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Abstract

The penetration of renewable energies requires additional storages to deal with
intermittency. Accordingly, there is growing interest in evaluating the usage value
(opportunity cost) associated with stored energy in large storages, a cost obtained by
solving a multistage stochastic optimization problem. Today, to compute usage values
under uncertainties, an adequacy resource problem is solved using stochastic dynamic
programming assuming a hazard-decision information structure. This modelling as-
sumes complete knowledge of the coming week uncertainties, which is not adapted
to the system operation as they occur at smaller timescale (hour). This is why, in
this paper, we propose to model the decision-making process with, on the one hand,
two timescales (weekly time decomposition, but uncertainties that are realized hour by
hour, and hourly energy balance constraints) and, on the other hand, a decision-hazard-
decision information structure considering both planning and recourse decisions. This
structure is used to decompose the multistage decision-making process into a nonan-
ticipative planning step in which the binary on/off decisions for the thermal units are
made, and a recourse step in which the power modulation decisions are made once
the uncertainties have been disclosed. We perform time decomposition by stochastic
dynamic programming, and not by SDDP, due to the presence of binary on-off decision
variables. In a numerical case, we illustrate how usage values are sensitive to how the
disclosure of information is modelled.

Keywords.Energy system modelling, decision-hazard-decision information structure, two
timescales, stochastic multistage optimization, stochastic dynamic programming
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1 Introduction

In §1.1, we outline the context of usage values in prospective studies. In §1.2, we sketch the
main features of our contribution and then, in §1.3, we make comparisons with the literature.
We detail the structure of the paper in §1.4.

1.1 Context: usage values in prospective studies

In energy systems, prospective studies aim at identifying possible curtailment in demand or
production, network congestions, or the non-satisfaction of greenhouse gas emission targets.
This is done by means of simulations. The simulation of an energy system operation is carried
out by solving its associated adequacy resource problem. Mathematically, the adequacy
resource problem is a multistage optimization problem that aims to allocate, hour by hour,
the dispatchable production means such that the demand is met while minimizing the overall
production cost. The problem is formulated from the point of view of a central planner who
takes all decisions in the system for the common good. In such case, the production costs
are fixed and resources are allocated by merit order, i.e. the cheapest units are used before
the most expensive ones. Since the electrical demand and the availability of the thermal
units are uncertain, the adequacy resource problem is stochastic. This problem is naturally
formulated using two timescales where the planning is done in coordinated manner for the
week ahead but the hourly energy balance has to be met, that is, a weekly timescale and
an hourly timescale. In this context, the question of when the energy in storages is going to
be used arises. Usage values are the storages’ prices — a price signal that makes it possible
to choose when and how much of its energy is used — that depend on the energy system
setting.

We now discuss how usage values are computed for a system composed of several stor-
ages and thermal units. Stochasticity is introduced by the residual demand of the system
(difference between demand and non-dispatchable production) and the availability of the
thermal units (outages). We do not focus on how the uncertainty scenarios are generated,
but on information structure, that is, on how the available information about these scenarios
is disclosed throughout the decision-making process. The dynamics in the storages introduce
temporal coupling in the problem, leading to a multistage stochastic optimization problem.
A standard way to solve it is by dynamic programming. Then, we obtain usage values by
differentiating the Bellman value functions with respect to the storage levels. Once the usage
values are calculated, one can carry out prospective studies by simulation. Indeed, one can
compute a storage’s management policy to be used in the resolution of the adequacy resource
problem. However, it is important to highlight that the adequacy resource problem studied
here does not intend to yield an implementable operational schedule for the system, but to
give an overview of the system operation.

In practice, the French TSO Réseau de Transport d’Electricité (RTE)1 is dealing with
such prospective studies using the open-source tool Antares [6]. RTE tackles the resolution

1https://www.rte-france.com/
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of the multistage stochastic optimization problem associated with the adequacy problem
as follows. The timespan is one year, with a weekly timescale and an hourly timescale.
Dynamic programming is performed at the weekly timescale: a Bellman value function is
computed at the beginning of each week, anticipating the coming uncertainties over the
week and respecting the hourly energy balance equations within the week. This structure
assumes that all the decisions in a week are made with full knowledge of the uncertainties of
the week. When the dispatchable units are “fast” to start (like hydropower or gas turbine),
it is reasonable to assume that we can “wait-and-see” the uncertainties before making the
decisions. By contrast, as “slow” dispatchable units (like nuclear or coal) need more time
to start producing, start or stop decisions must be made before the uncertainties are known
(especially the outages), and “wait-and-see” decisions are not adapted. This is why, our
main contribution focuses on informations structures suited to handle both fast and slow
dispatchable units submitted to outages, with two timescales.

1.2 Our contributions

Information structures are used to model the information available at each stage of the
decision-making process. The current practice at RTE, as described just above, corresponds
to what we call weekly hazard-decision. Indeed, this structure assumes that all the decisions
in a week are made with full knowledge of the uncertainties of the week.

In §1.3, we present papers that deal with so-called hazard-decision, decision-hazard and
full decision-hazard, especially in relation to the SDDP algorithm [11]. By comparison, our
contributions in this paper are the following.

• We study decision-hazard-decision information structures with two timescales (already
introduced in [4]), to address the usage value calculation by keeping track of hourly
constraints but allowing a weekly decomposition of the yearly problem.

• We consider a model with binary variables to model the on/off decisions for the thermal
(dispatchable) units, and solve the stochastic dynamic programming (SDP) equations
in a decision-hazard-decision framework without relaxing these binary decisions.

Regarding this second item, the energy systems that we consider include, in addition to
storage, thermal units that may be slow to go from off to on (and reverse), and which may be
subject to uncertain outages. The on/off decisions are naturally modelled as binary decisions
and, since we consider a problem with a small space state dimension, we choose to use SDP
(with special versions of Bellman equations for nonanticipative information structures at the
week timescale). The choice of using SDP is on purpose, and lies in the fact that we seek
to present a framework capable of handling binary or discrete variables within the planning
decisions (switch on/off), in which case SDDP is not suitable, although variants like SDDiP
[15] exist. The scalability of the problem concerning the dimension of the state space will
be addressed in future work by applying spatial decomposition techniques.

We now sketch what we mean by decision-hazard-decision information structures with
two timescales. First, we describe the ideal case of an information structure with weekly
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planning decisions and hourly recourses, as illustrated in Fig. 1. We do not consider that,
when we make a (planning) decision at the beginning of the week, we know in advance the
hourly random variables that will materialize during the coming week. Rather, at the end
of every hour, we allow for an hourly decision variable (recourse) to handle hourly balance
constraints, knowing all uncertainties up to this hour.

D weekly
(planning)

0 1 h− 1 h h+ 1 167 168

D hour 1
(recourse)

D hour h-1
(recourse)

D hour h
(recourse)

D hour h+1
(recourse)

D hour 167
(recourse)

D hour 168
(recourse)

Figure 1: Sketch of information structure with weekly planning decisions and hourly re-
courses. An arrow maps the available information towards the decision, so that, here, the
information structure is nonanticipative as all arrows go either down or from the left to the
right.

We denote this information structure with weekly planning decisions and hourly recourses
by DHDh (weekly D and hourly HD), and symbolically represent it by (1):

DHDh :

one week︷ ︸︸ ︷
D− HD− · · · − HD︸ ︷︷ ︸

168 hours

. (1)

The (backward) Bellman equation corresponding to DHDh can be established from [4], and
is sketched in (2) (see also §B.3):

cost
to go
DHDh

= (2)

min
D weekly
(planning)

E

[
min

D hour 1
(recourse)

E
[
. . . min

D hour 167
(recourse)

E
[

min
D hour 168
(recourse)

(
weekly
cost +

next cost
to go
DHDh

)
| H1,H2, . . . ,H167

]
· · · | H1

]]
.

The obtained Bellman functions are optimal under a (debatable) assumption of statistical
independence of the random variables (weather conditions, demand, outages, etc.) between
weeks. As commonly done with stochastic dual dynamic programming (SDDP), we could
account for lag variables to be added aside storage, hence making an extended state. Of
course, as we use SDP, we cannot extend the one dimensional state (storage level) with more
than three or four entries. In the paper, we choose to keep only the storage as state.

Even without possible lag variables, the Bellman equation sketched in (2) is numerically
untractable for several reasons: because of the DH part in the information structure, we
cannot use SDDP without adaptation; due to the presence of binary decision variables (on-
off), we cannot resort to the SDDP algorithm; as we do not suppose statistical independence
of the hourly random variables inside a week, the intra-week problem is out of numerical
reach.
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This is why our approach consists in relaxing the problem by collecting the hourly decision
variables inside the week in a single vector decision (recourse) made at the end of the week.
With this, the DH phase is now followed by a hazard-decision (HD) phase, making the whole
information structure decision-hazard-decision at the weekly timescale (DHD), as illustrated
in Fig. 2.

