∂ + ∂ + θ + θ∗ the flat connection inducing
the natural CVHS structure on ⋀mE). Now, by Lemma 6.3 below, one has

m

⋀E = L
⊥
⊕ L⊥

and L, L⊥ are both fixed by ∂, θ and θ∗. Note however that θ is nilpotent and rkL = 1
so actually θ∣L = 0, and thus θ∗∣L = 0. This means that

∇L = (∂ + ∂)∣L.
In other words, the representation σ induced by (L,∇L) is unitary, and σ factors through
U(1) ⊂ C∗.

Step 2. One twists the representation to assume that HC is the fixator of a tensor in

⋀mE. Consider the following action of H on ⋀mEo:
h
σ⋅ v = σ(h)−1(h ⋅ v)

It is a well defined group action since the image of σ ∶ H → U(1) commutes with
any element of G(C). The associated composition π1(X,o) → H → GL(⋀mEo) is the
monodromy of the natural p-CVHS defined on L−1⊗⋀mE. With this notation, one has

H = {g ∈ GC ∣ g σ⋅ ω ∈ Cω}
= {g ∈ GC ∣ g σ⋅ ω = ω}.

In particular, the element ω induces a flat section e of L−1 ⊗⋀mE. Since θ∣L = 0, one
has θ(e) = 0 and similarly θ∗(e) = 0.

Step 3. The (p, q)-components ep,q of e are all flat. Remark first that

θ(ep,q) = 0, θ∗(ep,q) = 0

for all p, q, since θ(e) = 0, θ∗(e) = 0 and both θ, θ∗ both preserve the decomposition
E =⊕p,qE

p,q up to a shift. Then, the equation ∇e = 0 becomes

(∂ + ∂)(e) = 0,

but since the operator ∂ + ∂ preserves the Ep,q, one gets 0 = (∂ + ∂)(ep,q) = (∂ + ∂ + θ +
θ∗)(ep,q for all p, q. This gives ∇(ep,q) = 0.

Step 4. One concludes that α(U(1)) ⊂ HC. Since the ep,q are flat, they are all H-
invariant, and one sees immediately by double inclusion that

HC =⋂
p,q

{g ∈ GC ∣ g σ⋅ ep,q ∈ C ep,q.}



28 B. CADOREL

Note however that g ⋅ ep,q ∈ Cep,q for all g ∈ U(1), so α(U(1)C) ⊂ HC. This gives the
result since α is a morphism of real varieties. �

Lemma 6.3 ([Moc06], see also [GKPT20, Lemma 3.12]). Let X be a smooth, quasi-

projective variety and let V = (E,∂E , θ, h) be a tame and purely imaginary harmonic
bundle on X with induced flat connection ∇E (e.g. a p-CVHS). If F ⊂ E is any complex

subbundle that is invariant with respect to ∇E, then ∂ restricts to both F and F ⊥ to give
Higgs-invariant, holomorphic subbundles of (E,∂).

Proposition 6.4. The group HR is reductive.

Proof. The center z ∶= z(gR) ≅ R acts by homotheties on Eo, so by Step 1, it is included
in hR. Thus, the adjoint algebra g′ ≅ gR/z contains naturally the quotient h′ ∶= hR/z ,
and we just have to show that the latter is reductive.

The morphism α ∶ U(1)→ GR yields a Cartan decomposition g′R = k′⊕p, decomposing
this space into the ±1 eigenspaces for Ad(α(i)). Recall that the Killing form B on g′ is
definite of signature (−1,1) with respect this decomposition.

Since α(U(1)) ⊂HR, then Ad(α(i)) leaves h′ invariant and one can write

h′ = (h′ ∩ k)⊕ (h′ ∩ p).
But then B induces a negative definite form on the real Lie algebra

u ∶= (h′ ∩ k)⊕ i(h′ ∩ p) ⊂ g′C.

As a consequence, u is a compact Lie algebra, and hence it is reductive (see [Hel78, II,
Proposition 6.6]). Since u and h′ are two real Lie algebras with the same complexifica-
tion, this shows that h′ is reductive, as we wanted. �

Proposition 6.5. If the connected component H○
R is abelian, then ψ is constant. In

particular, this holds if the image of ρ is virtually abelian.

Proof. We may replace X be a finite covering to assume that H○
R = HR. In this case, if

HR is connected and abelian, then gαg−1 = α for all g ∈ H(R), since α has its image in
HR by Lemma 6.2. Thus, for all h ∈H(R), one has

h ⋅ ψ(o) = ψ(o)
and thus ψ(o) is fixed under the image of ρ. It implies that the period map ψ ∶ X̃ → D
descends to a horizontal map X → D. This map is then constant by Proposition 6.6. �

The next result was needed in the proof of Proposition 6.5; we include the proof for
completeness. To state it correctly, we need to introduce some notation.

Let V ⊂ GR (resp. K ⊂ GR) be the compact Lie subgroup with Lie algebra v ∶= gR∩g0,0

(resp. k), one can form the associated period domain (resp. locally symmetric space of
the non-compact type)

D = G(R)/V (R) (resp. Ω = G(R)/K(R)).

One has a natural projection map π ∶ D → Ω such that for any horizontal map
f ∶ V → D from a complex manifold, the composition V → Ω is pluriharmonic with
respect to the invariant metric on Ω.

Proposition 6.6. Let D be the period domain for a certain type of p-CVHS. Let U be
a quasi-projective manifold, and let ψ ∶ U → D be a horizontal map. Then ψ is constant.
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Proof. Let X = U ∪ D be a compactification of U , where D ⊂ X is a simple normal
crossing divisor. The map ψ can be seen as a p-CVHS with trivial monodromies on U .
Hence, by the results of Griffiths [Gri68] (see also [Sch73, (4.11)]), the map ψ extends

holomorphically to a holomorphic map ψ ∶X → D, which is also horizontal by continuity.

Now the composition X → Ω is a pluriharmonic map on a complex manifold, so it
must be constant. This shows that ψ(X) lies in a fiber of π. However, ψ is horizontal,
and since the horizontal directions are transversal to the fibers of π, this shows that ψ
is constant. �

6.2. Isotriviality of polarized C-VHS on special varieties.

Definition 6.7. Given a p-CVHS V on a complex manifold U , we say that V is isotrivial
if its period map is constant.

Theorem 10. Let U be a quasi-projective manifold. Let V ≡ (V, F ●, h) be a p-CVHS
on U . Assume that U is special. Then V is isotrivial.

Proof. Let HR be the real algebraic monodromy group of V, and ρ ∶ π1(X,o) → H(R)
be the associated representation.

Step 1. A first reduction step. We apply [CDY23, Proposition 2.5] to obtain the
existence of a diagram

U ′′ U ′ U

V

µ

f

ν

and a big representation τ ∶ π1(V )→H(R) such that f∗τ = (ν ○µ)∗ρ. In this diagram ν
is finite étale, µ is birational and proper, f is is a dominant morphism with connected
general fibers. By Proposition 2.9, all varieties appearing in this diagram are special.