D weekly
(planning)

0 1 h− 1 h h+ 1 167 168

D weekly
(recourse)

Figure 2: Decision-hazard-decision information structure at the weekly timescale. An arrow
maps the available information towards the decision, so that, here, the information structure
is partly anticipative as some arrows go from the right to the left.

This relaxed version condenses all the hourly recourse decisions in one vector decision,
leading to a more manageable expression for the Bellman equations sketched in (3) (see
also §4.3):

cost
to go
DHD

= min
D weekly
(planning)

E

[
min

D weekly
(recourse)

(
weekly
cost +

next cost
to go
DHD

)]
. (3)

The DH phase (weekly planning) is now followed by a hazard-decision (HD) phase (weekly
recourse), making the whole information structure decision-hazard-decision. With this ap-
proach, we are able to handle a DHD information structure without having to extend the
state by adding a control aside, contrarily to other approaches (see discussion in §1.3.1).

1.3 Comparison with the literature

In §1.3.1, §1.3.2 and §1.3.3, we sketch the contribution of three papers that deal with
decision-hazard and hazard-decision information structures in multistage stochastic opti-
mization problems. We present them par decreasing order of proximity with our work.
Finally, in §1.3.4, we posit our contribution in comparison with the literature in a synthetic
fashion.

1.3.1 A. Street, D. Valladão, A. Lawson, and A. Velloso. [13] Applied Energy,
2020

The paper [13] is a nice one whose title Assessing the cost of the hazard-decision simplifi-
cation in multistage stochastic hydrothermal scheduling clearly indicates the interest of the
authors to discuss the impact of the hazard-decision simplification in multistage stochastic
optimization problems. We share the same preoccupation as [13].
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In [13, Sect. 3], the authors focus on the handling of DH information structure in multi-
stage stochastic optimization problems formulated with continuous decision variables, convex
costs and constraints, and linear dynamics. Their main preoccupation is how the SDDP al-
gorithm can be adapted to the DH setting. Thus, they make a stagewise independence
assumption and state Bellman equations without hint at a proof.

Starting from the Bellman equations [13, Equations (6)-(11)] in HD, they propose two
reformulations to handle DH. Decision variables are split in two subgroups: those made under
uncertainty (also called here-and-now, preventive) and those made after the observation
(wait-and-see, corrective).

• The fullDH-SDDP Equations [13, Equations (12)-(17)] — although called DH formula-
tion — can be interpreted as Bellman equations in DHD. Indeed, in the splitting of the
decision variables in two subgroups, the decisions made under uncertainty (here-and-
now, preventive) are the first D in the DHD information structure, hence are subject
to the nonanticipativity constraints [13, Equation (16)] in a two stage stochastic opti-
mization problem. The decisions made after the observation (wait-and-see, corrective)
are the last D in the DHD information structure, hence correspond to recourse decision
variables in a two stage stochastic optimization problem.

• ASDH-SDDP Equations [13, Equations (18)-(23)] and [13, Equations (24)-(31)] are
Bellman equations for value functions whose argument is an extended state (nonantic-
ipative controls are added aside the original state to make an extended state).

Our approach differs from ASDH-SDDP in that we do not extend the state. Our approach
is close to fullDH-SDDP, but is not restricted to continuous decision variables, convex costs
and constraints, and linear dynamics. We provide Bellman equations — whose derivation is
not given in the paper, as it is lengthy, but that can be established from [4] — for general
decision variables (continuous, discrete or mixed), costs and constraints (convex or not),
and dynamics (linear or not). In [13], Bellman equations are stated in the SDDP setting,
that is, for continuous decision variables, convex costs and constraints, and linear dynamics.
Moreover, we give a formal definition of DHD, independently of SDDP, whereas [13] evokes
DH and HD in the SDDP setting. Finally, we tackle the issue of DHD with two timescales,
whereas [13] deals with a single timescale.

Regarding the energy application, the authors focus on operation — that is, on find-
ing strategies to operate hydrothermal scheduling — whereas we focus on usage values in
prospective studies.

This said, let us insist that [13] is a nice contribution in raising awareness about the cost of
the hazard-decision simplification in multistage stochastic optimization problems in energy
systems — where slow activation thermoelectric units need to be scheduled as here-and-
now decisions, while fast-activating thermoelectric and hydroelectric units are considered as
wait-and-see decisions.
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1.3.2 D. Valladão, T. Silva, and M. Poggi. [14] Annals of Operations Research,
2019

To the difference with [13], the paper [14] is focused neither on energy systems, nor on the
DH information structure as no more than two pages are devoted to this issue. However, in
[14, Sect. 4], the authors consider a multistage stochastic optimization problem with risk con-
straints at every stage and, because of such a constraint, it would not make sense to know the
uncertainty in advance, which justifies a DH information structure. As the portfolio problem
under study is formulated with continuous decision variables, convex costs and constraints,
and linear dynamics, the authors resort to SDDP as resolution method. Then, the authors
discuss how to adapt SDDP to a DH formulation for the Markov chained stochastic dual
dynamic programming (MSDDP) algorithm. They propose to solve a two-stage problem for
each SDDP subproblem in the risk-constrained dynamic portfolio optimization context. A
Bellman equation is given in the linear case, without hint at a proof.

Thus, one year before [13] was published, [14] raises the point that the DH information
structure should be considered, a point with which we fully agree. Then, [14] proposes a way
to adapt the SDDP algorithm, without state extension (hence keeping the original state as
argument of Bellman functions). The approach is that of fullDH-SDDP in [13].

The comparison of [14] with our work is much more limited than with [13], since [14]
is not really focused on the DH information structure. Contrarily to [14], our approach
is not restricted to continuous decision variables, convex costs and constraints, and linear
dynamics. We provide Bellman equations — whose derivation is not given in the paper, as it
is lengthy, but that can be established from [4] — for general decision variables (continuous,
discrete or mixed), costs and constraints (convex or not), and dynamics (linear or not).
In [14], Bellman equations are stated in the SDDP setting, that is, for continuous decision
variables, convex costs and constraints, and linear dynamics. Finally, we tackle the issue of
DHD with two timescales, whereas [14] deals with a single timescale.

1.3.3 O. Dowson. [7] Networks, 2020

To the difference with [13], the paper [7] is not focused on the DH information structure
as it is only tackled in slighly more than one page in [7, §2.2 (Nodes)], and then in half
page in [7, §3.4 (Standart form)]. In [7, §2.2], the author adopts the formalism of stochastic
optimal control in discrete time. This done, HD and DH are defined in the framework of
state feedback policies: HD is when a policy depends both on current state and uncertainty,
whereas DH is when a policy depends only on the current state. Our approach is more
general in that the DHD structure is expressed in terms of measurability constraints, using
σ-fields generated by the uncertainty process. At the end of [7, §2.2], the author indicates
that it is possible to tranform a DH node into a deterministic node followed by a HD one
with an extended state space (as in ASDH-SDDP in [13]). Contrarily to [13] and [14], there
are no assumption of continuous decision variables, convex costs and constraints, and linear
dynamics up to [7, Sect. 4 (Proposed algorithm)]. In that, we share some proximity with [7].
For the rest, [7, Sect. 4 (Proposed algorithm)] deals with the HD information structure for
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problems that resort to linear programming.
All in all, we have little in common with [7]. The author indeed evokes DH and HD —

but the setting is not as formal as ours, and not as general — and does not consider DHD,
which is our main object of study. We provide Bellman equations — whose derivation is
not given in the paper, as it is lengthy, but that can be established from [4] — for general
decision variables (continuous, discrete or mixed), costs and constraints (convex or not), and
dynamics (linear or not). In [7, §3.4], a HD Bellman equation [7, Equation (3)] and a DH
Bellman equation [7, Equation (4)] are stated. Finally, we tackle the issue of DHD with two
timescales, whereas [7] deals with a single timescale.

1.3.4 Synthesis of our contributions in comparison with the literature

In Table 1, we highlight the main features of our contributions in comparison with [13, 14].

features [13] [13] [14] our paper
fullDH ASDH

general costs, constraints, dynamics ✓
binary decision variables ✓

SDP ✓
SDDP ✓ ✓ ✓

no state extension ✓ ✓
two timescales ✓

Table 1: Synthesis of our contributions in comparison with the literature

1.4 Structure of the paper

The paper is organized as follows.
In Sect. 2, we present the physical modelling of the problem. First we introduce the two-

timescale timeline, made of hours (because of hourly energy balance constraints) and weeks
(because of weekly planning of decisions). Second, we define the physical variables needed
to describe the system operation as well as the linking constraints and the economical cost
functions.