Step 2. The algebraic group HR is abelian. The representation τ ∶ π1(V ) → H is a
big representation with Zariski dense image in a reductive group, while V is special.
Hence, by [CDY23, Theorem 0.9], the group π1(V ) is virtually abelian, and so must be

H = Im(τ)Zar
. But then ψ is constant by Proposition 6.5. �

7. Asymptotic structure of period maps with values in the ball

7.1. The local case. In this section, we will describe the local structure of a period map
with values in Bn. This description can be seen as a very particular case of Schmid’s
nilpotent orbit theorem [Sch73] or rather their versions presented by Sabbah-Schnell
[SS22] or Deng [Den23] in the case of CVHS. We try to give a quite detailed presentation,
as several features specific to the case of the ball will be crucial in our study of the
uniformizing map near a log-canonical singularity.

7.1.1. Notation. We introduce the following notation.

(1) Let X = (∆∗)k × ∆n−k be a pointed polydisk, with its partial compactification
X = ∆n. We endow X with the standard coordinates z1, . . . , zn. Let D = X −X.
For any J ⊂ J1, kK, we let DJ = {zj = 0 ∣ j ∈ J}. We fix the base point o ∶=
e−2π(1, . . . ,1,0, . . .0) ∈X.
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(2) Denoting by H the Poincaré upper half-plane, we let X̃ ∶= Hk × ∆n−k, and endow
it with the standard coordinates w1, . . . ,wn. We take as universal covering map
π ∶ X̃ Ð→X the map sending w ∈ X̃ to

π(w) = (e2iπw1 , . . . , e2iπwk ,wk+1, . . . ,wn) .
Note that π(i, . . . , i,0, . . . ,0) = o. We let F = {0 ≤ Re(w) < 1}k × ∆n−k; this is a

fundamental domain for the action of π1(X,o) on X̃.
(3) Let ρ ∶ π1(X,o)Ð→ PU(n,1) be a representation, and consider a ρ-equivariant map

ψ ∶ X̃ → Bn. Unless there is a risk of confusion, we will also use the letter o to
denote the origin of Bn.

(4) Let γ1, . . . , γk ∈ π1(X,o) be the classes of the loops around the boundary components
Dj ∶= {zj = 0}. Let Ai = ρ(γi) ∈ PU(n,1). The elements Ai are pairwise commuting,

since π1(X) ≅ Zk is abelian.

7.1.2. Normal form of the period map. Consider a sequence of points (qm)m∈N ∈XN such
that lim

m→∞
qm = 0 ∈X for the usual topology. This sequence admits a unique lift (pm)m∈N

to the fundamental domain F ⊂ X̃. We let bm ∶= ψ(pm) for m ∈ N. By compactness of
Bn, we may and will replace (pm) by a subsequence so that there exists b∞ ∈ Bn with

bm Ð→
mÐ→+∞

b∞ ∈ Bn.

The main result of the section is as follows.

Proposition 7.1. One of the following two cases occur.

(1) One has b∞ ∈ Bn. Then there exist B ∈ PU(n,1) such that B ⋅ b∞ = o ∈ Bn, real
numbers (αp,q)1≤p≤n,1≤q≤k in [0,1) and a holomorphic map ϕ ∶X → Cn such that

for any w = (w1, . . . ,wn) ∈ X̃, one has

B ⋅ ψ(w) = (e2iπ∑q≤k α1,qwqϕ1(z), . . . , e2iπ∑q≤k αn,qwqϕn(z)) (12)

where z = π(w).
(2) One has b∞ ∈ ∂Bn. Let φ ∶= φb∞ ∶ Bn Ð→ Sn be the Siegel presentation of the

ball with respect to b∞. Then there exists B ∈ PU(n,1) fixing b∞, real numbers
(αp,q)1≤p≤n−1,1≤q≤k in [0,1), real non negative numbers (τq)1≤q≤k, not all zero,

and a holomorphic map ϕ ∶X → Cn such that for any w = (w1, . . . ,wn) ∈ X̃, one
has

B ⋅ψ(w) = φ−1(e2iπ∑q≤k α1,qwqϕ1(z), . . . , e2iπ∑q≤k αn−1,qwqϕn−1(z), ϕn(z) +∑
q≤k

τqwq) (13)

where z = π(w).

Remark 7.2. Another way of stating (12) and (13) is to say that after composing by an
automorphism B ∈ Aut(Bn), the map ψ corresponds to a multivalued map

z ∈ ∆n z→ diag(∏
q

z
α1,q
q , . . . ,∏

q

z
αn,q
q ) ⋅ ϕ(z).

or

z ∈ ∆n z→ diag(∏
q

z
α1,q
q , . . . ,∏

q

z
αn−1,q
q ,1) ⋅

⎛
⎝
ϕ(z) + (0, . . . ,0, 1

2iπ
∑
q

τq log(zq))
⎞
⎠

(14)

Let us prove Proposition 7.1. The following lemma is classical.
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Lemma 7.3. One has Aj ⋅ b∞ = b∞ for all j ∈ J1, kK.
Proof. Let (e1, . . . , en) be the standard frame for Cn. Letting dK,X̃ be the Kobayashi

distance on X̃, it is an easy exercise to check that

dK,X̃(pm, pm + ej) Ð→
mÐ→+∞

0

since Im(pm)Ð→ +∞. The decreasing property of the Kobayashi distance implies that

dBn(ψ(pm), ψ(pm + ej)) ≤ dK,X̃(pm, pm + ej)Ð→ 0

Now, one has
ψ(pm) = bm and ψ(pm + ej) = Aj ⋅ bm,

so dBn(bm,Aj ⋅ bm) tends to 0. The euclidean distance on Bn is bounded from above by
the hyperbolic distance, so passing to the limit gives deucl(b∞,Aj ⋅ b∞) = 0. This proves
the result. �

To prove Proposition 7.1, we will deal separately with the two possible cases.

7.1.3. Case 1: b∞ ∈ Bn. This case is the easiest one. Pick B ∈ PU(n,1) such that
B ⋅ b∞ = o. Then we may replace ψ by B ⋅ ψ and the Aj by BAjB

−1 to assume b∞ = o.
Then, since Aj ⋅o = o, all the elements Aj belong to U(n) = Stabo(PU(n,1)). Finally, as
these elements are pairwise commuting, we may find again an element B ∈ U(n) such
that

BAjB
−1 = diag(e2iπα1,j , . . . , e2iπαn,j) (1 ≤ j ≤ k)

in U(n), where αp,q ∈ [0,1) for all p, q. Again, we may replace ψ and the Aj as above
to assume that Aj are written as the previous diagonal form.

We may now untwist ψ by the n-parameter group

M ∶ w ∈ (C∗)n z→ diag(e2iπ∑q α1,qwq , . . . , e2iπ∑q αn,qwq) ∈ PGL(n)
to get a single valued holomorphic map ϕ ∶ z ∈ X z→ ϕ(z) = M(−w) ⋅ ψ(w), where
z = π(w).