In Sect. 3, once the physical model is set, we move on to the mathematical formulation
of the adequacy resource problem as a multistage stochastic optimisation problem, focusing
on the current practice at RTE for the information structure modelling, that is, weekly
hazard-decision.

In Sect. 4, we present a decision-hazard-decision structure that considers both “here-
and-now” and “wait-and-see” decisions in the context of prospective studies. The decision-
hazard-decision structure is used to solve the adequacy problem with two timescales. The
decision stages in the decision-making process are separated into a nonanticipative planning
step and a recourse corrective step. As a consequence, the resolution of each stage in the
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multistage stochastic optimisation problem becomes a two-stage problem in which the first
stage decisions (slow decisions) are made before knowing the uncertainties, and the second
stage or recourse decisions (fast decisions) are made once the weekly block of uncertainties is
known. It can be interpreted that the slow decisions are associated with the unit commitment
step and that the fast decisions are associated with the unit modulation. We obtain as a result
a problem formulation that improves the information model by being less anticipative but
still allows us to apply temporal decomposition methods. Once the new information structure
is described, we present the corresponding mathematical formulation of the problem and the
associated Bellman equations giving the usage values.

In Sect. 5, we present numerical results for a case study comparing both information
structures: hazard-decision and decision-hazard-decision in the context of prospective stud-
ies. We observe that the choice of the information structure when computing usage values
can modify the merit order in the system, that is, the order of the storage usage values
with respect to the thermal units prices. We aim to illustrate the effect of modelling the
information structure in a simple case, and it is not our goal to discuss possible algorithmic
approaches to improve performance when computing usage values. We address the resolu-
tion of the two-stage problem at each stage of the multistage optimisation problem in its
extensive formulation, knowing that more sophisticated techniques can be applied to scale
the study. In this paper we focus in one storage (or few storages); to address the issue of
scalability, we will count on decomposition methods (rather than SDDP) like in [10].

Finally, in Sect. 6, we conclude on the relevance of the choice of information structures
in the computation of usage values, hence on the optimal allocation of resources.

In Appendix A, we detail the hourly composition of the storage dynamics. In Appendix B,
we present the ideal decision-hazard-decision information structure with hourly recourse dis-
cussed in §1.2.

2 Physical and economical model of the energy system

In this Sect. 2, we describe the physical and economical model of the energy system we
consider. In §2.1, we present the timeline with two timescales. In §2.2, we define the variables
to model the system. In §2.3, we introduce the system dynamics and energy balance. Finally,
in §2.4, we present the cost function modelling.

2.1 Timeline definition

We consider a timeline with a long timescale and a short timescale. The short and long
timescales could be any two scales, as long as one is larger than the other. In this work, the
long timescale is given by weeks that are represented by a finite totally ordered set (S,⪯),
where s+ is the successor of s ∈ S and s its predecessor: s ≺ · · · ≺ s ≺ s ≺ s+ ≺ · · · ≺ s
(where ≺ is the strict order associated with the order ⪯). Then, S = [s, s]. The short
timescale, hours in this case, is represented by a finite totally ordered set (H,⪯): h ≺ · · · ≺
h ≺ h ≺ h+ ≺ · · · ≺ h. Then, H = [h, h].
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To unify the timescale we consider the product set S ×H ordered as follows:

(s, h) ≺ · · · ≺ (s , h) ≺ (s, h) ≺ (s, h+) ≺ · · ·
· · ·(s, h ) ≺ (s, h) ≺ (s+, h) ≺ · · · ≺ (s, h) . (4)

We consider a period of one year, and (s, h) is the instant corresponding to the first hour of
the first week of the year, and (s, h) is the last hour of the last week of the year. We need
to define an extra time (s+, h) at its end to handle the resulting state of the last decision.
The extended unified timeline S ×H is defined as S ×H ∪ {(s+, h)}.

We define JsJ=
(
(s, h), (s, h+), . . . , (s, h)

)
and KsK =

(
(s, h+), . . . , (s, h), (s+, h)). Thus,

we use a simple bracket [ or ] to denote intervals of the elementary timelines (H,⪯) and
(S,⪯). By contrast, we use double brackets J or K for the composite (product) timeline
(S ×H,⪯).

The different possibilities to index a variable (respectively a function) by time are detailed
in Table 2 (respectively in Table 3).

Index Notation Description

(s, h) z(s,h) Variable at (s, h)

s zs
Representative variable for the week s

corresponding to the variable at (s, h)

JsJ zJsJ
Sequence of hourly variables given by(

z(s,h), z(s,h+), . . . , z(s,h)
)

KsK zKsK
Sequence of hourly variables given by(

z(s,h+), . . . , z(s,h), z(s+,h)
)

Table 2: Variables notation

The characteristic aggregation in Table 3 could be a sum over h ∈ H, a composition with
respect to the state, or a combination of both (see Appendix A for further details).

2.2 Physical variables

The following is a description of the system components. We classify the variables accordingly
to their type: decision (in the hand of the decision-maker), uncertainty (exogenous), state
(storage) and slack (energy not supplied in the system).

2.2.1 Thermal units modelling

We consider a thermal fleet composed of thermal units whose variables are detailed in Table 4
for the units indexed by i ∈ I. The “On” decision is associated with yth,i = 1 and the “Off”
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Index Notation Description

(s, h) ϕ(s,h) Function expression at (s, h)

s ϕs
Characteristic aggregation of the hourly functions

ϕ(s,h) for the week s

JsJ ϕJsJ
Sequence of hourly functions ϕ(s,h) given by(

ϕ(s,h), ϕ(s,h+), . . . , ϕ(s,h)

)
KsK ϕKsK

Sequence of hourly functions ϕ(s,h) given by(
ϕ(s,h+), . . . , ϕ(s,h), ϕ(s+,h)

)
Table 3: Functions notation

Description Type Notation

On/Off Decision yth,i ∈ {0, 1}

Modulation Decision θi ∈ {0} ∪
[
θi, θ

i]
Availability Uncertainty wth,i ∈ {0, 1}

Table 4: Thermal units variables

decision with yth,i = 0. Observe that the decision yth,i is taken at each hour and does not
represent a change in the state of the unit. The decision θi denotes the power modulation
once the unit is on. The availability of the thermal units is modelled with the (uncertainty)
variable wth,i: when it is equal to 0 the unit is not available to use and, when it is equal to 1,
the unit is available to use.

The collections of on/off decisions, modulation decisions and availabilities variables of all
thermal units are denoted by yth = (yth,i)i∈I , θ = (θi)i∈I and wth = (wth,i)i∈I respectively.

2.2.2 Storage modelling

In Table 5, we introduce the variables related to the storage management. We consider
different variables for pumping (rp) and turbining (rt) decisions so that we take into account
the pumping efficiency in the storage. The variable q denotes the level in the storage (stock),
that is, the physical state of the storage.

2.2.3 Residual demand modelling

The residual demand (wd) is the difference between demand and non-dispatchable produc-
tion. This allows to group in one variable several uncertainty sources such as the wind
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Description Type Notation

Pumping Decision rp ∈
[
0, rp

]
Turbining Decision rt ∈

[
0, rt

]
Storage level Physical state q ∈

[
q, q

]
Table 5: Storage variables

production, the solar production, the demand, etc. The variable wd is classified as uncer-
tainty.

2.2.4 Slack variables

We introduce a variable ψens, classed as slack, to model the energy not supplied in the system.
This variable will appear in the forthcoming energy balance (9) and cost function (10).

2.3 System dynamics and energy balance

We present now the linking constraints between variables.

2.3.1 Storage dynamics

The dynamics function

f(q, rp, rt) = q + ηrp − rt (5)

describes the evolution of the storage level — as a function of the current storage level q, of
the pumping rp and turbining rt decisions — from one short time stage to the next. The
parameter η ∈ [0, 1] is the pumping efficiency of the storage.

The hourly dynamics f induces a weekly temporal coupling linking the storage level at the
beginning of a week s with the level at the beginning of the following week s+. Therefore, we
also consider a weekly dynamics fs given by the hourly composition of the dynamics in (5).
The composition is detailed in Appendix A. It gives, as a result, the storage level q(s+,h)
at the beginning of the following week, by summing the total difference between pumping
(positive taking into account its efficiency) and turbining (negative) during the week to the
storage level at the beginning of the current week q(s,h).

2.3.2 Thermal units’ production output

The effective output of the unit is constrained by its availability and the on/off decision.