To check that ϕ can be extended to X, it suffices to remark that since ψ lands in Bn,
we must have for all j ∈ J1, nK:

n

∏
q=1

∣zq ∣αj,q ∣ϕj(z)∣ = ∣ψj(w)∣ ≤ 1.

Since we have αj,q < 1 for all j, the holomorphic function ϕj cannot have have a pole
along any component of D. This ends the proof in the first case.

7.1.4. Case 2: b∞ ∈ ∂Bn. With the notation of Proposition 7.1, we will replace for
simplicity Bn by its Siegel model Sn, and the map ϕ by the composite φ ○ ϕ, so as to
consider a ρ-equivariant holomorphic map ϕ ∶ X̃ → Sn.

As explained in Section 2.3.4, one has a decomposition Nb∞ ≅ Lb∞ ⋉Wb∞ , where
Lb∞ ≅ U(n − 1) ×R. For each j ∈ J1, kK, let us write

Aj = (Rj , rj ,Mj) (Rj ∈ U(n − 1), rj ∈ R,Mj ∈Wb∞)
(15)

accordingly to this decomposition. The following two lemmas will give some restrictions
concerning the elements of this expression; the first one is certainly well known, but we
include a proof for lack of a better reference.
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Lemma 7.4. One has rj = 0 for all j ∈ J1, kK.

Proof. Assume by contradiction that rj ≠ 0. As we have seen in the proof of Lemma 7.3,
one has dBn(bm,Aj ⋅ bm)Ð→ 0. Thus, to obtain a contradiction, it suffices to show that
under our hypothesis, there exists ε > 0 depending only on rj such that

∀p ∈ Bn, dBn(p,Aj ⋅ p) > ε
Step 1. We reduce to the case p = o. Let p ∈ Bn, and let Bp ∈ PU(n,1) such that
p = Bp ⋅ o. Using the Iwasawa decomposition, one can write Bp = SpTp with Sp ∈ Nb∞

and Tp ∈K ∶= Stabo(PU(n,1)). Then, one has

dBn(p,Aj ⋅ p) = dBn(SpTp ⋅ o,AjSpTp ⋅ o)
= dBn(Sp ⋅ o,AjSp ⋅ o) (since Tp ∈K)
= dBn(o, Âj ⋅ o)

where Âj = S−1
p AjSp. Writing this element as in (15), one finds Âj = (R̂j , r̂j , M̂j). Note

that one must have r̂j = rj since (R̂j , r̂j) is the image of Âj under the quotient map
Nb∞ → Lb∞ , and conjugation leaves the center R ⊂ Lb∞ invariant. We have reduced to
showing that if A = (R, r,M) is written as in (15) with r ≠ 0, one has dBn(o,A ⋅ o) > ε,
where ε depends only on r. We may assume r > 0 by replacing A with A−1 if necessary.

Step 2. We reduce to the one dimensional case. Write R = (τ, a), accordingly to the
notation of Section 2.3.4. Now, in the standard coordinates of the Siegel domain Sn,
one has o = (0, . . . ,0, i), and one can write

A ⋅ o = (erR ⋅ a, e2r(i + i∣∣a∣∣2 + τ))
The projection on the last coordinate Sn → H is distance decreasing for the Kobayashi
distance, so one has

dBn(A ⋅ o, o) ≥ dH(e2r(1 + ∣∣a∣∣2)i + erτ, i)
Now, it is easy to check that for any λ > 1, and any t ∈ R, one has dH(i, λi+ t) ≥ log(λ).
This shows that

dBn(A ⋅ o, o) ≥ 2r + log(1 + ∣∣a∣∣2) ≥ 2r.

This gives the result. �

We are now ready to make a first conjugation by an element B1 ∈ PU(n,1) – this
B1 will eventually give a factor of the element B mentioned in the statement of Propo-
sition 7.1. Since all the matrices Aj are pairwise commuting, so are the elements Rj ,
since the latter are the images of the Aj by the quotient map Nb∞ → Lb∞ . Thus, they
may be diagonalized in a single unitary basis, meaning that there exists B1 ∈ U(n − 1)
such that

B1RqB
−1
1 = diag(e2iπα1,q , . . . , e2iπαn−1,q) (1 ≤ q ≤ k) (16)

where the (αp,q)1≤p≤n−1,1≤q≤k are real numbers.

Without loss of generality, we may replace ψ by B1 ⋅ ψ and the Aq by B1AqB
−1
1 , to

assume all the Rq have the diagonal form (16).

Lemma 7.5. For any j ∈ J1, kK, write Mj = (τj , aj) ∈ R × Cn−1, accordingly to the
decomposition of Wb∞ detailed in Section 2.3.4. Then the image (Rj , aj) of Aj under
the quotient Nb∞ → Sim(Cn−1) ≅ U(n − 1) ⋉Cn−1 is a pure rotation.
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Proof. Recall that Rj has the diagonal expression (16); we may reorder the coordinates
so that

Rj = diag(e2iπα1,j , . . . , e2iπαp,j ,1, . . . ,1) =∶ diag(R′
j , In−1−p).

with the first p coordinates are all different from 1. The matrix R′
j is a diagonal unitary

matrix of size p.
It follows from Lemma 2.1 that we may conjugate (Rj , aj) by a translation of in Cn−1,

to assume that the vector aj has zero coordinates except possibly for the last n − 1 − p
entries, so that

aj = (0, a′j) ∈ Cp ×Cn−1−p.

Such a conjugation in Sim(Cn−1) can by obtained by composing ψ with an adequate
element in PU(n,1). In the following, we assume that this conjugation has been made.

With the previous notation, the action of Aj on S then splits accordingly to the
decomposition Cn−1 = Cp ×Cn−1−p to give a rotation on one factor, and a translation on
the other. More precisely, if we pick (y′, yn) ∈ S ⊂ Cn−1 ×C and write y′ =∶ (y′rot, y′tran) ∈
Cp ×Cn−1−p, then one has

Aj ⋅ (y′, yn) = (R′
j ⋅ y′rot, y′tran + a′j , yn + 2ia′j ⋅ y

′
tran + i∣∣a′j ∣∣2 + τj). (17)

The proof that (Rj , aj) is a pure rotation will be complete with Lemma 7.6, which
will make use of the C-VHS version of Schmid’s nilpotent orbit theorem [Sch73] proved
by Sabbah-Schnell [SS22]. �

Lemma 7.6. We have a′j = 0 for all j ∈ J1, kK.

Proof of Lemma 7.6. We will derive a contradiction by assuming the contrary. Choose
j ∈ J1, kK, and fix a constant wl for all l ≠ j, so as to consider the one-variable map

ζ ∶ w ∈ H↦ ζ(w) ∶= ψ(w1, . . . ,wj−1,w,wj+1, . . . ,wn)

We have a natural decomposition

ζ(w) = (ζrot(w), ζtran(w), ζn(w)) ∈ Cp ×Cn−1−p ×C.