More precisely, the output production θ̂i of the i-th thermal unit not only depends on the
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decision θi, but also on the on/off decision yth,i and on the availability uncertainty wth,i as
follows

θ̂i(yth,i, θi, wth,i) = θi ×min{yth,i, wth,i} . (6)

As defined, the production of the i-th unit belongs to the same set as θi, that is,

θ̂i(yth,i, θi, wth,i) ∈ {0} ∪
[
θi, θ

i]
, (7)

taking the value zero whenever the off decision is made (yth,i = 0) or the unit is not avail-
able (wth,i = 0). The collection of output production of all thermal units is denoted by

θ̂ = (θ̂i)i∈I .

2.3.3 Balance equation

Satisfying the energy balance equation is the main goal of the adequacy resource problem.
That is, at every hour, the total energy production in the system should be equal to the total
energy consumed in the system (which includes the pumping). Ideally, the energy balance
constraint is written as the equality

total
production︷ ︸︸ ︷
rt +

∑
i∈I

θ̂i+

energy not
supplied︷︸︸︷
ψens =

pumping demand +
residual demand︷ ︸︸ ︷
rp + wd . (8)

We rather formulate this balance equation as an inequality constraint to avoid infeasibility
problems due to the thermal units’ minimum power constraints: indeed, infeasibility could
happen when less energy is required than the minimum power of the last (or more expensive)
unit on to meet the demand. If the cause of the balance infeasibility is the lack of available
production, the slack variable ψens will take positive values, measuring how far from meeting
the demand the system is. Thus, the hourly balance equation is given by

g(rt, rp, θ̂, wd, ψens) ≥ 0 , (9a)

with g
(
rt, rp, θ̂, wd, ψens

)
=

(
rt +

∑
i∈I

θ̂i + ψens
)
−
(
rp + wd

)
. (9b)

2.4 Cost functions

We now introduce the hourly cost function ℓ(yth, zth, θ̂, wth, ψens) as

ℓ(yth, zth, θ̂, wth, ψens) =
∑
i∈I

(
sci ×max

{
yth,i − zth,i, 0

}
+ vci × θ̂i

)
+ pc× ψens .

The cost of meeting the demand is the operating cost of the thermal units. We model the
thermal cost for each unit within the sum over i ∈ I in Equation (10) with two components.
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The first one is associated with decision of switching on a unit, that is, when at one hour
yth,i = 0 and in the following hour yth,i = 1. The second component corresponds to the
variable cost, and is proportional to the power modulation θi of the unit. In addition, we
model the penalization on the energy not supplied as a cost. This penalization cost is much
higher than the thermal units’ cost to ensure that the energy demand is not provided only
in cases where there is no other solution.

The parameters sci and vci correspond to the unit’s start-up and modulation costs,
whereas pc is the penalization parameter for the not supplied energy in the system. The
variable zth is introduced to take into account a temporal shift of the on/off decision yth,i

since the start up cost is associated with a change from off to on between two consecutive
hours (see Tables 6 and 7).

The weekly cost ℓs will be defined as the sum of the hourly costs ℓ within the week in
Tables 6 and 7.

Up to now, we have introduced the physical and economical modelling of the problem.
In Sect. 3, we will present the current practice for the adequacy problem mathematical
formulation, to compute usage values, focusing on the information structure modelling.

3 Current information modelling in weekly hazard-decision

When modelling a stochastic multistage optimization problem, it is necessary to define the
information structure, that is, a model that describes the information available at each stage
of the decision-making process.

In §3.1, we introduce notations for random variables and measurability constraints. In
§3.2, we present the weekly hazard-decision information structure. In §3.3, we formulate the
multistage stochastic optimization problem. In §3.4, we deduce the corresponding Bellman
equations in hazard-decision.

3.1 Notation for random variables and measurability constraints

To formulate the multistage stochastic optimization problem, we model the uncertainties as
random variables and, as a consequence, the states and controls are random variables as well.
For this purpose, we consider a probability space (Ω,F ,P). Random variables are measurable
functions from the measurable space (Ω,F) towards some Rn, equipped with its Borel σ-
field Bo

Rn , and will be denoted by bold letters like Z. Then, the information structures are
mathematically modelled as measurability constraints. We say that Z1 is measurable with
respect to Z2 if σ(Z1) ⊂ σ(Z2), that is, the σ-field generated by Z1 is included in (less rich
than) the σ-field generated by Z2. Thanks to Doob Theorem [5], measurability constraints
are equivalently expressed by means of functions as follows

σ(Z1) ⊂ σ(Z2) ⇐⇒ there exists a measurable function φ such that Z1 = φ(Z2) . (10)

Practically, the function φ is what we call policy or strategy, when Z2 represents the infor-
mation disclosed when making a decision.
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3.2 Weekly hazard-decision information structure (HD)

In this Sect. 3, we consider information structures that assume a weekly disclosure of the
information: once the uncertainty of the first hour of the week is known, the whole collection
of uncertainties for the week is also known. The weekly vectors presented hereafter follow
the notation given in Table 2. Let wKsK = (wd

KsK, w
th
KsK) be the vector composed of the weekly

demand and weekly thermal units availabilities. In the same way, the vector composed of
the collection of weekly controls is denoted by vKsK = (ythKsK, θKsK, r

p
KsK, r

t
KsK, ψ

ens
KsK ).

The current practice to model the information structure is a hazard-decision (HD) struc-
ture in the weekly timescale as illustrated in Fig. 3.

(s, h) (s, h) (s, h+) (s, h) (s, h) (s, h)+ (s, h) (s+, h)

vKsK

Uncertainty wKsK of the week s(
w(s,h+), . . . , w(s,h), . . . , w(s+,h)

)

Span of available information before making decision vKsK

Figure 3: Weekly hazard-decision information structure. An arrow maps the available infor-
mation towards the decision, so that, here, the information structure is partly anticipative
as some arrows go from the right to the left.

The collection vKsK =
(
v(s,h+), . . . , v(s+,h)

)
of hourly decisions for the week is made once

the block wKsK =
(
w(s,h+), . . . , w(s+,h)

)
of uncertainties for the week is disclosed. In other

words, when making the decisions for any hour of the week, the demand and the availability
of thermal units for every hour in the week are already known (in advance). We can also
interpret this structure as if the hourly decisions can wait until knowing all the uncertainties
of the week to be made. In this context, all the hourly decisions within the week are one
week ahead anticipative since, when making them, the uncertainties until the end of the week
are already known.

Finally, for the weekly hazard-decision structure, the information constraint is represented
by the following measurability constraints

σ(VKsK) ⊂ σ(W(s,h),WKsK, . . . ,WKsK) , ∀s ∈ S . (11)

3.3 Multistage stochastic optimization problem formulation

In Sect. 2, we have presented the physical and economical model of the energy system. With
the new notation in §3.2, we present in Table 6 the corresponding expressions and their
compact mathematical versions.
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Notation

Function Mathematical Physical-Economical

Storage

dynamics
Fs

(
q(s,h),vKsK

)
fs

(
q(s,h),r

p
KsK,r

t
KsK

)
Thermal

production
Θ̂KsK

(
wKsK,vKsK

) {
θ̂(s,h)+

(
yth
(s,h)+

,θ(s,h)+ ,w
th
(s,h)+

)}
h∈H

Energy

balance
GJsJ

(
wKsK,vKsK

)
{
g

(
rt
(s,h)+

,rp
(s,h)+

,

θ̂(s,h)+

(
yth
(s,h)+

,θ(s,h)+ ,w
th
(s,h)+

)
,

wd
(s,h)+

,ψens
(s,h)+

)}
h∈H

Weekly

cost
Ls

(
wKsK,vKsK

) ℓs

(
ythKsK,θ̂KsK,w

th
KsK,ψ

ens
KsK

)
=

ℓ
(
yth
(s,h)+

,0,θ̂(s,h)+ ,w
th
(s,h)+

,ψens
(s,h)+

)
+∑

h∈H\{h}

ℓ
(
yth
(s,h)+

,yth
(s,h)

,θ̂(s,h)+ ,

wth
(s,h)+

,ψens
(s,h)+

)
Table 6: Correspondence between mathematical and physical and economical notations
(Sect. 2) in the weekly hazard-decision framework

The weekly cost function ℓs is obtained as the sum of the hourly cost functions within
the week. When computing the hourly cost at (s, h) with Equation (10), the variable zth

correspond to the on/off decision yth(s,h) at the previous hour. For simplicity, we neglect the
temporal coupling of thermal units from the last hour of one week to the first hour of the
next week, fixing the initial operating state of the units at the beginning of each week to
off. This modelling choice is made to avoid an augmentation of the dynamic programming
state’s dimension for each thermal unit. This explains the presence of a zero as second entry
in the first term in the expression of the weekly cost in the last line of Table 6.