Recall that ζ(w + 1) = Aj ⋅ ζ(w). Projecting ζ to its last n − p coordinates, one gets a
holomorphic map with values in the (n−p)-dimensional Siegel domain Sn−p ∶= {(w′,wn) ∈
Cn−p−1 ×C ∣ Im(wn) > ∣∣w′∣∣2}:

ζ ′ ∶ w ∈ Hz→ (ζtran(w), ζn(w)) ∈ Sn−p ⊂ Pn−p.

The map ζ ′ can be seen as a C-VHS with values in the compact period domain Pn−p.
We see from (17) that its monodromy is given by the unipotent element

⎛
⎜⎜⎜⎜⎜
⎝

In−p−1 0 a′j

2ita′j 1 i∣∣a′j ∣∣2 + τj

0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

∈ Aut(Pn−p).
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(the vector a′j is considered here as a line matrix) The previous element is the value for
w = 1 of the one-parameter group

M ∶ w ∈ C∗ z→

⎛
⎜⎜⎜⎜⎜
⎝

In−p−1 0 a′jw

2ita′jw 1 i∣∣a′j ∣∣2w2 + τjw

0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

∈ PGL(n − p + 1).

The nilpotent orbit theorem (see [Sch73, 4.9], [SS22, 24.]) has the following conse-
quence:

Claim. The monovalued untwisted period map

z ∈ ∆∗ ↦M(−w) ⋅ [ζtran(w) ∶ ζn(w) ∶ 1] ∈ Pn−p

extends holomorphically across the origin.

We may thus write the application appearing in the previous claim as z ∈ ∆ ↦
[φtran(z) ∶ φn(z) ∶ 1] where φtran ∶ ∆∗ → Cn−p−1 (resp. φn ∶ ∆∗ → C) is a holomorphic
map that is meromorphic across the origin. Twisting this map back by M(w), one may
write

ζ ′(w) = (φtran(z) + a′jw,φn(z) + 2ia′j ⋅ φtran(z)w + i∣∣a′j ∣∣2w2 + τjw).
Note that this expression must land inside Sn−p for all w ∈ H. This is however

impossible if a′j ≠ 0; to remark this, apply Lemma 2.7 to f(z) = φn(z), g(z) = 2iaj
′ ⋅

φtran(z), α = ∣∣a′j ∣∣2 and β = τj . This ends the proof of Lemma 7.6. �

We can now prove that in Case 2, the function ψ can be written as in (13). We have
proven that all monodromies Aj = (Rj ,0, τj , aj) are such that the elements (Rj , aj)
are pure rotations of Cm. These elements are all pairwise commuting because the Aj
commute. Thus, by Lemma 2.2, they all share a common fixed point : this allows to
find a new element B2 ∈Wb∞ such that

B2AjB
−1
2 = (Rj ,0, τj ,0)

for all j ∈ J1, kK. Again, without loss of generality, we may replace ψ by B2 ⋅ψ and Aj by
B2AjB

−1
2 . Applying the nilpotent orbit theorem once more, we may now untwist the

map ψ by the n-parameter group

M ∶ (wi) ∈ (C∗)n z→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

e2iπ∑q α1,qwq

⋱

e2iπ∑q αn−1,qwq

1 ∑q τqwq

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ PGL(n + 1)

to get a holomorphic map ϕ ∶ z ∈X z→M(−w) ⋅ψ(w) ∈ Cn that is actually meromorphic
across the boundary divisor. Equation (13) now follows from the definition of ϕ.

It remains to be shown that the function ϕ extends holomorphically across D.

Claim. The function ϕn extends across D to a holomorphic function ϕ ∶X → Cn.
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Proof. To prove this, it suffices to show for example that ϕn extends across D1. Writing
that the expression (13) must land inside Sn, we get that

Im(ϕn(z) +
n

∑
q=1

τqwq) > 0 (18)

for all w ∈ X̃. Fixing all wq but the first one, and using the fact that Im(w1) = − 1
2π log ∣z1∣,

we obtain that there exists C > 0 such that

Im(ϕn(z)) ≥ τ1
1

2π
log ∣z1∣ +C.

for all such w. Applying Lemma 2.6 with the variable z = z1, we get that ϕn has no
pole along D1. We can do the same for all Dj and get the result. �

Claim. All ϕj extend across D as holomorphic functions for j ≤ n − 1.

Proof. This time, writing that (13) lands inside Sn = {(z′, zn) ∈ Cn−1 × C ∣ ∣∣z′∣∣2 <
Im(zn)}, one finds

n

∏
q=1

∣zq ∣2αj,q ∣ϕj(z)∣2 = ∣e2iπ∑q αj,qwqϕj(z)∣2 ≤ Im(ϕn(z) + τq∑
q

wq)

for all j ∈ J1, nK. Let us fix all the zq for q ≠ 1, and let z1 → 0.

By the previous claim, one has Im(ϕn(z)) = O(1), so the right hand side grows at
most as O(∣ log ∣z1∣∣). Since αp,q ∈ [0,1) for all p, q, ϕj does not have a pole along D1.

Since this also holds for D2, . . . ,Dn, one gets the result. �

The proof of Proposition 7.1 is now complete.

Remark that the condition (18) implies that we must have τq ≥ 0 for all q ∈ J1, kK. At
least one of them must be positive in order to have ψ(qm)Ð→ b∞ as m→ +∞.

Lemma 7.7. Let hX be the KE metric on X descended from the pullback metric ψ∗hBn.
Then

(i) the metric hX is complete if and only if we are in the situation of Proposition 7.1
(2) with all the τq > 0.

(ii) the metric hX has finite volume.

Proof. (i) It is easy to see that if we are in the situation of Proposition 7.1 (1) or
Proposition 7.1 (2) with at least one τq = 0, then the metric cannot be complete (either
0 or the component Dq with τq = 0 are at finite distance). Let us then focus on the
second case, and assume all τq are positive.

We will check below that (23) implies that the metric ψ∗hBn is bounded from below
by a Poincaré form depending on the factor (∆∗)k:

ψ∗ωBerg ≥ C
k

∑
j=1

idzj ∧ dzj
∣zj ∣2 log2 ∣zj ∣

, (19)

This inequality that any smooth path joining a point of Uα to a point of the boundary
is of infinite length, which gives the result.
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Let us verify that ψ∗ωBerg indeed has the required growth. Since the element B leaves

the Bergman metric invariant, we see that we may assume that ψ ∶ Ũα → Sn corresponds
to a multivaluate function on X given by

φ(z) = (φ̃1(z), . . . φ̃n−1(z), φn(z) +∑
q≤k

1

2iπ
τq log(zq)) (20)

where φ̃j(z) = ∏q≤k z
αj,qφj(z), and all φj are bounded holomorphic single valued func-

tions. By (3), one has

ψ∗ωBerg ≥ −i
φ∗(∂l) ∧ φ∗(∂l)

l2

Then, the lower bound (19) comes from (3) and the following estimates, that follows
easily from the expression of the function l :

l ○ φ(z) = −∑
q≤k

τq

2π
log ∣zq ∣ +O(1)

φ∗(∂l) = − 1

8π
∑
q≤k

τq
dzq

zq
+∑
q≤k

O(∣zq ∣ε−1)

for some ε > 0. In each of these expressions, O(f) denotes a function or 1-form on Uα
with possibly multivaluate coefficients, with absolute value bounded from above by a
multiple of f . To obtain the second estimate, note that ∂j(zαj,qj ) = αj,qzαj,q−1 if αj,q > 0.