Considering the definitions in Table 6, we formulate the physical adequacy problem as
a stochastic multistage optimization problem using the weekly hazard-decision information
structure:

min
Q,V

E
[∑
s∈S

Ls(Q(s,h),VKsK,WKsK) +K(Q(s+,h))

]
(12a)

such that , ∀s ∈ S
Q(s,h) = W(s,h) , (12b)

Q(s+,h) = Fs(Q(s,h),VKsK) , (12c)

GJsJ(VKsK,WKsK) ≥ 0 , (12d)

σ(VKsK) ⊂ σ
(
W(s,h),WKsK, . . . ,WKs K,WKsK

)
. (12e)
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The final cost K(Q(s+,h)) is used to give value to the energy in the storage at the end of the
yearly period.

3.4 Bellman equations in hazard-decision

Defining the weekly state xs = q(s,h) (storage level at the beginning of the week), we write
the weekly Bellman equations [1]

BHD
s+ (xs+) = K(xs+) , (13a)

BHD
s (xs) = E

[
min
vKsK

Ls
(
xs, vKsK,WKsK

)
+BHD

s+

(
Fs(xs, vKsK)

)]
, (13b)

where the minimum inside Equation (13b) is computed subject to the constraint (12d).
If the sequence

(
WKsK, . . . ,WKsK, . . . ,WKsK

)
of uncertainties is weekly independent, the

weekly Bellman equations provide an optimal solution for Problem (12). We highlight that,
to get the optimal solution, the hourly uncertaintiesWKsK =

(
W(s,h+), . . . ,W(s,h)+ , . . . ,W(s+,h)

)
within the week do not need to be assumed to be independent (from one hour to another).

It is well known that, for all s ∈ S, the function BHD
s satisfies

BHD
s (xs) = min

VKsK,...,VKsK
E
[ s∑
s′=s

Ls′(Q(s′,h),VKs′K,WKs′K) +K(Q(s+,h))

]
(14a)

such that , ∀s′ ∈ [s, . . . , s]

Q(s′,h) = xs , (14b)

Q(s′+,h) = Fs′(Q(s′,h),VKs′K) , (14c)

GJs′J(VKs′K,WKs′K) ≥ 0 , (14d)

σ(VKs′K) ⊂ σ
(
W(s,h),WKsK, . . . ,WKs′−K,WKs′K

)
, (14e)

so that the value BHD
s (xs) of the Bellman function is interpreted as the future optimal cost

when, at week s, the storage level is xs and the weekly hazard-decision information structure
is considered.

The need for another information structure arises out of the fact that the current approach
is fully anticipative in the week, as illustrated in the minimum inside the expectation on the
right hand side of the Bellman equation (13b). When assuming that all the uncertainties
for the week are known at the moment of making a decision, we implicitly suppose that all
decisions are flexible and can wait until knowing the uncertainties to be made. But it is
known that certain on/off decisions cannot be made instantaneously and need to be planned
in advance. For this purpose, we introduce another information structure in Sect. 4.

4 Information modelling in weekly decision-hazard-decision

In this Sect. 4, we present the weekly decision-hazard-decision (DHD) information structure.
As discussed in §1.2, this structure is a compromise between the current weekly hazard-
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decision described in Sect. 3 and the ideal information structure with weekly planning deci-
sions and hourly recourses (detailed in Appendix B). In the weekly decision-hazard-decision
information structure, there are decisions that cannot be modelled as (weekly) anticipative.
We classify the decisions in the system modelling between:

• planning or decision-hazard (here-and-now) decisions: denoted by ũ,

• recourse or hazard-decision (wait-and-see) decisions: denoted by ṽ.

In §4.1, we present and detail the weekly decision-hazard-decision information structure.
In §4.2, we formulate the multistage stochastic optimization problem. In §4.3, we give
the corresponding Bellman equations in decision-hazard-decision. In §4.4, we compare the
Bellman value functions according to the underlying information structures, namely HD
and DHD.

4.1 Weekly decision-hazard-decision information structure (DHD)

As shown in Fig. 4, the planning decisions ũJsJ are made before knowing the uncertainties wKsK

for the week (knowing only the past uncertainties); then, the weekly block of uncertainties
is disclosed, and the corrective actions are made, that is, the recourse controls ṽKsK.

(s, h)

ũJsJ

Information before

making decision ũJsJ

(s, h) (s, h+) (s, h) (s, h) (s, h)+ (s, h) (s+, h)

ṽKsK

Uncertainty wKsK of the week s(
w(s,h+), . . . , w(s,h), . . . , w(s+,h)

)

Information before making decision ṽKsK

Figure 4: Weekly decision-hazard-decision information structure. An arrow maps the avail-
able information towards the decision, so that, here, the information structure is partly
anticipative as some arrows go from the right to the left.

Since the recourse decisions for the beginning of the week are made knowing the uncer-
tainties for the whole week, they are anticipative.

For the weekly decision-hazard-decision structure, the information constraints are given
by the σ-fields inclusions

σ(ŨJsJ) ⊂ σ(W(s,h),WKsK, . . . ,WKs K) , ∀s ∈ S , (15a)

σ(ṼKsK) ⊂ σ(W(s,h),WKsK, . . . ,WKs K,WKsK) , ∀s ∈ S . (15b)
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4.2 Multistage stochastic optimization problem formulation

Now we classify the physical controls described in §2.2 into planning controls ũJsJ and recourse
controls ṽKsK as follows

ũJsJ = yth,slowJsJ , (16a)

ṽKsK = (yth,fastKsK , θKsK, r
p
KsK, r

t
KsK, ψ

ens
KsK ) . (16b)

We model as planning decisions the on and off decisions for the “slow” thermal units,
and as recourse decisions all the remaining ones. We consider this classification to, in a way,
model the rigidity of some thermal units, i.e. to model the fact that they cannot be switched
on instantaneously. Now the collection of on/off decisions for the thermal units is composed
of yth = (yth,slow, yth,fast).

In Sect. 2, we have presented the physical and economical model of the energy system.
With the new notation in §4.2, we present in Table 7 the corresponding expressions and
their compact mathematical versions. As already explained in §3.3, we neglect the temporal

Notation

Function Mathematical Physical-Economical

Storage

dynamics
F̃s

(
q(s,h),ṽKsK

)
fs

(
q(s,h),r

p
KsK,r

t
KsK

)
Thermal

production
Θ̃KsK

(
ũJsJ,wKsK,ṽKsK

) {
θ̂(s,h)+

((
yth,slow
(s,h)

,yth,fast
(s,h)+

)
,θ(s,h)+ ,w

th
(s,h)+

)}
h∈H

Energy

balance
G̃JsJ

(
ũJsJ,wKsK,ṽKsK

)
{
g

(
rt
(s,h)+

,rp
(s,h)+

,

θ̂(s,h)+

((
yth,slow
(s,h)

,yth,fast
(s,h)+

)
,θ(s,h)+ ,w

th
(s,h)+

)
,

wd
(s,h)+

,ψens
(s,h)+

)}
h∈H

Weekly

cost
L̃s

(
ũJsJ,wKsK,ṽKsK

)
ℓs

((
yth,slowJsJ ,yth,fastKsK

)
,θKsK,w

th
KsK,ψ

ens
KsK

)
=

ℓ

((
yth,slow
(s,h)

,yth,fast
(s,h)+

)
,0,θ̂(s,h)+ ,w

th
(s,h)+

,ψens
(s,h)+

)
+∑

h∈H\{h}

ℓ

((
yth,slow
(s,h)

,yth,fast
(s,h)+

)
,
(
yth,slow
(s,h)

,yth,fast
(s,h)

)
+

θ̂(s,h)+ ,w
th
(s,h)+

,ψens
(s,h)+

)
Table 7: Correspondence between mathematical and physical and economical notations
(Sect. 2) in the weekly decision-hazard-decision framework

coupling of thermal units from the last hour of one week to the first hour of the next
week. Considering the definitions in Table 7, we formulate the physical adequacy problem
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as a stochastic multistage optimization problem using the weekly decision-hazard-decision
information structure:

min
Q,Ũ,Ṽ

E
[∑
s∈S

L̃s(Q(s,h), ŨJsJ,WKsK, ṼKsK) +K(Q(s+,h))

]
(17a)

such that , ∀s ∈ S
Q(s,h) = W(s,h) , (17b)

Q(s+,h) = F̃s(Q(s,h), ṼKsK) , (17c)

G̃JsJ(ŨJsJ,WKsK, ṼKsK) ≥ 0 , (17d)

σ(ŨJsJ) ⊂ σ(W(s,h),WKsK, . . . ,WKs K) , (17e)

σ(ṼKsK) ⊂ σ(W(s,h),WKsK, . . . ,WKs K,WKsK) . (17f)

The final cost K(Q(s+,h)) is used to give value to the energy in the storage at the end of the
yearly period.

4.3 Bellman equations in decision-hazard-decision

Defining the weekly state xs = q(s,h), that is, the storage level at the beginning of the week,
we write the weekly Bellman equations (18) using [4, Proposition 13]

BDHD
s+ (xs+) = K(xs+) , (18a)

BDHD
s (xs) = min

ũJsJ

E
[
min
ṽKsK

L̃s(xs, ũJsJ,WKsK, ṽKsK) +BDHD
s+

(
F̃s(xs, ṽKsK)

)]
, (18b)

where the minimum inside the expectation term of Equation (18b) is computed subject to
the constraint (17d).

If the sequence
(
WKsK, . . . ,WKsK, . . . ,WKsK

)
of uncertainties is weekly independent, the

weekly Bellman equations provide an optimal solution for Problem (17). We highlight that,
to get the optimal solution, the hourly uncertaintiesWKsK =

(
W(s,h+), . . . ,W(s,h)+ , . . . ,W(s+,h)

)
within the week do not need to be assumed to be independent (from one hour to another).
Under this independence assumption, it is well known that, for all s ∈ S, the function BDHD

s
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satisfies

BDHD
s (xs) = min

ŨJsJ,...,ŨJsJ

ṼKsK,...,ṼKsK

E
[ s∑
s′=s

Ls′(Q(s′,h), ŨJs′J,WKs′K, ṼKs′K) +K(Q(s+,h))

]
(19a)

such that , ∀s′ ∈ [s, . . . , s]

Q(s′,h) = xs , (19b)

Q(s′+,h) = Fs′(Q(s′,h), ṼKs′K) , (19c)

GJs′J(ŨJs′J,WKs′K, ṼKs′K) ≥ 0 , (19d)

σ(ŨJs′J) ⊂ σ
(
W(s,h),WKsK, . . . ,WKs′−K

)
, (19e)

σ(ṼKs′K) ⊂ σ
(
W(s,h),WKsK, . . . ,WKs′−K,WKs′K

)
, (19f)

so that, the value BDHD
s (xs) of Bellman function is interpreted as the future optimal cost

when at week s the storage level is xs and the weekly decision-hazard-decision information
structure is considered.

4.4 Theoretical comparison between Bellman functions in HD and
DHD

When we compare theoretically the Bellman functions BHD
s and BDHD

s , given by the Bellman
equations (13) and (18), we observe that the weekly hazard-decision approach is a relaxation
of the weekly decision-hazard-decision approach with respect to the information constraint.In
other words, at each stage of the stochastic multistage optimization problem, the decision
maker has more information when making the decision in the HD case, than in the DHD
case. Therefore, we have the following inequalities for all s ∈ S:

BHD
s ≤ BDHD

s . (20)

The usage values — or prices p — are defined as the opposite of the derivative of the
Bellman functions with respect to the storage level [12]:

pHDs = − d

dx
BHD
s (x) , (21a)

pDHD
s = − d

dx
BDHD
s (x) . (21b)

Whereas we have established an inequality between Bellman functions in Equation (20), it
is impossible to do so for the usage values (as they are derivatives).

In Sect. 5, we compare numerically the effect of both information structures when com-
puting usage values for a case study of small size.
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5 Numerical study

In this Sect. 5, we present a numerical study. In §5.1, we describe the energy system of
small size considered. In §5.2, we present the method to compute the Bellman functions
and usage values, either for the hazard-decision information structure in Sect. 3 or for the
decision-hazard-decision information structure in Sect. 4. In §5.3, we compare the numerical
results for the usage values. Finally, in §5.4, we show the effect of the information modelling
choice when designing policies to carry on a simulation of the energy system dispatch.

5.1 Case study description

We consider a small energy system to conduct the numerical study with the following com-
ponents: 3 thermal units (base unit, semi-base unit and peak unit); 1 residual demand;
1 storage unit. The thermal units differ in their prices and power capacities. Whereas the
base and semi-base units are the cheapest and the less flexible ones, the peak unit is the
most expensive but the most flexible one.

We model the components mentioned above as in Sect. 2, and we consider the weekly
hazard-decision (Sect. 3) and the weekly decision-hazard-decision (Sect. 4) mathematical
modelling of the problem. In the weekly hazard-decision case, all the decisions for the week
are anticipative but, in the weekly decision-hazard-decision case, we consider that the on
and off decisions for the base and semi-base units are nonanticipative (planned in advance).
This classification is made taking into account the rigidity and flexibility of the units.

To model the uncertainties, we have taken a finite number of scenarios provided by RTE,
with uniform probability. We divide the scenarios into two sets:

•
(
wnKsK

)
s∈S

for n ∈ J1, NK = {1, . . . , N} used to compute Bellman functions and their

associated nonanticipative policies,

•
(
wcKsK

)
s∈S

for c ∈ J1, CK = {1, . . . , C} used in simulation.

For the computations, we use the programming language Julia [3], the JuMP package [9]
and the Xpress solver.

5.2 Bellman functions computation

We compute the Bellman functions using the classical stochastic dynamic programming
(SDP) algorithm [2] for the hazard-decision framework, and an adapted version for the
decision-hazard-decision framework. In both cases, the problem for the entire year is de-
composed in weekly problems that we solve using the backward recursions (13) and (18)
(respectively) for a regular discretization grid GX of the state space X = [q, q] (see Table 5).
This discretization grid has been refined to achieve a satisfactory piecewise approximation
of the Bellman functions.

On the one hand, we do it to be able to handle binary or discrete variables within the
planning decisions, in which case SDDP is not suitable (but variants like SDDiP are). On
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the other hand, we keep the original state without augmenting it as in ASDH-SDDP in [13].
The expectations in the Bellman equations are computed as finite sums.

The objective is to obtain two sequences
(
BHD
s

)
s∈S and

(
BDHD
s

)
s∈S of Bellman func-

tions corresponding to the weekly hazard-decision and weekly decision-hazard-decision frame-
works. They are represented by real numbers

(
BHD
s (x)

)
s∈S and

(
BDHD
s (x)

)
s∈S with x varying

in a grid GX . For both information structures, solving the Bellman equations leads to MILP
problems for each week. Indeed, we approximate the cost-to-go functions — BHD

s+ and BDHD
s+

in (13) and (18) respectively — as continuous piecewise linear functions, but not necessar-
ily convex (due to the presence of binary decisions). Taking into account piecewise linear
cost-to-go functions in MILPs can be handled through the so-called lambda method [8]. The
algorithms are sketched in Alg. 1 and Alg. 2.

Algorithm 1: Hazard-decision stochastic dynamic programming

Data: uncertainties scenarios wnKsK with n ∈ J1, NK and probabilities 1
N
,

space state discretization x ∈ GX ,
final cost K

(
xs+

)
Result:

{
BHD
s (x)

}
s∈S

for s = s, . . . , s do
for x ∈ GX do

BHD,0
s (x) = 0;

for n ∈ J1, NK do

BHD,n
s (x) = BHD,n−1

s (x) + 1
N
min
vnKsK

{
Ls

(
x,wnKsK, v

n
KsK

)
+BHD

s+

(
Fs(x, v

n
KsK)

)
,

such that (12d)
}

end

end

end

In the Alg. 1 (HD), as many deterministic MILPs are solved as there are scenarios, at
each week and each point of the grid GX . In the Alg. 2 (DHD), a stochastic two-stage MILP
is solved using its extensive formulation.

When comparing the Bellman functions for all the weeks in the year, we obtain that
BHD
s (x) < BDHD

s (x) for all x in the grid GX , which numerically confirms the theoretical
result in (20).

The usage values or prices, p, are calculated as the opposite of the derivative of the
Bellman functions with respect to the storage level as in Equation (21). As the Bellman
functions are computed on the discrete grid GX , and as usage values in (21) have been
defined as derivatives, usage values are approximated by increments between middle points x
of the state space grid GX by the formula

d

dx
Bs(x) ≈

Bs(x+
∆x
2
)−Bs(x− ∆x

2
)

∆x
, (22)
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Algorithm 2: Decision-hazard-decision stochastic dynamic programming

Data: uncertainties scenarios wnKsK with n ∈ J1, NK and probabilities 1
N
,

space state discretization x ∈ GX ,
final cost K

(
xs+

)
Result:

{
BDHD
s (x)

}
s∈S

for s = s, . . . , s do
for x ∈ GX do

BDHD
s (x) = min

ũJsJ

N∑
n=1

1

N

(
min
ṽnKsK

{
Ls

(
x, ũJsJ, w

n
KsK, ṽ

n
KsK

)
+BDHD

s+

(
Fs(x, ṽ

n
KsK)

)
,

such that (17d)
})

end

end

with ∆x the discretization step of the grid GX .