(ii) Let us prove the result in the case of Proposition 7.1 (2), with all the τq > 0 for
1 ≤ q ≤ k. Then, with the notation of Section 2.3.3, the volume form on Sn is

ωnSn
n!

= 1

ln+1
idy′1∧dy′1∧. . .∧idy′n−1∧dy′n−1∧

i

4

⎛
⎝
dyn + ∑

1≤j≤n−1

y′jdy
′
j

⎞
⎠
∧
⎛
⎝
dyn + ∑

1≤j≤n−1

y′jdy
′
j

⎞
⎠
.

Thus, pulling back this form by the multivaluate expression (14) yields an upper bound

ωnX
n!

≤ C 1

[−∑q≤k log ∣zq ∣]n+1

⋀1≤j≤k idzj ∧ dzj
∏q≤k ∣zq ∣2

as z = (z1, . . . , zn) goes to the boundary. The expression above is integrable on (∆∗)k ×
∆n−k, which gives the result. The other cases can be proved with a similar computation.

�

The following fact must be well-known to experts, but we prefer to recall a proof for
completeness. In Remark 4.1, we used this proposition to show that the open part of
the variety X∗ is not a ball quotient.

Proposition 7.8. Let X be a smooth projective variety, endowed with a SNC divisor
D, and let X ∶= X − D. Assume that X = Γ/Bn is a ball quotient by a subgroup
Γ ⊂ Aut(Bn) that acts freely and properly discontinuously. Then Γ is a lattice i.e. it
has finite covolume. At least one component of D must be birational to a quotient of an
abelian variety by a finite group.

Proof. Let hX be the metric descended on X from hBn on Bn. By Lemma 7.7 applied
on a set of polydisks covering D, we deduce that hX has finite volume. Hence Γ is a
lattice. Let Γ′ ⊲ Γ be a normal subgroup of finite index such that Γ′ has only unipotent
parabolic isometries, and let G ∶= Γ′/Γ. Let X ′ ∶= Γ′/B

n
, and let X ′ → X be the
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associated covering with Galois group G. Since Γ′ has unipotent parabolic isometries,
the variety X ′ admits a minimal smooth compactification Y ′ with boundary made of a
disjoint union of abelian varieties.

Denote by p ∶X ′ →X the normalization of X in the function field of X ′. The variety

X
′

has at most klt singularities by [KM98, Corollary 5.20], and thus one may apply

[Den22, Lemma A.4] to deduce the existence of a birational morphism f ∶ X ′ → Y ′

sitting in a diagram

X
′

Y ′

X G/Y ′

f

p

g

In this diagram, the existence of g comes by taking the quotient of f by G, using the

fact that X = G/X
′
. Then, since f is birational, so is g; this implies that for any

boundary component of G/Y ′
, there is a component of D =X −X that is birational to

it. This gives the result. �

7.1.5. Local limit of the period map across the boundary. Passing to the limit Im(wj)Ð→
+∞ (j ∈ J), we see that the expressions (12) and (13) induces a holomorphic map on
{0, . . . ,0} ×∏j>k ∆, with values in either in Bn or in Cn−1.

Let us introduce a definition to encapsulate the behaviour of this limiting map; in
the next section, this definition will become the local model of the global extension of
the period map across the boundary.

Definition 7.9. Let ψ0 be a holomorphic map on {0}k ×∆n−k, with target space to be
decided below. We say that ψ0 is a limiting map for ψ, with limit point b∞ ∈ Bn if one
of the following occurs.

(1) One has b∞ ∈ Bn. Then ψ0 takes its values in Bn. There exist B ∈ PU(n,1) such
that B ⋅ b∞ = o ∈ Bn, real numbers (αp,q)1≤p≤n,1≤q≤k in [0,1) and a holomorphic

map ϕ ∶X → Cn such that for any w = (w1, . . . ,wk, zk+1, . . . , zn) ∈ X̃, one has

B ⋅ ψ(w) = (e2iπ∑q≤k α1,qwqϕ1(z), . . . , e2iπ∑q≤k αn,qwqϕn(z)) , (21)

and for any point z = (0, . . . ,0, zk+1, . . . , zn), one has

B ⋅ ψ0(z) = (δ1ϕ1(z), . . . , δnϕn(z)) (22)

where zq = e2iπwq for all q, and δj ∈ {0,1} equals 1 if and only if all αj,q are zero
for 1 ≤ q ≤ k.

(2) One has b∞ ∈ ∂Bn. Then ψ0 takes its values in Cn−1.
If we let φ ∶= φb∞ ∶ Bn Ð→ Sn be the Siegel presentation of the ball with respect

to b∞, there exists B ∈ PU(n,1) fixing b∞, real numbers (αp,q)1≤p≤n−1,1≤q≤k in
[0,1), real non negative numbers (τq)1≤q≤k, not all zero, and a holomorphic map

ϕ ∶X → Cn such that for any w = (w1, . . . ,wk, zk+1, . . . , zn) ∈ X̃, one has

B ⋅ψ(w) = φ−1(e2iπ∑q≤k α1,qwqϕ1(z), . . . , e2iπ∑q≤k αn−1,qwqϕn−1(z), ϕn(z) +∑
q≤k

τqwq) (23)

and for any z = (0, . . . ,0, zk+1, . . . , zn), one has

B ⋅ ψ0(z) = (δ1ϕ1(z), . . . , δn−1ϕn−1(z)) (24)
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where zq = e2iπwq for all q. In this last equation, the action of B on Cn−1 is
induced by the quotient map Wb → Sim(Cn−1), and again δj ∈ {0,1} equals 1 if
and only if all αj,q are zero (1 ≤ q ≤ k).

Remark 7.10. In case (1), unless all Aj are trivial for all j ∈ J1, kK, there is at least one δj
which is zero. In this case, the map ψ0 actually takes its values in a smaller dimensional
ball given by the intersection of Bn with an affine subspace.

Proposition 7.1 now allows to construct the limiting map from ϕ. Inspecting (12)
and (13) permits indeed to obtain it simply by taking the limit of the corresponding
multivaluate map, as expressed in the next proposition.

Proposition 7.11. With the notation of Section 7.1.1, there are two possible cases:

(1) the limit b∞ = limπ(w)→0ψ(w) exists in Bn. In this case, for all z ∈ {0}k ×∆n−k,
the following limit

ψ0(z) ∶= lim
π(w)→z

ψ(w)

is also well-defined as a point in Bn, and the map ψ0 is a limiting map for ψ.
Unless the monodromy is trivial, the map ψ0 factors through a totally geodesically
embedded ball

⋂
1≤j≤k

Stab(Aj) ⊊ Bn.

(2) the limit b∞ = limπ(w)→0ψ(w) exists in ∂Bn. Let φ ∶= φb∞ = Bn → Sn be the
Siegel model at b∞, and consider the composition πn−1 ∶= projCn−1 ○ φ, where
projCn−1 is the projection on the first coordinates. Then, for all z ∈ {0}k ×∆n−k,
the following limit

ψ0(z) ∶= lim
π(w)→z

πn−1(ψ(w))

is well-defined as a point in Cn−1, and the map ψ0 is a limiting map for ψ.

7.2. The global case. We will now consider the global situation, and describe the
structure of period maps induced on the boundary of a complex open variety. Let us
introduce the following geometric data.

(1) Let X be a complex manifold of dimension n, and let D be a simple normal
crossing divisor on X. We let X =X −X, and pick a base point o ∈X. For each
j ∈ J0, nK, we let Dk ⊂D the smooth k-codimensional locally closed stratum.

(2) Let ρ ∶ π1(X,o) → PU(n,1) be a representation, and consider a ρ-equivariant

map ψ ∶ X̃ → Bn.
(3) Let k ∈ J1, nK and Y ⊂ Dk be a connected component. We fix Y ′ → Y , a

connected component of the covering over Y induced by X̃ →X, in the sense of
Section 2.5.

We are going to construct a representation σ of π1(Y ) and a σ-equivariant map ψ0

on Ỹ , with values in Bn or Cn−1, so that this data is locally compatible with ψ in the
sense of Definition 7.9. We start by constructing the map.

7.2.1. Construction of the map. To properly describe the local model of the limiting
map in our global situation, we need to introduce a few more notation.
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Notation 7.1. Let y ∈ Y be any point, and let U ≅ (∆∗)k × ∆n−k ⊂ X be a pointed
polydisk centered at y. Consider the fiber product

U ×X X̃ X̃

U X

The manifold U ×X X̃ is a disjoint union of copies of open manifolds of the form (∆∗)l×
Hk−l ×∆n−k. If V is one of these components, its universal covering is Ṽ ≅ Hk ×∆n−k,
and we will denote by ψV ∶ Hk ×∆n−k → Bn the composition of the natural maps

Ṽ → U ×X X̃ → X̃ → Bn.

Proposition 7.12. In the following, we will pick y′ ∈ Y ′ with projection y ∈ Y . We then

introduce V
π→ U as above with U is centered at y, where V is the connected component

of U ×X X̃ neighboring y′ in the sense of Section 2.5.
With this notation, there are two possibilities.

(1) For all y′ ∈ Y ′ as above, the limit ψ0(y′) ∶= limπ(z)→y ψV (z) exists in Bn. This

limits depends only on y′, but not on the choice of U .
The map ψ0 ∶ Y ′ → Bn is holomorphic. Unless the monodromy around all

component of D containing Y is trivial, the map ψ0 factors through a totally
geodesically embedded ball Bp ↪ Bn (p < n).

(2) There exists b∞ ∈ ∂Bn−1 such that for all y′ ∈ Y ′ as above, one has limπ(z)→y ψV (z) =
b∞. In this case, for all such y′ ∈ Y , the limit

ψ0(y′) ∶= lim
π(z)→y

projCn−1 ○ φb∞ ○ ψ(z)

exists in Cn−1.
The map ψ0 ∶ Y ′ → Cn−1 is holomorphic.

To prove this proposition, the only thing left to check is there cannot be two points
of Y ′ that do no satisfy the same item in Proposition 7.11. This simply comes from the
connectedness of Y ′, and the fact that each of these two situations is satisfied on an
open subset of Y ′.

7.2.2. Construction of the induced representation. We are now going to construct a
representation of π1(Y ) (or even more precisely, of π1(Y )/π1(Y ′)), under which the
map ψ0 constructed above is equivariant. To define the image of a loop γ inside Y , the
idea will simply be to move it a little bit to get a loop µ inside X, and then to check
that the image ρ(µ) ∈ PU(n,1) has a well-defined action on the image of ψ0, that does
not depend on the choice of the moved loop.

We fix a base point b0 ∈ Y , and consider a pointed polydisk U = (∆∗)k×∆n−k adapted
to D and centered at b0. We let W ↪X be a euclidean tubular neighborhood of Y with
C∞ projection map q ∶W → Y . We pick a base point b ∈W ∩X so that q(b) = b0. Let
γ1, . . . , γk ∈ π1(X, b) be the classes of meridian loops around the components of D, and
let Aj = ρ(γj) ∈ PU(n,1).

Consider now a class [γ] ∈ π1(Y, b0), for which we want to construct the image
σ([γ]). The lift of γ to Y ′ connects two points y′1, y

′
2 in the fiber of Y ′ → Y above
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b0. Let V1, V2 ⊂ U ×X X̃ be the connected components neighboring y′1, y
′
2 (see again

Section 2.5).

We choose a loop µ in X, based at b, that is also a section of the restriction to γ of
the projection q ∶W ∩X → Y . Note that the class [µ] ∈ π1(X, b) depends on the choice

of µ, but only up to a product of some of the γj . Then the lift of µ to X̃ links a point
of V1 to a point in V2, so since ψ is ρ-equivariant, one has for all y ∈ V2:

ψ∣V2(µ ⋅ y) = ρ([µ]) ⋅ ψ∣V1(y). (25)

We will now construct the image of [γ] by passing to the limit in the previous equa-
tion. Again, one has two possibilities.

Case 1 of Proposition 7.12. Denote by ψ1
0 ∶ U1 → Bn and ψ2

0 ∶ U2 → Bn be the limiting
maps for ψ∣V1 and ψ∣V2 (where U1, U2 ⊂ Y ′ are n−k-dimensional polydisks). In this case,
the two limiting maps factor by a ball Bp ⊂ Bn that is fixed by all Aj . We may assume
that p is the smallest possible dimension.

Letting y tend to a point of {0}k ×∆n−k in (25) shows that

ψ2
0(γ ⋅ y′) = ρ([µ]) ⋅ ψ1

0(y′)
for all y′ ∈ U1. By analytic continuation, one sees that the element ρ([µ]) is an isometry
of Bn that preserves the image of ψ0 ∶ Y ′ → Bn; it must then also preserve the smallest
dimensional ball Bp that contains it.

Thus, ρ([µ]) induces an element σ([γ]) ∈ Aut(Bp). This element does not depend
on the choice of µ, since as we said earlier, two different choices differ by a product of
Aj , all of them fixing Bp.

It is then straightforward to check that we have obtained a morphism of groups

σ ∶ π1(Y, b0)→ Aut(Bp).
The map ψ0 ∶ Y ′ → Bp is equivariant by construction.

Case 2 of Proposition 7.12. The discussion is completely parallel to the first case. This
time, one gets a representation

σ ∶ π1(Y, b0)→ Sim(Cn−1)
with respect to which the map ψ0 ∶ Y ′ → Cn−1 is equivariant.