5.3 Numerical results for usage values

In Fig. 5, we compare the prices of the thermal units with the usage values obtained with
the Bellman functions computed using the HD and DHD structures.

We observe that, for storage levels higher than 20%, the HD usage value in blue is above
the semi-base unit price (dashed yellow), whereas the DHD usage value in red is below. As
a consequence, we expect different dispatches in simulation when using these usage values
to design the storage policy, since the merit order of the production means changes. This
change in the dispatch could lead to different conclusions when carrying out prospective
studies. In §5.4 we compare the results in simulation induced by both modelling options to
compute Bellman functions.

5.4 Numerical comparison between policies in HD and DHD

The goal of this part of the numerical study is to compare the dispatches obtained when
using the policies induced by both Bellman functions

(
BHD
s

)
s∈S and

(
BDHD
s

)
s∈S computed

in §5.2 .
We recall that an uncertainty scenario for simulation (also called chronicle) is denoted

by
(
wcKsK

)
s∈S

. We simulate the operation of the system for different chronicles c ∈ J1, CK in

which the availability and demand change.
For the sake of simplicity and to be consistent with the weekly decision-hazard-decision

information structure, we choose to design an “anticipative simulator”: uncertainties are
disclosed at the end of the week and recourse controls are computed at the end of the
week but applied within the week. The simulation algorithm is the same regardless the
sequence of Bellman functions (HD or DHD) chosen to design the policies. We illustrate how
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Figure 5: Prices and usage values comparison for week 20, depending on the information
structure (DHD or HD) considered in the Bellman equations
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the simulation is done for one uncertain chronicle in Algorithm 3. We highlight that this
simulation algorithm can be used with any Bellman functions.

Algorithm 3: Decision-hazard-decision policy and simulation

Data: uncertainties scenarios wnKsK with n ∈ J1, NK and probabilities 1
N
,

Bellman functions
{
Bs

}
s∈S ,

simulation chronicle
{
wcKsK

}
s∈S

,

initial condition for the state x0
Result:

{
xcs, u

c
JsJ, v

c
KsK

}
s∈S

xcs = x0
for s = s, . . . , s do

compute nonanticipative controls:

ucJsJ = argmin
ũJsJ

N∑
n=1

1

N

(
min
ṽnKsK

{
Ls

(
xcs, ũJsJ, w

n
KsK, ṽ

n
KsK

)
+Bs+

(
Fs(x

c
s, ṽ

n
KsK)

)})
compute recourse controls:

vcKsK = argmin
ṽKsK

{
Ls

(
xcs, u

c
JsJ, w

c
KsK, ṽKsK

)
+Bs+

(
Fs(x

c
s, ṽKsK)

)}
update state:

xcs+ = Fs(x
c
s, ṽKsK)

end

In Fig. 6, we compare the simulations of the dispatches for one chronicle of uncertainties
(residual demand and availability fixed) in the week 20 of the year when using the HD and
DHD Bellman functions to compute the policies. In the selected chronicle, the base unit
is not available until the hour 96 of the week. The semi-base and peak units are available
during the entire week.

We compare the dispatch obtained with the weekly hazard-decision policy in Fig. 6a
with the one obtained with the weekly decision-hazard-decision policy in Fig. 6b. To satisfy
the same demand, with the same production means available, we observe that the dispatch
varies depending on the policy considered. In the case of the HD policy, the semi-base unit
works at its maximum power and the marginal production is made by the storage. On the
contrary, in the DHD policy dispatch, the storage operates at its maximum power and the
marginal production is made by the semi-base unit.

This difference comes from the fact that, as we remarked in Fig. 5, the HD usage values
are above the semi-base unit price, whereas the DHD usage values are below the semi-base
unit price. This changes the dispatch order.

The merit order difference in the two policies studied is observed for several weeks in the
year, which leads, for all chronicles, to a higher use of the storage (more turbining and more
pumping) when using the DHD policy.

However, we observe that the HD policy tends to store more energy than the DHD policy
as we can see in Fig. 7 for the same simulated yearly chronicle. This result is observed in
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(a) Weekly hazard-decision policy dispatch

(b) Weekly decision-hazard-decision policy dispatch

Figure 6: Dispatch comparison using the policies induced by the Bellman functions computed
either with the weekly hazard-decision (Fig. 6a) or with the weekly decision-hazard-decision
information structure (Fig. 6b)
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Figure 7: Comparison of the storage level obtained from the weekly hazard-decision and the
weekly decision-hazard-decision policies for one given chronicle (of uncertainties)

all simulated chronicles and can be explained with the usage value difference: in the case of
the DHD policy, there is less interest in storing energy since it has lower usage value.

6 Conclusion

In this paper, we have first formalized the weekly hazard-decision information structure in a
two-timescale setting. The weekly hazard-decision information structure is the current ref-
erence framework when modelling the resource adequacy problem as a multistage stochastic
optimization problem to compute usage values for prospective studies under uncertainty. We
have written the correponding weekly Bellman equations, that make it possible to compute
usage values for the energy in the storage. These Bellman equations respect the hourly
physical constraints.

Then, we have highlighted the need to improve this structure to account for temporal
rigidities in thermal operation, that is, the fact that on/off decisions cannot be modelled
as fast or last minute decisions. Therefore, we have introduced the weekly decision-hazard-
decision information structure in a two-timescale setting. In this structure, the decisions
for each stage in the decision-making process are separated into planning and recourse deci-
sions, depending on the physical modelling aspects of the decisions. We have presented the
mathematical formulation of the problem considering the weekly decision-hazard-decision
information structure and its associated Bellman equation in the weekly timescale, that still
respect the hourly physical constraints.

Afterwards, we have have carried out a numerical analysis to quantify, in a case study,
the consequences of the information structure modelling choice when computing Bellman
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functions and their associated usage values. From this study, we have inferred that the policy
induced by the weekly hazard-decision information modelling leads to an overestimation of
the thermal flexibility and as a result, a lower use of the storage. Indeed, when using
the policy induced by the weekly decision-hazard-decision Bellman functions, we take into
account some rigidity in the thermal units (specially on/off decisions) and the storage is
more used. In consequence, we concur with [13] that decision-hazard-decision information
structures are of great interest to calculate usage values, taking into account that some types
of thermal units are less flexible than others.

This study has been carried using a single storage, so that the well-known curse of
dimensionality in SDP is not binding. In future work, we will turn to spatial decomposition
techniques [10] to extend the study to multiple storage facilities.
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A Hourly composition of the storage dynamics

We consider the hourly dynamics function given by

f(q, rp, rt) = q + ηrp − rt . (23a)

This equation represents the hourly evolution of the level in a storage. To be able to for-
mulate the problem in a weekly framework, we define the weekly dynamics fs. The weekly dy-
namics fs(q(s,h), r

p
KsK, r

t
KsK) is obtained by composition of the hourly dynamics f(q(s,h), r

p
(s,h)+ , r

t
(s,h)+)

for h ∈ H, but the composition being done only on storage level variable.
To describe the dynamics composition we introduce the following extra notation

f r
p,rt

(s,h)

(
q(s,h)

)
= f

(
q(s,h), r

p
(s,h)+ , r

t
(s,h)+

)
, (23b)

so that we get

fs
(
q(s,h), r

p
KsK, r

t
KsK

)
=

(
f r

p,rt

(s,h)
◦ f r

p,rt

(s,h )
◦ · · · ◦ f r

p,rt

(s,h)

)
(q(s,h)) . (23c)

From the hourly dynamics f expression (23a), the weekly dynamics fs is given by:

fs
(
q(s,h), r

p
KsK, r

t
KsK

)
= q(s,h) +

∑
h∈H

(
ηrp(s,h)+ − rt(s,h)+

)
. (23d)
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B Ideal information structure in decision-hazard-decision

As discussed in §1.2, we should ideally consider an information structure in which, at the
beginning of the week s, the planning for the nonanticipative decisions ũJsJ is made know-
ing only the past uncertainties, that is, the uncertainties up to (s, h). Then, when the
uncertainties w(s,h) begin to be disclosed hour by hour, there are so-called hourly recourse
decisions ṽ(s,h) that are also made hour by hour knowing the uncertainties up to (s, h). Such
information structure, illustrated in Fig. 8, is called decision-hazard-decision information
structure with hourly recourse.