8. Uniformizing maps in presence of isolated pure log-canonical
singularities

In the rest of this section, we will fix the following data:

(1) X∗ is a normal projective variety with isolated log-canonical singularities. De-
note by X its smooth locus, and let σ ∶ X → X∗ be a log-resolution of sin-
gularities. We assume that all the exceptional divisors in this resolution have
discrepancy equal to −1.

(2) ρ ∶ π1(X)→ PU(n,1) is a representation ;

(3) ψ ∶ X̃ → Bn is an étale holomorphic map which is ρ-equivariant.

Under these conditions, the metric ψ∗hBn on X̃ is π1(X)-invariant, and descends to
X to define a metric that we will denote by hX .

We will prove the following result.
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Theorem 11. Under the assumptions made at the beginning of the section, the following
two claims hold.

(1) the pullback metric ψ∗hBn is complete on X̃ ;
(2) the map ψ is a biholomorphism.

Let us first remark that the first point implies the second one, by the classical
Lemma 9.3, applied to Y = X̃ and Z = Bn. The main problem will then be to show the
completeness of the metric ψ∗hBn , or equivalently of hX .

The core of the proof will be based on the following dichotomy, whose second case will
eventually lead to a contradiction, later allowing us to prove that the pull-back metric
hX is complete on X. This result claims essentially that in our situation, the limit of
the period map sends any given connected component of the exceptional divisor to a
single point, which is either in Bn or in its boundary.

Proposition 8.1. Let q ∈ Xsing be a singular point, and let E ⊂ X be the exceptional

divisor over q. Let Ω ⊂ X∗ be a closed neighborhood of q such that σ−1(Ω − {q}) ⊂ X
is contained in a finite union of pointed polydisks centered around points of E. Let
Ω0 = Ω − {q}, and fix a connected component Ω̃0 of π−1(Ω0) ⊂ X̃.

For each smooth strata Y of E, we will denote by Y ′ → Y the covering induced by
Ω̃0 → Ω0.

Then one of the following two cases holds.

(1) there exists b∞ ∈ ∂Bn such that for any smooth strata Y of E, the map ψ has a
limit along Y ′ as in Proposition 7.12 (2). In this case, for any closed neighbor-
hood Ω ∋ q small enough, the pullback metric hX is complete on Ω − {p}.

(2) there exists b∞ ∈ Bn such that for any smooth strata Y of E, the map ψ has a
limit along Y ′ as in Proposition 7.12 (1). The induced map on Y ′ is constant,
equal to b∞.

As we explained above, we will later show that the second case cannot happen.

Let us prove Proposition 8.1. There are two possibilities to distinguish.

Case 1. All smooth strata Y of E are in the situation of Proposition 7.12 (2) i.e. along
all components Y ′, the map ψ has limiting map towards some bY ′ ∈ ∂Bn.

Lemma 8.2. All bY ′ are equal, i.e. there exists b∞ ∈ ∂Bn such that bY ′ = b∞ for all Y
and Y ′ as above. In the local description of Proposition 7.1 (2), all the τj are non-zero.

Proof. Pick two smooth strata Y1, Y2 of E, and let Y ′
1 , Y ′

2 be two arbitrary components
of their induced coverings. For j = 1,2, let Uj ⊂ Ω0 be a pointed polydisk adapted to Yj ,

and let U ′
j ⊂ Ω̃0 be the connected component of Uj ×Ω0 Ω̃0 neighboring Y ′

j . Then, since

Ω̃0 is connected, one can find a path λ ∶ [0,1]→ Ω̃0 linking U ′
1 to U ′

2.

Let U1 = V0, V1, . . . , Vm = U2 be a sequence of polydisks in Ω0 adapted to E containing
the image of π ○ λ, and let V ′

0 = U ′
1, V

′
1 , . . . , V

′
m = U ′

2 be the connected components of

the Vj ×X Ω̃0 crossed by λ. Then, on each pair (Vj , V ′
j ), the map ψ is described as in

Definition 7.9 (ii). As E is connected, one may always shrink Ω0 to assume that two
consecutive Vi are in contact with a common stratum of E. By continuity, one sees that
the limiting point in ∂Bn does not vary as one moves along λ, and thus bY ′

1
= bY ′

2
.

Since the map has a limit in ∂Bn for any component of E, this implies that their
corresponding translation length τj ∈ R+ must be positive. �
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Since the covering Ω̃0 is connected, one sees from the local description of Section 7.1.5
that the point bF does not vary if one changes strata continuously in a given connected
component of E.

Thus, we have proven that we are in the situation of Proposition 8.1 (1): this implies
that the metric hX is complete near p:

Lemma 8.3. Assume that Ω is such that σ−1(Ω0) ⊂ X̃ is contained in a finite union
of pointed polydisks on which ψ and its limiting map near E are of the forms (23) and
(24). Then the pull-back metric hX is complete on Ω − {q}.

Indeed, we can apply Lemma 7.7 to each polydisk above, using the positivity of all
the translation lengths τj .

Case 2. There is at least one smooth stratum Y ⊂ E and a connected component Y ′ of
the induced covering on Y , that is in the situation of Proposition 7.12 (1). As explained
in Section 7.2, we deduce the existence of a representation σ ∶ π1(Y )→ Aut(Bp) (p < n)
and a σ-equivariant map ψF ∶ Y ′ → Bp ⊂ Bn.

On the other hand, the quasi-projective variety Y is special by Corollary 5.3, so the
map ψY is constant by Theorem 10. This proves that locally around each stratum of
E, the map ψ is either in the situation of Definition 7.9 (1) (with a map ψ0 constant on
each connected component of Y ′), or in the situation of Definition 7.9 (2).

With the exact same proof as in Lemma 8.2, one sees by connectedness of Ω̃0 and
E that the only possibility is that the first situation is realized around any stratum Y ′

with the same constant limiting map ψ0 = b∞ ∈ Bn.

Lemma 8.4. In the situation of Case 2, one has the following.

(i) The metric completion of Ω0 for the distance induced by hX is obtained by adding
only one point.

By (i), we may endow Ω = Ω0∪{q} with a complete metric induced by hX . Let Γ ⊂ π1(X)
be the subgroup generated by the meridian loops around the components of E. Let r0 > 0
be small enough so that M0 ∶= BhX (q, r0) − {q} ⊂ Ω, and let M̃0 ⊂ Ω̃0 the inverse image
of M0 by π. Let N = BhBn (b∞, r0) − {b∞}.

(ii) Then M̃0 is invariant under the action of Γ, and the restriction ψ ∶ M̃0 → N is a
Γ-equivariant map that is étale and isometric at any point.

Proof. (i) The description of (21) shows that

∣∣dψ∗(vm)∣∣hBn Ð→
mÐ→+∞

0

if (vm) is a sequence of lifts of tangents vectors to X, that tends on X to a tangent vector
to E. Thus, one sees by connectedness of E that if (am), (bm) are Cauchy sequences in
Ω0 that tend to different points of E, that one has

dhX (am, bm) Ð→
mÐ→+∞

0.

This shows that the metric completion can be obtained by adding a single point.

(ii) This point is clear, since the metric ψ∗hBn is invariant under the action of Γ. �

Lemma 8.5. The two assumptions of Lemma 9.1 are satisfied, with M = M̃0, g = hX
and h = hBn. In particular, M̃0 ≅ N .
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Proof. For later reference, let us first remark that since for any r ∈ (0, r0), the set
Ar ∶= Ω0 −BhX (q, r) is compact (recall that Ω is closed), then one can find εr > 0 such
that for any p ∈ Ar, the injectivity radius of hX at p is higher than εr.

Let us prove that the two assumptions hold. In the proof, the notation ψ will denote
the restriction ψ∣M̃0

. We fix y ∈ N , and let r1 ∶= dhBn (b∞, y) ∈ (0, r0). Choose any

r ∈ (0, r1).
(1) Pick any x ∈ ψ−1(y). Remark that dhX (q, x) ≥ dhBn (b∞, y) > r since the differential
of ψ being isometric at any point, the map ψ cannot increase distances. This proves
that x ∈ Ar, so the injectivity radius at x is higher that εr. We may decrease εr a bit so
that B(y, εr) injects in N ; note that this can be done independently of x.

We then have a commutative diagram

TR
x M̃0 ≅ TR

XÑ0

B(0, εr)

B(x, εr) B(y, εr)
exp

∼ exp
∼

ψ

The exponential arrows are diffeomorphic since εr is smaller than the injectivity radius
at x. This proves that the bottom line is a global isometry, and thus implies that the
first assumption is satisfied, since εr is independent of x.

(2) Let r′ > r0 be small enough so that BhX (q, r0) − {q} ⊂ Ω0, and let K = B(b∞, r′) −
B(b∞, r). It is a compact subset, clearly invariant under the action of Γ ⊂ Aut(Bn),
since Γ leaves b∞ fixed.

We may choose L ⊂ ψ−1(K) = BhX (q, r′)−BhX (q, r) as follows. First, let U1, . . . , Um ⊂
Ω0 be a family of pointed polydisks adapted to E ⊂ X, that completely cover E, and
which are closed in Ω0. For each polydisk Uj , we may chose a closed subset Fj ⊂ Ω̃0,
that is a fundamental domain for the action of the meridian loops of Uj .

Now, if we let L ∶= (⋃mj=1 Fj)) ∩ ψ−1(K), one sees that the orbit Γ ⋅ L fully covers

ψ−1(K), which gives the result.

We may now apply Lemma 9.1, since N ≅ Bn − {0} is simply connected (recall that
n ≥ 2).

�

Lemma 8.6. The situation of Proposition 8.1 (ii) cannot happen.

Proof. Under the assumptions of Proposition 8.1 (ii), we have proven that M̃0 identifies
with Bn − {0}, on which Γ acts as a subset of U(n). The manifold M0 is then the

quotient Γ/M̃0 . For M0 to be a separated topological space, the group Γ must be

discrete, and thus finite since U(n) is compact. But then, this shows that the analytical
space BhX (q, r0) =M0 ∪ {q} can be seen as a quotient:

BhX (q, r0) = Γ/Bn .
Hence q ∈X∗ is actually a quotient singularity, and thus is klt. We obtain a contradiction
with the assumption made on the discrepancies of X∗. �
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All in all, we have proven that the situation of Proposition 8.1 holds at any singular
point q ∈ X∗, which proves that the metric hX is complete on the open part X. This
ends the proof of Theorem 11.

9. Results from topology

9.1. Criteria for universal coverings.

Lemma 9.1. Let (M,g) and (N,h) be two Riemannian manifolds. Let ψ ∶ M Ð→ N
be a differentiable map that is étale and isometric at any point of M . Let Γ be a group
that acts by isometries on M and N , such that ψ is Γ-equivariant.

We make the following two assumptions.

(1) For any y ∈ N , there exists ε > 0 such that for any x ∈ ψ−1(y), the map

ψ∣B(x,ε) ∶ B(x, ε)→ B(y, ε)
is a diffeomorphism;

(2) for any y ∈ N , there exists a Γ-invariant compact subset K ⊂ N containing y,
and a compact subset L ⊂ ψ−1(N) such that

ψ−1(K) = ⋃
γ∈Γ

γ ⋅L.

Then ψ is a covering. In particular, if N is simply connected, then ψ is a diffeomor-
phism.

The result will follow for the following more precise claim, that implies immediately
that ψ is a covering.

Claim 9.2. For any y ∈ N , there exists ε > 0 such that one has a disjoint union:

ψ−1(B(y, ε)) = ⊔
x∈ψ−1(y)

B(x, ε).

Proof of Claim 9.2. Suppose the contrary. Then we may find y ∈ N and two sequences
(an), (bn) ∈ ψ−1(y)N of pairwise distinct points such that

∀n, B(an,2−n) ∩B(bn,2−n) ≠ ∅.
In particular, one has lim

nÐ→+∞
dg(an, bn) = 0. Let now K and L be as in assumption (2).

By the defining property of L, there exists a sequence (γn) ∈ ΓN such that γn ⋅ an ∈ L
for all n ∈ N. One also has

ψ(γn ⋅ an) = ψ(γn ⋅ bn) = γn ⋅ y ∈K (26)

for all n, since K is Γ-invariant and ψ is Γ-equivariant. Thus, we may extract sequences
to assume that γn ⋅ an Ð→ x∞ ∈ L, and γn ⋅ y Ð→ y∞ ∈ K. One has ψ(x∞) = y∞ by
continuity of ψ. Also, since d(γn ⋅an, γn ⋅bn) = d(an, bn)Ð→ 0, one has also γn ⋅an Ð→ x∞.
But now (26) contradicts our assumption (1) that implies that ψ must be injective in a
neighborhood of x∞. �

Lemma 9.3. Let Y,Z be connected complex manifolds, and let ψ ∶ Y → Z be a holo-
morphic map, étale at any point. Endow Z with a hermitian metric hZ , and assume
that Z is complete without self-crossing geodesic. If the pullback ψ∗hZ is complete, then
ψ is a biholomorphism.
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Proof. ψ is surjective. Choose a base-point b ∈ Y , and let z ∈ Z. Since Z is complete
and connected, one can link ψ(b) to z by a geodesic γ. Let l ∈ R be its length and
v ∈ TbY be a vector such that ψ∗(v) directs γ at z. Since Y is complete, one can
consider the endpoint y ∈ Y of the geodesic starting at b, directed by v with length l.
Since ψ preserves geodesics, one has ψ(y) = z.
ψ is injective. Let y, y′ ∈ Y be two different points such that ψ(y) = ψ(y′). Let γ
be a geodesic linking y to y′. Then its image by ψ must be a non-trivial self-crossing
geodesic, which does not exist by assumption.

This gives the result. �
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