(s, h)

ũJsJ

Information before

making decision ũJsJ

(s, h) (s, h+) (s, h) (s, h) (s, h)+ (s, h) (s+, h)

Uncertainties(
w(s,h+), . . . , w(s,h) , w(s,h), w(s,h)+

)

ṽ(s,h+) ṽ(s,h) ṽ(s,h) ṽ(s,h)+

Information before making recourse decision ṽ(s,h)+

Figure 8: Decision-hazard-decision information structure with hourly recourse. An arrow
maps the available information towards the decision, so that, here, the information structure
is nonanticipative as all arrows go either down or from the left to the right.

This structure leads to Bellman equations (see §B.3) with nested mathematical expecta-
tions and minimizations, hence out of reach to compute. This is why we opted in Sect. 4 for
a compromise solution, namely, the weekly decision-hazard information structure.

Remark 1 In real operation it is possible to adjust the production “in real time” to meet
demand, that is, there is some anticipativity at the fast timescale for the hourly recourse
decision ṽ(s,h). Therefore, it is not unrealistic to consider the ideal model described above.
Note that, it is not possible to consider a fully nonanticipative (or decision-hazard) structure,
in which the hourly recourse decisions ṽ(s,h) are made knowing the uncertainties up to (s, h)
(instead of (s, h)), because it would lead to an excessive usage of the slack variable ψens in
the energy balance equation (9).

B.1 Weekly decision-hazard-decision information structure with
hourly recourse

We consider an information structure in which the nonanticipative control ũJsJ is made know-
ing the uncertainties up to the beginning of week s, and the hourly recourse control ṽ(s,h)+ is
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made knowing the uncertainties up to the hour (s, h)+. As illustrated in Fig. 8, at the begin-
ning of the week s the nonanticipative decision ũJsJ is made (for all h ∈ H) and then, once
the uncertainties are disclosed hour by hour, the recourse decisions v(s,h)+ are sequentially
made.

For the weekly decision-hazard-decision structure with hourly recourse the information
constraints are given by the σ-fields inclusions

∀s ∈ S ,

σ
(
ŨJsJ

)
⊂ σ

(
W(s,h),WKsK, . . . ,WKs K

)
, (24a)

∀(s, h) ∈ S ×H ,

σ
(
Ṽ(s,h)+

)
⊂ σ

(
W(s,h),WKsK, . . . ,WKs K,W(s,h+), . . . ,W(s,h)+

)
. (24b)

B.2 Multistage stochastic optimization problem formulation

Considering the definitions in Table 7, we formulate the physical-economical adequacy prob-
lem as a stochastic multistage optimization problem using the weekly decision-hazard-decision
information structure with hourly recourse:

min
Ũ,Ṽ

E

[∑
s∈S

L̃s(Q(s,h), ŨJsJ,WKsK, ṼKsK) +K(Q(s+,h))

]
(25a)

such that , ∀(s, h) ∈ S ×H
Q(s,h) = W(s,h) , (25b)

Q(s+,h) = F̃s(Q(s,h), ṼKsK) , (25c)

G̃JsJ
(
ŨJsJ,WKsK, ṼKsK

)
≥ 0 , (25d)

σ
(
ŨJsJ

)
⊂ σ

(
W(s,h),WKsK, . . . ,WKs K

)
, (25e)

σ
(
Ṽ(s,h)+

)
⊂ σ

(
W(s,h),WKsK, . . . ,WKs K,W(s,h+), . . . ,W(s,h)+

)
. (25f)

The final cost K(Q(s+,h)) is used to give value to the energy in the storage at the end of the
yearly period.

B.3 Bellman equations in decision-hazard-decision information struc-
ture with hourly recourse

Here, we provide Bellman equations corresponding to the stochastic multistage optimization
problem (25). Their derivation is not given, as it is lengthy, but can be established from [4].
Defining the weekly state xs = q(s,h), that is, the storage level at the beginning of the week,
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we write the weekly Bellman equations (26) corresponding to (25) as

BDHDh

s+

(
xs+

)
= K(Q(s+,h)) (26a)

BDHDh

s

(
xs
)
=

min
uJsJ

E

[

min
v(s,h+)

E
[

min
v(s,h+)+

E
[

...

min
v(s,h)

E
[

min
v(s+,h)

{
L̃s(xs, ũJsJ, wKsK, ṽKsK) +BDHDh

s+ (F̃s(xs, ṽKsK))
}

| (w(s,h+), w(s,h+)+ , . . . , w(s,h))
]

...∣∣(w(s,h+), w(s,h+)+)
]

∣∣∣w(s,h+)

]
]
, (26b)

where all the minimizations in Equation (26b) are computed subject to the constraint (25d).
If the sequence

(
WKsK, . . . ,WKsK, . . . ,WKsK

)
of uncertainties is weekly independent, the

weekly Bellman equations provide an optimal solution for the problem (25). We highlight
that the hourly uncertainties WKsK =

(
W(s,h+), . . . ,W(s,h)+ , . . . ,W(s+,h)

)
within the week

are not assumed to be independent to get an optimal solution. Under this independence
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assumption, it is well known that, for all s ∈ S, the function BDHDh

s satisfies

BDHDh

s (xs) = min
ŨJsJ,...,ŨJsJ

ṼKsK,...,ṼKsK

E

[
s∑

s′=s

Ls′(Q(s′,h), ŨJs′J,WKs′K, ṼKs′K) +K(Q(s+,h))

]
(27a)

such that , ∀s′ ∈ Js, . . . , sK
Q(s′,h) = xs , (27b)

Q(s′+,h) = Fs′(Q(s′,h), ṼKs′K) , (27c)

GJs′J(ŨJs′J,WKs′K, ṼKs′K) ≥ 0 , (27d)

σ(ŨJs′J) ⊂ σ
(
W(s,h),WKsK, . . . ,WKs′−K

)
, (27e)

σ
(
Ṽ(s′,h)+

)
⊂ σ

(
W(s,h),WKsK, . . . ,WKs′−K,W(s′,h)+ , . . . ,W(s′,h)+

)
. (27f)

so that the value BDHDh

s (xs) of Bellman function is interpreted as the future optimal cost
when at week s the storage level is xs and the weekly decision-hazard-decision information
structure with hourly recourse is considered. More details can be found in [4, Proposition 10].

B.4 Theoretical comparison between Bellman functions in HD,
DHD and DHDh

When we compare theoretically the Bellman functions BHD
s , BDHD

s and BDHDh

s , given by the
Bellman equations (13), (18) and (26), we observe that the weekly hazard-decision approach
is a relaxation of the weekly decision-hazard-decision approach, and this last one is a relax-
ation of the weekly decision-hazard-decision with hourly recourse approach with respect to
the information constraint.

In other words, at each stage of the stochastic multistage optimization problem, the
decision maker has less information when changing from the HD to the DHD approach. The
same happens when changing from the DHD to the DHDh approach. Therefore, we have the
following inequalities for all s ∈ S:

BHD
s ≤ BDHD

s ≤ BDHDh

s . (28)

34


	Introduction
	Context: usage values in prospective studies
	Our contributions
	Comparison with the literature
	A. Street, D. Valladão, A. Lawson, and A. Velloso. Street-Valladao-Lawson-Velloso:2020 Applied Energy, 2020
	D. Valladão, T. Silva, and M. Poggi. Valladao-Silva-Poggi:2019 Annals of Operations Research, 2019
	O. Dowson. dowson2020policy Networks, 2020
	Synthesis of our contributions in comparison with the literature

	Structure of the paper

	Physical and economical model of the energy system
	Timeline definition
	Physical variables
	Thermal units modelling
	Storage modelling
	Residual demand modelling
	Slack variables

	System dynamics and energy balance
	Storage dynamics
	Thermal units' production output
	Balance equation

	Cost functions

	Current information modelling in weekly hazard-decision
	Notation for random variables and measurability constraints
	Weekly hazard-decision information structure (HD)
	Multistage stochastic optimization problem formulation
	Bellman equations in hazard-decision

	Information modelling in weekly decision-hazard-decision
	Weekly decision-hazard-decision information structure (DHD)
	Multistage stochastic optimization problem formulation
	Bellman equations in decision-hazard-decision
	Theoretical comparison between Bellman functions in HD and DHD

	Numerical study
	Case study description
	Bellman functions computation
	Numerical results for usage values
	Numerical comparison between policies in HD and DHD

	Conclusion
	Hourly composition of the storage dynamics
	Ideal information structure in decision-hazard-decision
	Weekly decision-hazard-decision information structure with hourly recourse
	Multistage stochastic optimization problem formulation
	Bellman equations in decision-hazard-decision information structure with hourly recourse
	Theoretical comparison between Bellman functions in HD, DHD and DHDh


